
Animal models of tumor immunity, immunotherapy and
cancer vaccines
Suzanne Ostrand-Rosenberg

Reliable animal models are critical for evaluating

immunotherapies and for defining tumor immunology

paradigms. Tumor immunologists are moving away from

traditional transplantation tumor systems because they do not

adequately model human malignancies. Transgenic mouse

models in which tumors arise spontaneously have been

developed for most cancers. The models use one of three

technologies: tissue-specific promoters to drive expression of

SV40 large T antigen or tissue-specific oncogenes; deletion of

tumor suppressor genes by gene targeting; or, conditional

deletion of tumor suppressor genes or activation of oncogenes

via Cre-lox technology. Knockin mice expressing human tumor

antigens and gene-targeted mice with deletions for

immunologically relevant molecules have been integral to

advancing knowledge of the tumor–host relationship. Although

animal models are becoming more sophisticated, additional

improvements are needed so that more realistic models can be

developed.
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Abbreviations
Apc adenomatosis polyposis coli

ARR2 androgen-receptor-regulated promoter region

MMTV mouse mammary tumor virus

Py polyoma virus

Rb retinoblastoma

T ag SV40 large T antigen
t ag SV40 small t antigen

Introduction
Animal models have played a critical role in establishing

basic paradigms of tumor immunology because they

provide an in vivo milieu that cannot be reproduced in
vitro. As novel immunotherapies and cancer vaccines

have been developed, animal models have also played

an important role in pre-clinical testing for therapeutic

efficacy. Historically, investigators have used transplant-

able tumor models, in which inbred animals are inocu-

lated with tumor cells derived from the same genetic

strain. The tumors were initially derived from sponta-

neously occurring malignancies or induced by chemicals

or irradiation, and maintained either by in vivo or in vitro
passage. As the tumor immunology field has moved

towards developing cancer vaccines and other novel can-

cer immunotherapies, the same transplantable tumor

models have been used to test therapeutic efficacy.

Unfortunately, many of these tumor models are not good

predictors for human clinical trials, as numerous therapies

that look promising in experimental animals have turned

out to be ineffective in patients. Although immunother-

apy and cancer vaccine studies are moving away from

using transplantable tumor models, they remain a main-

stay for immunologists examining issues of basic tumor

immunology. This review will briefly describe the pros

and cons of transplantable tumor models and then focus

on the recently developed transgenic mouse models in

which tumors develop spontaneously. A brief overview

of other mouse models that have been useful in defin-

ing basic principles of tumor immunology will also be

discussed.

Transplantable tumor models
Although transplantable tumors have long been integral

to tumor immunology research, they have several char-

acteristics that limit their applicability to human disease

and make them less than optimal for predicting immu-

notherapy efficacy in patients. First, most transplant-

able tumors were derived many years ago, and today’s

‘syngeneic’ mouse strains may no longer be fully syn-

geneic with these tumors. In addition, some transplan-

table tumors have picked up endogenous viruses and

express viral antigens not expressed by their mouse hosts.

Therefore, many transplantable tumors may be partially

histoincompatible with their ‘syngeneic’ mouse host and/

or contain viral epitopes that make them significantly

more immunogenic than naturally arising human tumors.

Second, transplanted tumors are typically inoculated sub-

cutaneously or intravenously and therefore do not grow in

the anatomically appropriate site. As a result, the animal

model does not mimic the organ-specific physiology

characteristic of the tumor and the immune system is

not exposed to the tumor in a manner comparable to that

of naturally occurring malignancies in patients. Third,

transplantable tumors generally progress very rapidly

following inoculation, whereas spontaneous human

tumors usually develop more slowly through a gradual

series of cellular changes from pre-malignant to malignant

pathologies. Therefore, the immune system of patients is

slowly acclimated to tumors, whereas the immune system
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of experimental animals with transplanted tumors is

abruptly exposed. These kinetic variations may lead to

different immunological outcomes, such as tolerance

versus activation. Fourth, for patients with solid tumors,

disseminated metastatic disease is frequently the predo-

minant cause of death, and many cancer vaccines and

immunotherapies are aimed at reducing and/or prevent-

ing metastasis. Most transplantable mouse tumors, how-

ever, are not spontaneously metastatic, so vaccine efficacy

studies using these models are not particularly relevant

for human metastatic disease.

Despite these obvious limitations, some transplantable

tumors have distinct experimental advantages. For exam-

ple, when inoculated in the mammary fat pad of syn-

geneic mice, the mouse 4T1 mammary carcinoma is

spontaneously metastatic to the same sites as human

mammary adenocarcinoma. If the primary tumor in the

mammary gland is removed, then this transplantable

tumor serves as an excellent model for the treatment

of established, disseminated metastatic disease in a post-

surgery setting [1–3].

Transplantable tumors have also been derived from

spontaneous tumors that arise in genetically engineered

mice. Because these recently derived tumors are syn-

geneic with their spontaneous tumor counterparts, they

have been used in conjunction with the spontaneous

models. For example, experiments with such transplant-

able tumors have demonstrated that older mice are sig-

nificantly less responsive to cancer vaccines than younger

mice [4�], and that combination immunotherapy consist-

ing of passive administration of tumor-antigen-specific

antibodies plus a cell-based vaccine provides more effec-

tive immunity than either therapy alone [5�].

Models for testing immunotherapy and
cancer vaccines
In developing better animal models for both immu-

notherapy and cancer vaccine studies, investigators have

tried to address the problems associated with transplant-

able tumors and to develop experimental systems that

more closely mimic human malignancy. Efforts have

been directed towards developing transgenic mouse mod-

els in which tumors develop spontaneously and progress

through the known pre-malignant and malignant stages;

defined human tumor antigens are expressed so that the

host is tolerized to tumor-encoded molecules; and, the

timing of tumor onset can be controlled so that tumors

arise when the host has a mature immune system, as they

do in humans.

SV40-driven transgenic models

Numerous transgenic mice have been generated by plac-

ing the transforming genes of the SV40 or polyoma virus

early regions under the control of a tissue or cell-specific

promoter. These mice spontaneously develop tumors in

the targeted tissue. Table 1 includes some of these

models and summarizes their characteristics by target

organ. These models are useful because the mice develop

organ-localized tumors, and, in some cases, also develop

metastatic lesions. Most of these transgenic mice develop

prostate cancer [6,7] or mammary carcinoma [8–10]; how-

ever, pancreatic [11,12], ovarian [13] and melanoma [14]

models have also been reported.

The SV40 early region contains both large T and small t

antigens (SV40 T ag and SV40 t ag, respectively). SV40

T ag inactivates the p53 and retinoblastoma (Rb) tumor-

suppressor genes and the t ag activates cyclin Dp, which

alters the mitogen-activated protein kinase (MAPK) and

stress-activated protein kinase (SAPK) pathways. The

original prostate cancer model, called the transgenic

adenocarcinoma mouse prostate (TRAMP) mouse,

was generated using the entire SV40 early region [7].

However, there has been concern that the multiple

perturbations induced by the SV40 early region are

not consistent with human prostate cancer, so another

model called the ‘LADY’ mouse, containing only the T

ag was developed [6].

A limitation of the SV40-driven prostate models is that

the resulting tumors do not morphologically or pheno-

typically resemble human prostate tumors. For example,

TRAMP mice develop seminal vesicle and stromal

tumors, and LADY mice develop neuroendocrine tumors,

whereas most human prostate cancers (adenocarcinoma)

are of epithelial origin. In addition, tumor progression in

many of the SV40 models is very rapid and therefore

differs from development of human tumors, which typic-

ally progress more gradually. These characteristics have

led some investigators to question the physiological rele-

vance of SV40-driven transgenic models [15].

Organ-specific oncogene-driven transgenic models

Because of the desire to generate animal models in which

the mechanism of tumor induction more closely parallels

that of human disease, transgenic models using tissue or

cell-specific promoters driving tumor-specific oncogenes

have been developed. These models utilize a cell or

tissue-specific promoter driving an oncogene that is

thought to be causative of tumorigenesis. Table 1

includes some of these models and gives their character-

istics. Most of these models involve oncogenes such as

Her2/neu (ErbB2), which is driven by mammary tissue-

specific promoters such as the Her2/neu endogenous

promoter or mouse mammary tumor virus (MMTV)

promoter [5�,16–21,22�,23]; however, prostate [24] and

intestinal models [25] have also been reported. Several

characteristics of these tumors demonstrate their sim-

ilarity to human malignancies. Tumors in these models

progress as they do in humans from pre-malignant lesions

to invasive tumors and in some cases metastatic disease.

Tumor progression in one of the Her2/neu models
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Table 1

Selected transgenic mouse models of spontaneous malignancies.

Target

organ

Model

name

Promoter/

transgene

Genetic

background

Percent mice

with tumors

Metastasis Comments References

Breast neuNT MMTV/rat

activated

Her-2/neu

FVB 100% Palpable mammary masses

by �13–14 weeks.

[44]

Breast BALB/c

neuT

MMTV/rat

activated

Her-2/neu

BALB/c 100% Lung mets in

older mice

(�week 33)a.

Mammary hyperplasia at

�8–13 weeks; DCIS at

�8–17 weeks; 1 palpable

mass by �20 weeks; 10

palpable masses by �week 30.

[17]

Breast neuN MMTV/

unactivated

Her-2/neu

FVB �75% Lung mets in �72%

of mice >8

months of age.

DCIS at �37 weeks; 1 palpable

mass by �41–49 weeks; �2.5

palpable masses thereafter;

less disease than BALB/c-neuT

mice; tolerant to neu.

[16,17]

Breast MMT (MMTV LTR/Py

MT) � MUC1

Tg

C57BL/6 100% Focal hyperplasia at �4 weeks;

palpable mammary tumors by

day 65; 50% of mice have

tumors by day 80–90; rapid

progression.

[8]

Breast MT MMTV/PyMT FVB 100% Lung mets. Multifocal mammary

adenocarcinoma; rapid

progression.

[9]

Breast neuNT (MMTV Cre) �
loxP activated

neu with

endogenous

promoter

BALB/c 100% MMTV/Cre transgenics were

bred with transgenics containing

an inducible activated neu

gene under its endogenous

promoter; mammary tumors

appear by �8 months.

[18]

Prostate TRAMP Truncated rat

probasin/SV40

T þ t

C57BL/6

and FVB

100% 100% to lymph

nodes and/or

lungs; less common

to kidney, adrenal

gland, bone.

Prostate intraepithelial

hyperplasia by 10 weeks;

invasive neuroendocrine

tumors by 20 weeks.

[7,45]

Prostate LADY

(12T-10)

Large probasin/

SV40 Tag

CD-1 100% 88% at 9 months;

liver and lung most

common; also to

lymph nodes, bone.

Low grade prostatic

intraepithelial neoplasia (PIN);

invasive neuroendocrine

tumors by 22 weeks; androgen

receptor negative.

[6]

Prostate Pten�/� Cre-lox

conditional

knockout

(C57BL/6 �
DBA/2)F1 �
(129/BALB/c)

100% �50% with mets

to lymph nodes,

lungs.

Prostate hyperplasia at 4 weeks;

PIN at 6 weeks; invasive

prostate adenocarcinoma by

9 weeks; tumors are androgen

receptor negative.

[29�]

Prostate Nkx3.1þ/�

Ptenþ/�
Double

knockout

129/Sv �
C57BL/6

84% 25% to lymph

nodes after 1 year.

High grade PIN; invasive

adenocarcinoma after 1 year;

androgen independent; Pten is

a tumor suppressor gene; Nkx3.1
is homeobox gene that is

prostate-specific.

[30]

Prostate Lo Myc

or Hi Myc

Lo Myc: rat

probasin/myc

Hi Myc: ARR2-

probasin/myc

FVB 100% PIN by 2–4 weeks; mice with

high levels of myc expression

develop invasive prostate

adenocarcinoma by 3–6 months;

mice with low levels of myc by

10–12 months.

[24]

GI/colorectal Apc 1638 Truncated

Apc gene

B6.129 90% Colon polyps develop and

progress to adenomas and

colon carcinoma; 1–7 foci per

mouse; mice are heterozygous

for the truncated gene product.

[25]
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correlates with increasing tumor-induced immune sup-

pression of the host, a situation that also occurs in patients

with malignancies [26��]. Gene expression profiling of

mammary tumors regulated by the endogenous Her2/

neu promoter shows similarities to human mammary

carcinoma [27�].

Although these transgenic models have a high incidence

of spontaneous cancer, and are therefore very useful

experimentally, investigators have questioned the phy-

siological relevance of those models in which the onco-

gene is driven by a strong viral promoter such as MMTV

[18]. Another limitation of some of these models is that

they simultaneously develop multiple primary tumors,

unlike their human counterparts in which typically a

single primary tumor arises.

Tumor-suppressor-gene knockout models

Many human malignancies are associated with mutations

in tumor suppressor genes. Because such mutations are

considered causative of malignancy, tumor-suppressor-

gene targeted mice (‘loss-of-function’) have been devel-

oped, either with or without co-activation of oncogenes.

Table 1 includes some of these transgenic models and

gives their characteristics. The most commonly targeted

tumor suppressor gene is p53, and these mice typically

develop tumors in multiple tissues (e.g. lung, skin, intes-

tine, brain, thymus, lymphocytes and connective tissue).

Two prostate cancer transgenic models have also been

developed based on loss-of-function of Pten, a tumor

suppressor gene that also has anti-apoptotic activity

[28,29�,30].

Cre-lox conditional expression models

Traditional knockin and knockout transgenic mouse

technology has provided numerous models of sponta-

neous tumorigenesis; however, these models share a

major limitation. Unlike human malignancies, which

typically develop after birth, the targeted/transgenes in

these mouse models are altered during embryonic

development. Therefore, disease onset is much earlier

than in humans, and the kinetics of tumor progression

do not parallel those of human malignancies. To over-

come this problem, mouse models are being developed

based on the ability of the bacterial recombinase Cre to

activate genes that are flanked by LoxP sites. Typic-

ally, one strain of mice will contain a tissue-specific

promoter upstream of a floxed oncogene or inactivator

of a tumor suppressor gene, and a second strain will

contain the Cre recombinase regulated by an inducible

promoter. When the two strains are interbred and the

F1 mice are given the inducer, then the targeted gene

is affected. Using this approach, tumor-inducing genes

can be manipulated at any time during the life of the

mouse [31].

In an adaptation of the Cre-lox approach, Flesken-Nikitin

and colleagues [32�] have devised a novel method for

inducing localized ovarian tumors. Instead of mating Cre

and floxed mice, they inoculated the ovarian bursa of mice

with floxed versions of the p53 and Rb1 tumor suppressor

genes with adenovirus encoding the bacterial Cre recom-

binase. The resulting mice developed predominantly

ovarian tumors that progressed and metastasized in a

similar way to human ovarian carcinomas.

Table 1 Continued

Target

organ

Model

name

Promoter/

transgene

Genetic

background

Percent mice

with tumors

Metastasis Comments References

GI/colorectal CEA.Tg/

MIN

CEA.Tg �
Apc mutated

C57BL/6 100% Multifocal; tolerant to CEA. [34,46]

Pancreas MET Rat elastase/

SV40 Tag

1-127 �
MUC1.Tg

C57BL/6 50% Pancreatic dysplasia at birth

progressing to microadenomas

and acinar cell carcinomas by
week 9; by week 12 up to 9

tumor foci per mouse; the

shortened SV40 Tag eliminates

potential SV40 viral antigens.

[12]

Ovary Tg MISIIR

Tag

Mullerian

inhibitory

substance type

IIR/SV40 Tag

B6C3F1 50% Ascites Poorly differentiated

ovarian carcinoma.

[13]

Ovary Ad Cre-adenovirus/

p53þRb1 floxed

recipients

97% by day

227 if both

alleles are

inactivated.

Ascites; mets to

lung and liver.

Cre-adenovirus is inoculated

intrabursally in the ovary; 5%

of mice get tumors outside

of the ovary.

[32�]

Melanocytes Tyr-SV40E Mouse

tyrosinase/

SV40 Tþt

C57BL/6 100% 61% of mice

with eye tumors

get mets.

Earliest melanomas are in

the eye; skin melanomas are

later and less frequent.

[14]

CEA, carcinoma embryonic antigen; DCIS, ductal carcinoma in situ; GI, gastrointestinal tract; mets, metastases; mo, month; PIN,

prostate intraepithelial neoplasia. aPiero Musiani and Guido Forni, unpublished.
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Transgenic mice expressing human tumor antigens

Many human tumor antigens are expressed by non-

malignant cells, so investigators developing cancer vaccines

must study the immunogenicity and host responsiveness

to endogenous molecules. Therefore, transgenic mice

expressing human tumor antigens have been generated.

Some of these models and their characteristics are listed

in Table 2. Such models are particularly useful for human

tumor antigens, such as prostate-specific antigen (PSA),

for which there is no mouse counterpart [33]. In some

cases, tumor antigen transgenic mice have been crossed to

mice that contain oncogenes, resulting in mice that

develop spontaneous tumors expressing relevant tumor

antigens (e.g. carcinoma embryonic antigen [CEA]/ade-

nomatous polyposis coli [APC]þ/� mice; [34]). In some

cases, the tumor antigen itself is an oncogene and causes

spontaneous tumor formation. Examples are the neuT

and neuN transgenic mice, although both of these models

use a rat her-2/neu gene rather than a human gene

[16,17,35]. These models have provided valuable infor-

mation on the challenges of inducing anti-tumor immu-

nity to self antigens for which the host has varying degrees

of tolerance [5�,23,36–40].

Gene-targeted (knockout) mice

The availability of knockout mice has allowed investi-

gators to identify many molecules that are pivotal in

tumor immunity. Knockout mice have been used in at

least two types of scenarios. First, they are inoculated

with a transplantable tumor derived from the genetic

background of the knockout, and the mice are followed

for tumor progression. As most gene-targeted mice are on

a C57BL/6 or BALB/c background, experiments are

limited to transplantable tumors derived from these

strains (for an example of this approach see [41] and

[42]). In an alternative experimental design, mice that

have increased tumor resistance have been bred with

knockout mice and the resulting offspring intercrossed or

Table 2

Selected transgenic mice expressing human tumor antigens.

Model name Promoter/tumor antigen Genetic background Comments References

PSA1Tg Endogenous human/PSA BALB/c PSA expressed on prostate ductal epithelium;
immune response to immunization with PSA.

[33,47]

Muc1.Tg Endogenous human/Muc1 C57BL/6 Muc1 tissue distribution similar to human Muc1;

no immune response to MUC1-expressing tumor

cells or MUC1 protein.

[36]

(CEA Ge)18FJP Endogenous human/CEA C57BL/6 CEA expressed in the cecum, colon, gastric

foveolar cells, and on 20% of luminal epithelial

cells; no circulating CEA; immune response

to immunization with CEA.

[46]

hHer-2 Tg Whey acidic protein/ErbB-2 B6C3 backcrossed

to C57BL/6

ErbB-2 expressed constitutively in Bergman

glia cells (brain) and in secretory mammary

epithelia during pregnancy and lactation.

[48��]

CEA, carcinoma embryonic antigen; PSA, prostate-specific antigen.

Table 3

Websites for animal models.

Website URL Content

http://emice.nci.nih.gov/ Mouse Models of Human Cancer Consortium.

Http://cancermodels.nci.nih.gov/ These National Cancer Institute (NCI) sites include a database of mouse cancer

models, relevant publications and a listing of mice available from the NCI.

Models are listed by affected organ and there are minireviews for each organ.

Http://www.jax.org/

Http://jaxmice.jax.org/library/models/cancer.pdf

The Jackson Laboratory. This site provides information and availability on the

many mouse models distributed and/or developed at The Jackson

Laboratory — the world’s largest private supplier of inbred strains of mice.

http://ccr.cancer.gov/tech_initiatives/animalmodels/default.asp NCI-sponsored Animal Models Initiative. (Password needed to access this site).

Http://tbase.jax.org/ The Jackson Laboratory transgenic/targeted mutation database (searchable).

Http://bioscience.org/knockout/alphabet.htm Alphabetical listing of gene-targeted mice.

Http://research.bmn.com/mkmd Mouse knockout and mutation database.

http://immunology.tch.harvard.edu/knockouts Mouse mutants with immunological phenotypes

http://www.mshri.on.ca/nagy/cre.htm This page contains links to Cre recombinase and floxed gene databases.
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backcrossed to obtained homozygous-deficient mice. By

following the incidence and kinetics of tumor develop-

ment, investigators have assessed the role of the deleted

gene in tumor resistance (see [43] for an example of this

strategy). Table 3 lists websites containing databases

describing mice deficient for various immunologically

relevant genes.

Conclusions
Although most investigators believe that animal models

can provide useful pre-clinical information about novel

immunotherapies and cancer vaccines, others have

argued that animal studies are uninformative because

they are not predictive of results with humans. If poor

prognostic results from animal studies are due to inade-

quate models, then better models must be developed.

As tumor immunologists select the models they use,

they should ensure that they mimic as closely as possible

the human cancer for which the therapy or vaccine is

designed. Is tumor onset comparable to that in humans?

Are tumor progression and staging similar? Is the pathol-

ogy of the animal tumor similar to that of its human

counterpart? Is the extent of tumor burden comparable?

Is hormone responsiveness similar? If the therapy

being tested is designed for the treatment of metastatic

disease in a post-surgery setting, is the animal model

appropriate? If the targeted patients have tumor-

induced immune suppression, is the animal model com-

parably immune suppressed? If the targeted patients are

immunocompromised because of age, does the animal

model show a similar immune deficit? Consideration of

these issues when selecting the appropriate animal

model may yield pre-clinical results that more closely

predict clinical outcomes.
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