
A Graphical Development and Debugging Environment

for Parallel Programs

Péter Kacsuk∗, José C. Cunha∗∗

Gábor Dózsa∗, João Lourenço∗∗ Tibor Fadgyas∗, Tiago Antão∗∗

∗KFKI-MSZKI Research Institute
for Measurement and Computing Techniques

of the Hungarian Academy of Sciences
P.O.Box 49, H-1525 Budapest, Hungary

{kacsuk, dozsa, fadgyas}@sunserv.kfki.hu

∗∗Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática
2825 Monte Caparica, Portugal
{jcc, jml, tra}@di.fct.unl.pt

Abstract

To provide high-level graphical support for PVM (Parallel Virtual Machine) based
program development, a complex programming environment (GRADE) is being
developed. GRADE currently provides tools to construct, execute, debug, monitor
and visualise message-passing parallel programs. It offers high-level graphical programming
abstraction mechanism to construct parallel applications by introducing a new
graphical language called GRAPNEL. GRADE also provides the programmer with
the same graphical user interface during the program design and debugging stages.
A distributed debugging engine (DDBG) assists the user in debugging GRAPNEL
programs on distributed memory computer architectures. Tape/PVM and PROVE
support the performance monitoring and visualization of parallel programs developed
in the GRADE environment.

1 Introduction

As local area computer networks have become a basic part of todays computing
infrastructure, more and more people encounter the possibility to exploit the
available computational power of heterogeneous networks of computers. The
most widely used paradigm for implementing applications on such distributed
systems is the message passing (MP) concept, and it is expected to be the

Preprint submitted to Elsevier Science 7 June 2011



most common approach for the next few years. The MP paradigm has two
fundamental advantages: simplicity and efficiency. The concept is quite simple
to understand and can be implemented efficiently on different distributed
systems.

A number of MP interfaces are available today, but one of the most popular
is the PVM (Parallel Virtual Machine [17]) software package. PVM permits a
user to configure his own virtual computer by hooking together a heterogeneous
collection of UNIX based machines, on which the user has a valid login and
are accessible over some network. The user views PVM as a loosely coupled
distributed memory computer programmed in C or FORTRAN with message-
passing extensions.

Although the concept of the MP paradigm is quite simple, the development of
parallel programs is much more difficult than that of sequential ones, because
of the extra tasks arising due to the communication and synchronisation of
processes. The PVM system provides a low-level interface that enables to
write and execute parallel applications but misses high-level support which
could make this work acceptable easy and efficient. In the framework of two
Copernicus projects (SEPP [33] and HPCTI), a complex programming environment
(GRADE) is being developed to assist the whole cycle of parallel program
development based on the PVM system.

GRADE stands for Graphical Application Development Environment and
currently consists of the following tools as main components:

– GRED: A graphical editor to write parallel applications. The editor supports
the syntax of the graphical language GRAPNEL [19] [13].

– GRP2C: A precompiler to produce the C code with PVM function calls of
the graphical program.

– DDBG: A distributed debugger [8].
– Tape/PVM: A monitoring tool to generate trace file during execution of

the PVM application [25][26] (developed independently at LMC-IMAG,
Grenoble, France).

– PROVE: A visualisation tool to analyse and interpret Tape/PVM the trace
file information and present them to the programmer graphically.

The scheme of the program development cycle in GRADE is depicted in
Figure 1. Rectangles represent the different tools (GRED, DDBG, etc.). Ovals
denote data (files) used by the system. Furthermore, object libraries (GRAPNEL,
Tape/PVM, etc.) are represented as rounded boxes. As a first step the user
applies the GRED graphical editor to design and construct the parallel program
written in a special graphical programming language called GRAPNEL. The
GRED editor creates the so-called GRP file from the GRAPNEL program. The
GRP file contains all the information necessary to restore the program graph

2



Animation info
GRED: Graphical Design

precompiler

Tape/PVM

GRP file

Cross-ref

Executables

(DDBG)

library

GRP2C

GRAPNEL

librarylibrary

Debugger

Makefile
Code

C Source
file

Building

Execution

Trace file

Visualisation

PVM
executables

Fig. 1. Development Cycle in GRADE

for further editing and to compile the GRAPNEL program into a C+PVM
code. The latter is the task of the GR2PC precompiler which additionally
creates the necessary makefile and a special cross-reference file to support the
graphical debugging and animation of the program. The executable code is
generated by the builder that applies three libraries:

– GRAPNEL library: to hide the details of PVM at the GRAPNEL level;
– PVM library: to realize interprocess and interprocessor communications;
– Tape/PVM library: to instrument PVM calls for run time monitoring and

event trace collection.

The executable code is loaded to the processors and is executed either in
debugging mode or trace mode. In debugging mode, the DDBG distributed
debugger controls the execution of the program by providing commands to
create breakpoints, step-by-step execution, animation, etc. In trace mode, a
trace file is generated containing all the trace events defined by the user. These
events are visualized by the PROVE graphical visualization tool assisting the
user in spotting performance bottlenecks in the GRAPNEL programs.

The role of libraries mentioned above may require some further explanations.
Figure 2 illustrates that they are organized in a hierarchy where each library

3



function is called from a higher level library or from the generated code. At
the bottom the PVM library is used to establish interconnection between
different processes. This library is covered by the GRAPNEL library which
has the advantage that in case of porting GRADE to the MPI system [18], the
generated code could remain the same and only the GRAPNEL library should
be modified according to the requirements of the MPI library. If monitoring
is not needed (like in case of Process B in Figure 2) the GRAPNEL library
functions directly call the PVM library. However, if monitoring is necessary,
the Tape/PVM library is inserted between the GRAPNEL and PVM libraries
for many function calls of the GRAPNEL library in order to generate the
event trace file.

Process A Process B

GRAPNEL Lib

Tape

Graphical/Textual

Trace

Generated Code

Application

PVM Lib

Generated Code

GRAPNEL Lib

PVM Lib

Graphical/Textual

Fig. 2. Library Calls in GRAPNEL Processes

The library functions actually represent different message layers in a GRADE
application. On top there is the GRAPNEL level where only high level communication
actions (send and receive) are visible. The GRAPNEL libraries transforms this
message layer to the system level where the necessary low level system services
are provided to realise the high level communication actions. Such low level
system services include the appearance of a service process responsible for
spawning the processes and administrating their task identifiers (TIDs). The
high level communication actions are realised as bidirectional message pairs
at the system level. If monitoring is needed the Tape/PVM level provides
extra communication facilities to collect the local traces. Similarly, in case
of debugging daemon processes are created to handle messages necessary
for controlling the debugged execution mode. Finally, at the lowest PVM
level all necessary messages appear including system, monitor, debugging, etc.
messages. The four message layers of the GRADE applications are depicted
in Figure 3.

In the current paper we describe these tools and their relationships. One of
the main advantage of the GRADE approach stems from the combination of
the graphical design tool and the graphical debugging/animation environment.
The user can debug and animate the program in the same graphical environment
that was used to design it. Accordingly, one of the main highlights of the paper

4



System Level

GRAPNEL Level

DDBG control messages

SERVICE PROC.

DDBG PROC.

Tape/PVM Level

PVM Level

DDBG Level
Tape/PVM PROC.

All messages, including:
system, Tape, DDBG, etc.

High level actions:

High level actions:
service process,
collecting local traces

Low level system services:

send, receive

messages at one action
admin. TIDs, multiple
service process, proc. spawn

Fig. 3. Message Layers of GRADE Applications

is the explanation of the combined use of the distributed debugger and the
graphical programming environment. Similar work has been described with a
flavour of simulation modeling of parallel systems in [10] and [11].

The structure of the paper: Section 2 describes the GRAPNEL graphical
programming language and its graphical editor called GRED. Section 3 summarizes
how the GRAPNEL programs are compiled. Section 4 gives detailed explanation
on how the distributed debugger DDBG is used for debugging and animation of
GRAPNEL programs. Section 5 introduces the main features of the Tape/PVM
monitoring system. Finally, Section 6 shows the PROVE performance visualization
tool.

5



2 The GRED Graphical Editor

In GRADE, parallel programs can be constructed according to the syntax and
semantics of GRAPNEL language by using the GRED editor. GRED is built
on the top of the X-Window system. The code is written in C++ and the
Interviews 3.1 library is applied to program the X interface.

As the first step in the development cycle, the programmer must write the
code of the parallel application. We state that at this phase graphics are
needed to provide high-level support and abstraction mechanism. In the design
and implementation of parallel programs the user is often encouraged to
specify computational issues by drawing graphs and to take these drawings
into consideration when it is necessary to track the run-time behaviour of
the application. A good example of such a computational issue can be the
process communication graph. It’s no use making these drawings by paper
and pencil when it is possible to draw them by using a comfortable and
intelligent graphical program editor. However, there are program parts that
nobody wants to draw, e.g. sequential functions or procedures that have
nothing to do with message-passing or multiprocessing at all. It is only the
outline of the parallel code which is worth being described by graphics; the
low level details are more concise and more comfortable to be defined in
ordinary textual way. That is the main idea behind the GRAPNEL language
supported by the GRED editor. Processes, communication operations and
communication connections must be described graphically, while low-level
code of the processes can be written in C (or in FORTRAN in the future). A
graphical outline of the application can facilitate the work of the programmer
in the design phase as well as in the debugging and performance tuning phases.
In the design phase, structured code can be written—or better to say, can be
drawn—above the level of individual processes (i.e. above the level of C ‘main’
functions by means of PVM) by grouping processes which can be viewed as one
unit into one node, or by using predefined communication topology templates.
During the debugging or performance tuning phase, the programmer has the
global view of message-passing related part of the application, where the errors
or the bottlenecks can be located much faster then having and observing only
the textual code of several processes using ordinary text editors and debuggers.

Due to the lack of space, we just summarize some basic idea of the GRAPNEL
programming model in the following instead of giving the exact definitions of
the language elements. The interested reader should refer to [19].

6



2.1 The Programming Model

The GRAPNEL programming model is entirely based on the message-passing
paradigm. The programmer can define processes performing computations
independently and interacting only by sending and receiving messages. A
process can be either a single unit, or a member of a process group. A process
group is an ordered collection of processes. Both processes and process groups
are defined graphically as boxes. Process groups can be used in two important
ways. Firstly, they can be used to specify the scope of a collective communication
operation, such as multicast (i.e. a message can be received by all members of
a group). Secondly, they can be used as an abstraction mechanism to support
structured design at the level of processes, i.e. processes can be put into a
group to be managed together as one unit. Since process groups can be nested,
they support hierarchical design. Communications among processes are either
point-to-point or group communications, and can be blocking or non-blocking
ones. Communication always takes place via communication ports which can
belong either to processes or process groups, and which are connected by
channels. To ensure that the form of the transmitted data matches at both
the sender and receiver sides, each port has its own protocol. Inside the
processes, input and output operations represent the two fundamental types of
communication actions. They are represented graphically, and they are joined
with the port symbols on which the communication operations are to take
place. The user can define the data to be sent or received by simple listing
the names of the program variables where the data should be stored or should
come from.

In GRAPNEL programs, three hierarchical design levels are distinguished. At
the top level the outline of the whole application is described graphically with
respect to communication connections among the processes, while at lowest
level the textual code fragments are given (remember, that GRAPNEL is a
hybrid language). At the middle level the send and receive operations are
defined inside the code of a process graphically. These levels are represented
by different types of windows shown in Figure 4.

2.1.1 Application Level

This is the top level of the parallel application. Processes, process groups,
communication ports and connections among the processes must be defined
here graphically, but the functionalities (i.e. the code) of the processes are
hidden at this level. In other words, processes are viewed as black boxes
here and we are interested in only the messages transferred among them.
The largest window in Figure 4 represents the Application Window of GRED
which can be used to construct the graphical code at this level.

7



Application Level

Text Code Level Process Level

Fig. 4. GRAPNEL Design Levels

2.1.2 Process Level

This level describes the message-passing related parts of the control flow of
a process graphically. The point is that send and receive operations must
appear graphically in the GRAPNEL code. This approach has two relevant
advantages. Firstly, the programmers do not have to know the syntax of the
underlying message-passing library, i.e. they can just put an icon into the
control flow of the process and simple list the variables where the data is
to come from (send) or where it is to be stored (receive), instead of having

8



to write all the necessary PVM function calls 1 (e.g. different types of pack
and unpack routines, buffer management, etc.). They are generated by the
GRP2C precompiler automatically based on the graphical information of the
GRAPNEL code. Secondly, in the debugging and testing phase all message
transfers can be animated in the graphical windows that can significantly ease
the identification of message-passing related bugs in the program. GRAPNEL
defines graphical symbols (icons) to describe loop constructs, conditional constructs
and send or receive operations graphically. However, only those segments
of the control flow must appear graphically which contain send or receive
actions. The textual block symbol is defined for denoting an arbitrary large
and sophisticated textual code fragment that does not contain any send or
receive action, so which can be defined textually at a lower level (i.e. text code
level). In order to support the structured design the graphical block symbol has
been introduced at the process internal level. A graphical block icon denotes
a control flow segment that does contain communication operations, therefore
the content of the graphical block is defined graphically 2 . In GRED, the so
called Process Window can be used to create the graphical code at this level
(see the Process:Worker11 window in Figure 4).

2.1.3 Textual Code Level

It is the lowest level of the GRAPNEL code where the programmer can define
the textual C code fragments. In the text code belonging to a textual block
icon the programmer may call C functions that are defined either in library
or in normal C files, thus C code written earlier can be reused easily. The
text editor that is invoked by GRED to edit these text parts of the program
can be defined by the user through UNIX environment variables (i.e. without
recompiling the system). As a result, the programmer may use his favorite
text editors (e.g. emacs, vi, etc.) in GRED. An example for a textual window
(Worker11:Init) is depicted in Figure 4.

3 Compiling the GRAPNEL Programs

The programmer can save the code of his application into the so called GRP
file which is a text file and contains all the information necessary to restore
the graphical program in the GRED editor, or to produce the executables
of the application. The executables are generated in two steps. In the first
step, the pure C code of the GRAPNEL program is generated by the GRP2C

1 Actually, no PVM functions are written in the GRAPNEL code at all.
2 The graphical block can be viewed as some kind of graphical subroutine.

9



precompiler. Afterwards, a standard C compiler is invoked to produce the
executable binaries from the C code.

3.1 The GRP2C Precompiler

GRP2C has been written in C++ and it comprises two main parts: the
parser and the code generator. The parser has been implemented as a separate
library with its own header files since it is integrated into both the GRP2C
precompiler and the GRED editor. The lex and yacc standard UNIX tools
have been used to generate the C code of the lexical and syntactical analyser
routines based on a BNF (Backus-Naur Form) like description of the GRP
syntax. The input of the parser is the GRP file and ‘output’ is an internal data
structure that is used either by the editor to restore the graphical program on
the screen or by the code generator to produce the C code. The code generator
of the GRP2C precompiler produces three types of files: C files, a Makefile and
a cross-reference file. We give a brief description about each type as follows.

3.1.1 C Files

A separate C file is produced for each process of the GRAPNEL program.
Basically, the correspondence between a graphical GRAPNEL process and
the C file generated for that process is quite straightforward: each program
item in the GRAPNEL code has its own piece of code in the C file. For
instance, in the case of a textual block, the code generator simple copies the
contents of the block to the appropriate position in the C file. (With respect
to this principle, it does not seem to be too difficult to support FORTRAN
beside C, as it simple means that the programmer can define FORTRAN
code for the GRAPNEL program items and the code generator puts these
code fragments into a FORTRAN file.) However, the situation is a little bit
more difficult concerning the communication operations. To define a send or
receive operation at the Process Level, the programmer just lists the affected
variables that determine the data to be transferred and connects the graphical
send or receive icon with the appropriate port symbol that gives the target of
the communication. The code generator must translate that information into
PVM function calls, i.e. it must generate ‘pack’ or ‘unpack’ function calls for
the listed variables and must use process ‘tid’ values and ‘message tags’ in
the PVM send or receive calls instead of GRAPNEL channel numbers. This
problem was one of the main reasons why we decided to create an interface
library called GRAPNEL library between the PVM library and the generated
C code of the GRAPNEL processes. The code generator places GRAPNEL
library calls into the C files instead of direct PVM function calls. GRAPNEL
library calls fit the communication related program items of the GRAPNEL

10



code. All the PVM function calls, buffers, tids, etc. appear only inside the
GRAPNEL library. This approach has also the advantage that we can support
other message passing systems (e.g. MPI [18]) easily in the future, as only the
internal details of the GRAPNEL library should be rewritten.

3.1.2 Makefile

Beside C files, the code generator creates a ‘Makefile’ for the GRAPNEL
program. This Makefile can be used to produce the executable form of the
application by invoking the UNIX make command. The GRP2C precompiler
uses the GNU autoconf utility to gain the necessary information required to
produce such Makefile (e.g. what kind of C compiler is available in a particular
host machine). As GRAPNEL programs run in heterogeneous environments,
the Makefiles on different hosts can differ significantly. Therefore, the GRP
file is copied to each PVM host and GRP2C is invoked by the system on each
host simultaneously.

3.1.3 Cross Reference File

The third type of files produced by the code generator is the cross reference
file. This file contains information about the connections between graphical
program items in the GRAPNEL code and textual code segments in the C
files (i.e. which line in the C file corresponds to a particular graphical program
item in the GRAPNEL code). The cross reference file is very important for the
graphical animation of the application or for error fixing when the executables
are created from the C files.

3.2 Creating the Executables

Having got the C files and the Makefile for the GRAPNEL program on each
PVM host, the programmer can invoke – from the GRADE environment –
the UNIX make utility that invokes the C compiler and the linker in turns on
each affected host. However, the programmer can happen to make mistakes
in the textual parts of the GRAPNEL code (e.g. inside a textual block), so
he needs feedback about the compilation of the C code. For this purpose the
GRADE environment provides a message window, which opens on the screen
when the compilation process has started. This window collects and shows the
error and warning messages from every host where the make command has
been executed (there is a wrapper program for the make command that grabs
the standard output of the make and sends it to the GRADE environment via
an internet socket). In this way, the programmer can have information about
all problems encountered by the C compilers and the linkers. When the user

11



chooses any of those messages with the pointing device, the GRED editor
will highlight the graphical item to which that particular message belongs,
furthermore, it will highlight the incorrect user defined textual code in the
corresponding text window.

After building the executables, the programmer can start the PVM daemons
on the hosts and execute the parallel program. During execution, the process
icons are coloured according to the start-termination information sent by the
application server to the editor (i.e. the actual state of a process is reflected
by the colour of its icon). If the parallel application does not behave as it was
expected to, the user can invoke the distributed debugger integrated into the
GRADE environment.

4 Debugging and Animating GRAPNEL Programs

GRED provides a high level interface for on-line debugging of GRAPNEL
programs. The programmer can debug the application in exactly the same
environment where it was constructed. Moreover, in the design of GRAPNEL
language we particularly focused on the debugging aspects (i.e. the graphical
outline of the program is extremely useful to locate communication related
errors). For this purpose GRADE uses the services provided by the DDBG
(Distributed DeBuGger), which applies a process-level debugger to supervise
tasks of PVM applications at its lowest level. DDBG defines a set of C
functions that can be embedded into other systems in the same way as it
has happened in case of GRADE [8].

4.1 Debugging Parallel and Distributed Systems

Traditional sequential debugging techniques offer the following typical functionalities:
cyclic interactive debugging, memory dumps, tracing, and breakpoints [29].
However, these techniques cannot be directly applied in a parallel and distributed
environment. This is due to the following facts: parallel and distributed programs
exhibit non-deterministic and non-reproducible behavior; lack of global state
makes it very difficult to manage global predicates on the system state; and
there is an intrusion effect of the debugging system upon the observed program.

The most immediate approach to support debugging functionalities in a parallel
and distributed environment is through the collection of multiple sequential
debuggers, each attached to an application process. This may provide similar
commands as available in conventional debuggers, possibly extended to deal
with parallelism and communication. However, this does not solve any of the

12



above difficulties.

In the past 10 years, several proposals have been made to address these
problems [21] [1] [6] [3] [12] [27] [2] [32]. We are particularly interested in an
approach that models the debugger as an event-based system. This provides
several interesting characteristics: it uses a previously recorded event trace,
in order to analyze the execution history, and to guide program replay with
reproducible behavior, and so it can make use of (suitably adapted) conventional
debugging techniques; it may rely upon monitoring techniques, for event generation
and recording; it can benefit from optimizations that allow to reduce the
amount of collected information, namely based on the instant replay technique
[21] and so it can greatly reduce the intrusion effect; it eases the management
involved in the global coordination of parallel processes and inspection of
global system states.

Providing Basic Debugging Support to other Tools

A large diversity of debugging tools have been developed for distinct parallel
and distributed programming languages, as well as for distinct parallel computer
systems. In particular, the appearance of shared-memory and distributed-
memory multiprocessors during the 80s has originated the need to develop
specific debugging support, both at the level of the operating system and
at the level of the communication libraries [1] [3] [2]. The problem with
these debugging tools is that usually they are specific to a particular runtime
or hardware environment, and as such they are very difficult to adapt to
other parallel platforms. On the other hand, the evolution of parallel and
distributed systems towards more user-friendly environments requires a very
flexible software development platform for the experimentation with new programming
models and the corresponding development tools, e.g. for monitoring, debugging,
animation, visualization, and performance analysis. Several years of experimentation
with these parallel computing platforms still show a need to provide a more
unified framework to support the implementation of high-level debugging
functionalities. This framework must address two fundamental issues:

– A well-defined interface must be provided to be used by high-level tools of
the parallel development environment, namely graphical editors, graphical
interfaces, runtime support systems for distinct parallel and distributed
language models, and testing and high-level debugging tools;

– A well-defined interface must be provided to the underlying operating system
and hardware platform, assuring portability and adaptability of the debugging
support architecture, while still allowing efficient implementation on top of
each specific physical environment.

13



In order to experiment with the issues involved in the design of a flexible and
general-purpose debugging architecture, we have implemented an interface
library of debugging primitives on top of the PVM [17] system. Besides providing
the commands that are typically supported by conventional debuggers for
sequential computation models, this interface provides the basic primitives
to inspect and control distributed processes. From the user point of view,
any application or tool can be linked with the interface library and access
all the distributed debugging functionalities. From the implementation point
of view, the current design has a distributed organization consisting of multiple
monitor/debugger instances which are scattered on the nodes of a PVM platform.

One of the distinctive goals of our approach when designing and implementing
the DDBG system was to provide a platform supporting easy experimentation
with tool integration as far as debugging is concerned. Two main experiments
were performed concerning the interfacing of DDBG with other parallel software
development tools which exhibit very distinct functionalities. Besides the integration
with the GRED tool that is described in this paper, the DDBG system was
successfully composed with the STEPS testing tool [8]. One important issue
of that experiment concerns reaching a close integration of static analysis
and dynamic analysis methods in order to guarantee the final quality of the
parallel and distributed software. Besides formal methods to assure the quality
of parallel programs, systematic testing approaches play a very important role
in this process. The development of a methodology and tool to aid the user in
the process of identifying the paths which should be generated and tested, is a
key component of an advanced testing and debugging environment. Although
a detailed discussion is beyond the scope of this paper, an important aspect
of this approach is to allow the testing and evaluation stages to be performed
through a close interaction with the dynamic debugging tool. After the STEPS
tool has identified interesting program paths, the DDBG tool is invoked in
order to support user controlled execution of the paths under test, allowing
the user to inspect program behavior at the desired level of abstraction and
with the guarantee of the reproducibility of its execution [33] [20] [8].

4.2 The DDBG Architecture

In this section we present the interface provided by the distributed debugging
tool called DDBG and its logical architecture. Its debugging functionalities
may be summarized as follows:

– Dynamic attachment and deattachment of debugger instances to already
running distributed processes; control of remote debugger instances from a
central debugging user interface;

– An interface library that gives access to such control of remote debuggers,

14



and which can be used by high-level tools, like a graphical editor, and testing
tools;

– An event trace is collected with minimal information to support program
replay in PVM programs. This allows reproducible behavior and will make
the debugging control commands available during a replay session; a checkpoint
facility under replay mode will support execution replay from an intermediate
point, instead of from the beginning of the program only.

Currently there is a working prototype implementing the first two of the above
functionalities. Full support for program replay and checkpointing is under
final development.

The DDBG is composed by a collection of process-level debuggers which are
controlled by a distributed architecture that provides distributed debugging
functionalities. This distributed architecture contains the following components:
a main daemon, multiple local daemons, a debugging interface library, a text
console and a graphical user interface. Any user tool can access the debugging
engine as a client process that uses the debugging library to interact with the
main debugging daemon. The main daemon manages all the interactions with
the client process, by forwarding the debugging commands to the machines
where the application processes are placed, and collecting their corresponding
answers. This is achieved by having a local daemon on each machine that
is responsible for the activation and control of multiple debugger instances
located in that machine. Each application process can be dynamically attached
(detached) to (from) a distinct debugger instance.

This architecture is illustrated in Figure 5 where its main components are
shown (the delayed answers are explained in Section 4.3).

(front-end)

(front-end)

(central controller)

debugger

debugger

process

process

process

Local Daemon

User Tool
Local Daemon

library
debugging

Interface
DDBG Text

Answer (delayed)

library
debugging

DDBG Graphical

Other Machines

debugging

library
controller

Interface

library

debugger
Main Daemon

Request / Answer (imediate)

User Machine

Fig. 5. The DDBG architecture

15



4.2.1 The Process-level Debugger

This component of the DDBG distributed debugger applies conventional debugging
commands to each application process. It can be a proprietary debugger for a
specific hardware/software architecture as well as a public domain one 3 .

Although for better exploitation of individual debugger capabilities user access
should be provided to the particular features supported by each process-level
debugger, this is in contradiction to the requirement of offering a coherent user
view for the whole debugging environment. As a result of the experimentation
with the integration of DDBG and other tools we have recently started to
work towards a more generic distributed debugging command language than
our current gdb-based version.

4.2.2 The Local Daemons

For the main daemon, each local daemon acts as a mirror of the process-level
debuggers running in its node. For each debugger running in one specific node,
the local daemons act as a mirror of the client tools.

The complexity of such a kind of component can vary, depending upon the
level of abstraction provided by its interface protocol to the external clients
(the main daemon in this case). If this protocol is low-level, as it really
happens in the DDBG system, the complexity is very low as the process just
has to forward the incoming commands from one external client to multiple
debuggers running in that node, and vice-versa for the corresponding replies.

4.2.3 The Main Daemon

The main daemon, as the central component in the system, supports the
following main activities:

– Start the local daemons in each node;
– Provide an interface to access the DDBG distributed debugger;
– Interpret and send the client (high-level) commands to the corresponding

local daemon;
– Process all the replies given by the process-level debuggers (through the

local daemons) and forward them to the client tool.

During the initialization phase, the main daemon starts a local daemon in each
machine of the computing environment. These local daemons will simplify the

3 Currently, we are using “gdb”, the public domain debugger from the GNU
Software Foundation.

16



communication protocol between the process-level debuggers and the main
daemon.

Multiple client tools can dynamically connect and disconnect to the main
daemon (and to the debugging system). All these client tools share the same
view of the debugging system (e.g. all the client tools know that breakpoint B
is in process P, line number N ) and all of them have access to the full
system (e.g. any client tool can delete a breakpoint set by another tool).
These characteristics provide a very high degree of flexibility in the use of the
debugging system.

Depending on the level of abstraction that may be provided by the interface
library (see section 4.3), the main daemon has more or less work for pre-
processing the client commands and convert them to (a sequence of) debugger
commands.

To support a distinct process-level debugger, a new parser is needed for processing
its replies, involving a possible corresponding increase in the complexity of the
main daemon. The need to accommodate these different needs may impose
a limitation in the number of different debuggers supported by the current
DDBG system. A new design for the DDBG architecture is currently under
development in order to overcome this limitation.

4.3 The Debugging Interface Library

The detailed description of all library functions is beyond the scope of this
paper but the most important functions are summarized in the following.
(The interested reader can find the details of all library functions in [7].)

PVM uses task ID’s (integers) to identify the processes, but a user application
or tool may use specific Process ID’s (strings) to do the same. In order to
support the mapping between the user symbolic name and the PVM naming
scheme, a name mapping function is provided. This allows any of the library
primitives, as well as the corresponding user consoles, to refer to string or
integer process identifiers, although in the following description we always use
string identifiers.

Currently the communication between a client and the main daemon requires
the client to invoke a system call init() 4 to initialize the library 5 . If there is no
main debugging daemon running at the time the initialization is requested, it
will be started automatically. This initialization also establishes a communication

4 Actually, all library function names are prefixed with dbg .
5 The current prototype assumes that the PVM system is already running.

17



channel that will be used for future interactions between this client and the
debugging engine 6 .

All the services provided by the debugging engine are classified as belonging
to one of two classes:

– Immediate answer services. These services will either fail or are immediately
executed by returning the relevant data as output parameter(s) to the
corresponding system call function.

– Delayed answer services. These services —e.g. next()—will either fail
with an immediate return, or they may take an unpredictable amount of
time until its execution is finished. In the latter case, the corresponding
library function also returns immediately to the calling process but informs
the user about the unavailability of the data, which can later be collected
by invoking the function get special info(), as defined below.

In principle the interaction with the debugging system can be completely
transparent. The client just invokes library functions, and gets the corresponding
returns in an immediate way or in a delayed way. In the latter case, the
following function can be used:

– int get special info(char *procid, struct code info *info)
If there is returning data available (from a delayed answer service), the
function will return a corresponding status indication with the user Process
ID in procid and the data in info. Otherwise it will inform about the
unavailability of the data.

This function has a non-blocking semantics so that the asynchronous execution
of the user application that controls the debugging interface is allowed.

4.3.1 Managing breakpoints

Basic support is provided to control program execution through breakpoints
which are currently only associated with individual processes. The function
set break(char *procid, struct code info *info) sets a breakpoint on
a given process, in the line/function that is specified in info. An unique
breakpoint id is returned. A similar function sets a temporary breakpoint
(one time only).

Breakpoints can be set conditionally, depending on the evaluation of an expression,
by invoking set cond break(char *procid, struct code info *info, char *exp).
If the expression exp evaluates to TRUE, a breakpoint is set in the specified

6 Currently, a UNIX file descriptor is returned corresponding to an interprocess
communication socket.

18



process, in the line/function specified in info (conditional breakpoint). The
expression is evaluated every time the breakpoint is reached. An unique breakpoint
id is returned.

Watchpoints can also be specified for a given process by invoking the function
set watch(char *procid, char *exp). This function sets a watchpoint on
the given process procid such that the process will stop when the condition
in exp will become TRUE.

Breakpoints can be temporarily disabled, enabled, cleared (permanently removed),
or ignored a certain number of times by invoking corresponding library primitives.

4.3.2 Controlling the execution of the (debugged) processes

The library supports classical debugging commands to control the execution
of each individual process in a detailed way. Using these commands, as well as
the other commands that handle breakpoints, and display or update process
information, it is possible to implement higher level debugging functionalities.
This was used to implement the interfacing of DDBG to other tools [8].

The function run(char *procid) allows to start running a (previously spawned)
process from the beginning, until a breakpoint is found or the expression of
a watchpoint is true, or until the end, if none above the conditions occurs. The
execution of a stopped process can be continued by invoking continue(char *procid).
The execution proceeds until one of the above mentioned conditions occurs.
Another function finish(char *procid) allows to run a process until the
currently selected stack frame returns, as defined by the select frame()

function. It is also possible to pop the selected stack frame without executing
and return in info the relevant data to determine where the process was
stopped.

Step by step execution is supported by the functions next(char *procid)
and step(char *procid) which execute the code until the next instruction,
by respectively executing subroutine code as one instruction only or as normal
code.

Interrupting the execution of a process is supported by a call to the interrupt(char *procid,
struct code info *info). The returned info contains information to determine
where the process was stopped.

4.3.3 The Text Console

This component act as a client of the DDBG system, through a connection
with the main daemon using the debugging library , and provides a command

19



line interface and command parser to allow access to all the functionalities
available through this debugging library (see figure 6).

As the system dynamically accepts connections and disconnections with multiple
client tools, this text console can be started at any time and coexist with any
other client tool in the DDBG system. This ability provides the user with
different abstraction levels for debugging a program, each one supported by
a specific client tool (see Section 4.4 for a description of an interface with
high-level abstraction debugging concepts).

4.3.4 The Graphical User Interface

The aim for the graphical user interface for the DDBG system is to provide
the user with an intuitive and easy-to-use interface to access the DDBG
functionalities (see Figure 6).

Currently, there is a basic prototype which supports a directory browser of
the processes under debugging, and for each one there is a var watch window.
In this window, the user can specify some variable names, valid in the current
execution context of the associated process. All out-of-context variables are
automatically removed from the displayed list. The refreshment of the variable
values is also done on explicit command, to avoid heavy communication between
the graphical UI and the main daemon, for updating the variable values every
time a process reaches a breakpoint.

Fig. 6. The DDBG User Interface

20



4.4 The High-level Debugging Interface to the GRED editor

The GRADE environment is centered around the GRAPNEL model described
in Section 2.1.

Concerning debugging, the GRED editor offers an user-friendly interface that
allows to invoke debugging commands with reference to the graphical entities
that are displayed in the user windows. On the other hand, there is a requirement
to display in a convenient way the debugging outputs such that only GRAPNEL
abstractions should be handled by the user at this level. This offers a very
high-level interface to the user, such that the information on specific debugging
commands is directly related to the GRAPNEL source program, e.g. by highlighting
corresponding entities in the graphical representation, and their corresponding
lines of source code in the textual program representation.

During debugging, the programmer can use the usual way to control a process
(e.g. ‘run’, ‘step’, ‘continue’, etc.) and to examine data at both graphical
and textual level of the code. Breakpoints can belong to either graphical
symbols at the process internal level or a specific line in the textual code
of a graphical program item. A breakpoint on a graphical symbol is denoted
as a filled circle at the top of that symbol, which circle is highlighted when
the process actually stops at that point of the code. Furthermore, breakpoints
can be set on a communication port symbol to stop the process every time
it performs data transfer via that port. At process communication level every
process icon is coloured dynamically according to the actual state of that
process . When a breakpoint is reached by a process, then its icon is coloured
at the process communication level to denote that the process is blocked.
Similarly, the appropriate graphical box where the process has stopped at the
process internal level is coloured in the same way. If that program item is a
communication operation (i.e. send or receive) then the channel via which data
has just been transferred is highlighted as well. Thus, the graphical level of
the code can efficiently support to debug all message transfer among processes
(i.e. all parallel activities in the application).

These high-level debugging functionalities are supported by interfacing the
GRED editor with the DDBG system. The editor interface also accesses
the DDBG graphical user interface which displays, under user control, the
variables defined within the GRAPNEL structures. This X-based interface is
automatically started when the user hits the debugger item under one of the
menu options provided by the editor. Then a display is presented including
the user processes and the user can select the processes to be monitored, and
individual variables within these processes as explained above.

The GRED editor runs as a process that handles asynchronously generated

21



events, namely user interaction events. When interfacing the editor to the
distributed debugger, this asynchronous mode of operation is handled by using
the described function get special info()). A more efficient control is possible
by having the editor directly accessing the interprocess communication socket
that is created by the function init(). Although this is not so transparent
when compared to the exclusive use of the above function get special info(),
it allows the editor to selectively wait 7 on that socket.

5 Monitoring GRAPNEL Programs by TapePVM

Tape/PVM is a tool to generate event traces of PVM applications for post-
mortem performance analysis [25]. Though Tape/PVM is integrated into the
GRADE environment, it has been developed independently from the SEPP/HPCTI
project, at LMC-IMAG, Grenoble, France.

Tape/PVM generates events at user application level by intercepting the
original PVM library calls. A preprocessor is provided to instrument the user
source code (C or FORTRAN) automatically, i.e. to exchange every PVM
library call for the corresponding Tape/PVM call. Tape/PVM allows selective
tracing; i.e. the user can specify before executing the instrumented code what
kind of PVM calls he wants to be monitored . Moreover, the programmer can
define additional events (i.e. user defined events) beside the PVM related ones.

6 Visualisation by PROVE

PROVE is a performance visualisation tool. It is an adaptation of the PACVIS
[14] system for distributed memory computers 8 . PROVE is a post-mortem
tool which reads the information from a tracefile that was generated during the
application run. TAPE/PVM generates an event (i.e. a record in the trace file)
whenever a PVM function call occurs. Additionally, the GRADE system also
defines its own events related to the entering into sequential or communication
blocks.

PROVE uses the X11 facilities and the OSF/Motif widget set for displaying
the required information. All required default values and constants (colors,
default sizes, button names etc.) can be customized via X11 application resources.
The most important features can be also selected by command line arguments.
Fig. 7 depicts a sample PROVE session.

7 Using the select() UNIX system call.
8 PACVIS supports the shared memory model.

22



111

1

2

3

4

5

Fig. 7. A Sample PROVE Session

PROVE has several windows that display two-dimensional graphs (where the
horizontal axis is always the time axis):

(i) Behavior Window: Displays the processes, their different states, interactions,
start (spawn) and terminate events, communication events and ports,
user marks, etc.

(ii) Processor Window: Displays the utilization of the processors (i.e. PVM
hosts) during the runtime of the application program.

(iii) Communication Window: Displays the communication among the
processes, especially the rates and the amount of data transferred between
the processes.

(iv) Hosts Window: Displays the communication among the hosts, especially
the rates and the amount of data transferred between the host computers
(processors).

The Behavior Window is the central window of the PROVE tool and created
on the startup of the program. The behavior graph is a two-dimensional
representation of the program. The horizontal axis represents the program
time while the executed processes are arranged along the vertical axis. Each
process is represented by a horizontal line that shows the time during which

23



the process was executed by a processor. The thick horizontal lines have
several sections coloured differently showing the stages of the process (e.g.
computation, communication, etc.). The number of processes and the total
program runtime are displayed at the top of the window.

By default, only the process lines are displayed. However, some additional
amount of information can be selected:

– Start: shows the new process creation. An arrow (black) starts from the
parent process to the child process.

– Stop: shows when a process kills another process. A black arrow starts from
the killer process to the victim process.

– Wait: the wait (blocked receive) dependencies are displayed by red arrows
between the waiting process and the process waited for.

– Send: the data delivery is displayed by green arrows between the sender
and receiver processes.

– Ports: as an additional information to the send/receive arrows the port
numbers are also displayed. A port number appears inside a small rectangle
attached to the horizontal bar of the sending/receiving process.

– Mark: the time marks created by the user are shown by blue vertical lines
in the graph.

All these layers of information can be independently switched on and off
and arbitrarily combined. The user can select/deselect specific communication
events because they are assigned to different PVM message tags. Additionally,
moving the mouse pointer within the graph lets the user zoom (i.e. enlarge)
rectangular subsections of the graph.

The PROVE has also a simple animation feature. If it is working together with
the GRED editor, it is able to highlight the icons on the GRED’s windows.
(See Fig. 8.) A single mouse click in the Behavior Window shows the user
the relevant source code block in the GRED’s Process Window. From the
position of the cursor in the Behavior Window PROVE finds the actual
process based on the vertical coordinate and the actual block in the process
based on the time coordinate. PROVE uses the animating feature of GRED
to highlight the icon belonging to the active block. By means of this feature
the user can easily identify the relevant source code objects meanwhile he/she
investigates the program behavior by PROVE.

7 Related Works

A number of other visual parallel programming language and environment
have been developed (e.g. HENCE [5], CODE [30], PSEE [23], Paralex [4],

24



Fig. 8. Animation by GRED and PROVE

TRAPPER [31]). Most of them are based upon the idea that nodes represent
computation, and arcs represent interactions (of some form) among nodes.
The problem with the HENCE, CODE, Paralex and PSEE approaches is that
they force computations to be split into separate nodes when communications
occur or when branching decisions control communications (i.e. some kind of
dataflow approach). This can result in complicated, awkward and large graphs.
This problem does not arise in TRAPPER, which system is very close to
GRADE concerning both purpose and functionality. However, the TRAPPER
model is static as it has originally been designed for transputer systems and
it does not offer an integrated debugger for on-line debugging and animating
of the graphical parallel program.

In GRADE, all communication activities can be defined graphically without
any restriction concerning their locations. Dynamic process creation and predefined
topology templates are going to be implemented based on the definition of
GRAPNEL language. Furthermore, the programmer can design and debug
his/her parallel application by using the same graphical user interface and
abstraction mechanism. Program tuning is supported by PROVE visualisation
tool which cooperates with the same graphical user interface as well.

Conclusions

The more people encounter the possibility to exploit the available computational
power of heterogeneous networks of computer, the more vital is the demand for
high-level tools to assists the development of message-passing-based parallel
applications. GRADE provides a complex programming environment where

25



the user can develop a parallel program by using high level tools and abstractions
without worrying about the low-level details of message-passing primitives.
Structured program design is supported above the level of individual processes.
All communication activities can be defined graphically without any restriction
concerning their locations. A distributed debugger is fully integrated into the
system, thus, the programmer can design and debug his/her parallel program
by using the same graphical user interface. Program tuning is supported by
PROVE visualisation tool which cooperates with the same graphical user
interface as well.

The first evaluation of the GRADE environment revealed the modifications
and extensions that are necessary in order to make it really comfortable
and useful for parallel program development. We plan to implement a replay
mechanism and to integrate a simulation and a systematic testing tool into
the system.

Acknowledgment

This work is partly funded by the Commission of European Communities
Contract Num: CIPA-C193-0251, CP-93-5383 and by the Hungarian National
Committee for Technological Development (OMFB) in the framework of Austrian-
Hungarian inter governmental cooperation under Project Num: B.52.

26



References

[1] ACM Workshop on Parallel and Distributed Debugging. ACM SIGPLAN
Notices 24(1) (1988).

[2] ACM/ONR Workshop on Parallel and Distributed Debugging. ACM
SIGPLAN Notices 28(12) (1993).

[3] ACM/ONR Workshop on Parallel and Distributed Debugging. ACM
SIGPLAN Notices 26(12) (1991).

[4] O. Babaoglu and L. Alvisi and A. Amoroso and R. Davoli. Paralex: An
Environment for Parallel Programming in Distributed Systems. in: Proc. of
ACM International Conference on Supercomputing (1992)

[5] A, Beguelin, J.J. Dongarra, G.A. Geist, V.S. Sunderam. Visualization and
Debugging in a Heterogeneous Environment. IEEE Computer 26(6)(1993).

[6] W. Cheung, J. Black, E. Manning. A framework for distributed debugging.
IEEE Software 1 (1990).

[7] J.C. Cunha, J. Lourenço, T. Antão. The DDBG Distributed Debugger User’s
Guide. Technical Report, Universidade Nova de Lisboa, Portugal, 1996.

[8] J. C. Cunha, J. Lourenço, T. Antão. A Debugging Engine for Parallel and
Distributed Environment. in: Proc. of DAPSYS’96: 1st Austrian-Hungarian
Workshop on Distributed and Parallel Systems (Miskolc, Hungary, 1996) 111-
118.

[9] J.C. Cunha, H. Krwaczyk, B. Wiszniewski, P. Mork, P. Kacsuk, E. Luque,
L. Sutovska, L. Hluchy. Monitoring and Debugging Distributed Memory
Systems. in: Proc. of uP’94: The Eight Symposium on Microcomputer and
Microprocessor Applications (Budapest, Hungary, 1994).

[10] T. Delaitre, G.R. Justo, F. Spies, S. Winter. Simulation Modelling of Parallel
Systems. in: DAPSYS’96: 1st Austrian-Hungarian Workshop on Distributed
and Parallel Systems (Miskolc, Hungary, 1996) 25–32.

[11] T. Delaitre, F. Spies, S. Winter. Simulation Modelling of Parallel Systems in
the EDPEPPS project. in: Proceedings of the UKPAR’96 Conference (1996).

[12] P.S. Dodd, C.V. Ravishankar. Monitoring and debugging distributed real-time
programs. Software—Practice and Experience 22(10) (1992).

[13] G. Dózsa, T. Fadgyas, P. Kacsuk. GRAPNEL: A Graphical Programming
Language for Parallel Programs. in: µP’94: The Eighth Symposium on
Microcomputer and Microprocessor Applications (Budapest, 1994) 304–314.

[14] T. Fadgyas, W. Schreiner. Visualization of Parallel Programs: The PACVIS
Visualization Tool. in: Proc. of the 2nd Austrian-Hungarian Workshop on
Transputer Applications KFKI-1994-09/M,N Report (Budapest, 1994) 43-61.

27



[15] A. Fagot, J, Chassin-de-Kergommeaux. Optimized execution replay mechanism
for RPC-based parallel programming models. Technical Report, IMAG, Jul.
1995.

[16] C. Fidge. Partial orders for parallel debugging. ACM Workshop on Parallel
and Distributed Debugging, ACM SIGPLAN Notices 24(1) (1988).

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam.
PVM: Parallel Virtual Machine – A Users’ Guide and Tutorial for Networked
Parallel Computing. (MIT Press, 1994).

[18] W. Gropp, E. Lusk, A. Skjellum. Using MPI : Portable Parallel Programming
with the Message-Passing Interface (MIT Press, 1994).

[19] P. Kacsuk, G. Dózsa, T. Fadgyas. Designing Parallel Programs by the Graphical
Language GRAPNEL. Microprocessing and Microprogramming 41 (1996) 625-
643.

[20] H. Krwaczyk, B. Wiszniewski Structural Testing of Parallel Software in STEPS
in: Proc. of the 1st SEIHPC Workshop, COPERNICUS Programme (Braga,
Portugal, 1996).

[21] T.J. LeBlanc, J-M. Mellor-Crummey. Debugging parallel programs with instant
replay. IEEE Trans. on Computers C-36(4) (1987).

[22] T. Ludwig, R. Wismuller, V. Sunderam, A. Bode. OMIS — on-line monitoring
interface specification. LRR-TUM, Technical Univ. of Munich, Germany, and
Emory Univ. USA, Feb 1996.

[23] E. Luque and R. Suppi and J. Sorribes. Overview and New Trend on PSEE.
IEEE Software (1992).

[24] M. Mackey. Program replay in PVM. Hewlett-Packard, Concurrent Computing
Department, H.P. Laboratories, May 1993.

[25] E. Maillet. Tape/PVM: An Efficient Performance Monitor for PVM
applications. User Guide, at ftp://ftp.imag.fr/imag/APACHE/TAPE/

[26] E. Maillet. Issues in Performance Tracing with Tape/Pvm. in: EuroPVM’95
(Lyon, 1995) 143–148.

[27] Y. Manabe, M. Imase. Global conditions in debugging distributed programs.
J. of Parallel and Distributed Computing 15 (1992).

[28] D.C. Marinescu, J.E. Lumpp, Jr., T.L. Casavant, H.J. Spiegel. Models for
monitoring and debugging tools for paralell and distributed software. J. of
Parallel and Distributed Computing 9 (1990) 171–183.

[29] C.E. McDowell, D.P. Helmbold. Debugging concurrent programs. ACM
Computing Surveys 21(4) (1989).

[30] P. Newton and J.C. Browne The CODE 2.0 Graphical Parallel Programming
Language. in: Proc. of ACM International Conference on Supercomputing
(1992).

28



[31] C. Scheidler and L. Schafers TRAPPER: A Graphical Programming
Environment for Industrial High-Performance Applications. in: Proc. of
PARLE’93: Parallel Architectures and Languages Europe (Munich, Germany,
1993).

[32] J.J-P. Tsai, S.J.H. Yang, editors. Monitoring and debugging of distributed
real-time systems. (IEEE Computing Society Press, 1995).

[33] S. Winter,P. Kacsuk. Software Engineering for Parallel Processing. in: Proc. of
the 8th Symp. on Microcomputer and Microprocessor Applications (Budapest,
1994) 285-293.

29


