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When it is impractical to rigorously assess all parts of
complex systems, test engineers use defect detectors to focus
their limited resources. In this article, we define some prop-
erties of an ideal defect detector and assess different meth-
ods of generating one. In the case study presented here, tra-
ditional methods of generating such detectors (e.g. reusing
detectors from the literature, linear regression, model trees)
were found to be inferior to those found vidPACE analy-
sis

1 Introduction : : :

Program 'Multipad' loaded.

It may be too expensive to rigourously evaluate all parts
of large software systems. When working against fixed Figure 1. A battlemap from  http://www.
deadlines, test engineers often use defect detectors to find mccabe.com/mccabe_ga.php
areas of code that deserve more attention. For example, Fig-
ure 1 shows thdattlemapgenerated by the McCabes QA
tool. The darker modules in this display are predicted to be .., pA~F ¢ryves (PACE is short forbability of detec-
more error prone, using a method described later in this pa-

. . . tion and false alarm, écuracy, @st, Hfort ). The new
gﬁ;i(r?::r?\?vﬁ;et ngazéﬁge?;t?;éiffﬁiﬂemap s totel teStgenerationmethod is calledROCKY Unlike other genera-

The danger with defect detectors is that they are imper- tion methodsROCKYtakes into account PACE-type issues

. 4 when finding detectors. We will show here tiR@CKYcan
fect, and if they have weaknesses then errors in what they . .

. . . out-perform traditional detectors such as those used in the
test can slip by unnoticed. If the defect detector is flawed

then test engineers will focus on the wrong parts of the s S’_battlemap.
9 gp y Our conclusions will not be some simplistic statement of

tem; hence, they may miss important software errors. the form (e.g.) #(g) > 10 (cyclomatic complexity) is a

_We present here a new methqd &Bse55|ngindgener- . good predictor for software defects”. We strive to replace
ating detectors. The new generation method is an extension

. . . such simplistic statements with dialogue such as:
to receiver operator characteristics (ROC) curves which we P g

1Submission: 9th International Software Metrics Symposium, Sydney, o Whatare the Safety |mpI|cat|ons of an incorrect detec-

Australia, September 3-5, 2008tp://metric.cse.unsw.edu. tO_I’? o
au/Metrics2003/ . WP: 03/metrics03/whatmatters.tex. e Given limited resources, how muelf fort can we al-



locate to this V&V task?

e How can we alert our customers if the allocated
ef fort is inappropriate to this V&V task?

e Thecosts of collecting the data required to run detec-
tor X is $Y. Is detectorX worth that expense?

e What detectors best manage the win/loss ratios associ-

ated with finding/missing an error in our application?

Based on case studies from two NASA systems, we will
offer two findings. First, the “best” detector for an applica-
tion depends on local factors. In order to find the “best” de-
tector for a particular development, it is therefertal that
organizations maintain active data repositorgn past and

present software projects. This repository should include

software product detaiBndassociated defect logs.

Second, some methods of generating detectors are to

restrictive; i.e. they block a full discussion about V&V
options. Ideally, we'd like aange of detector options so

that test engineers can make arguments like (e.g.) “we ca
work too well with the current level of funding but a 10%
increase gets you a great increase in the chances of us fun

ing an error”. Such an argument is impossible unless the testN
engineer has a range of detectors around the current fundin

point. Hence, the best detector generators produce a wid
range of options. This paper compares our own detector
generator ROCKYj with a set of other detector generation
methods such as:

a McCabe battlemap;

simple linear regression;

a Delphi method;

regression tree learners [2] or
state-of-the-art model tree learners [14].

It will be our claim thatROCKYis better than these other
methods since its detectors have widsarge

We begin this paper with a discussion on why we have
elected to study defect detectors. Next, we will define ROC

evaluate static code metrics such as McCabe versus
entropy-based metrics or metrics generated from a run-
time pointer analysis of a “C” program.

Why Study Defect Detectors?

We study defect detectors for two reasons. First, we
work for the NASA Independent Verification and Valida-
tion (IV&V) Facility which has a duty to assess and im-
prove software practices within NASA. Second, in our ex-
perience, defect detectors are widely used within NASA and
elsewhere.

The IV&V Facility in Fairmont, West Virginia is respon-
sible for verifying that software developed or acquired to

%upport NASA missions complies with the stated require-

ments. Additionally, the Facility validates that the software

_Is suitable for its intended use. In short, the Facility ensures
"hat the software is being developed properly, and that the
c[ight software is being developed or acquired.

As the sole entity with the responsibility for IV&V of all
ASA mission software, the IV&V Facility is in a unique

osition to create and maintain a master repository of soft-
ware metrics. Under this charter, the IV&V Facility reviews
requirements, code, and test results from NASA's most crit-
ical projects; hence, many of the required metrics are col-
lected as a matter of course. No other organization has in-
sight into such a broad range of NASA projects. This af-
fords the IV&V Facility an unequalled opportunity to re-
search not only the early life cycle indicators of software
quality, but other topics as well. Many large corporations
have similar software metrics repositories; however, it is
not always in their best interest to release data or results
to the public. In the case of the IV&V Facility, the ob-
jective is to improve NASA's mission software regardless
of the source. Once NASA projects agree to distribution,

then sanitized datavould be made available to NASA, in-

dustry, and academia to support software development and

research by other organizations. This is consistent with the

IV&V Facilities research vision of “See more, learn more,

_ ) tell more.”

e In §5, we list the 11 observations used to make our  \ore specifically, defect detectors are worth studying
conclusion. These conclusions are based on case studsjnce they are widely used in the software industry. For ex-
ies with two NASA applications. All our conclusions  gmple, certain government organizations mandate the use of
must therefore be treated as tentative until we can 5y jndependent consultancy team to verify and validate soft-
check for those 11 observations in a larger number of \yare. | the case of NASA, these IV&V teams work under
applications. , . . strict budgetary constraints which can limit how much of

e While the case studies of this paper use static code, gystem can be tested rigorously. Criticality Assessment
metrics, it would be a mistake to assume that PACE 54 Risk Analysis (CARA), a process developed by Titan
curves areonly useful for McCabe metrics. On the  gystems Corporation for NASA, is a mechanism for priori-
contrary, we study PACE curves since they are a {jzing modules so an informed decision can be made about

method of assessing detectors based on any form Ofyhat 1o cull [9]. In the case where too much code passes the
metric. For example, in the near future we are look-

ing at conducting a PACE analysis to comparatively

curves then extend them to includestandeffortinforma-
tion. The resultind?’ACE curvewill then be used to assess
ROCKYagainst the other detector generators.

Before beginning, we pause for two caveats:

1sanitized data has project-specific identifiers removed.



CARA cull, contractors often use static code metrics (e.g. a
battlemap-like analysis) for a second-level cull.

' ‘25 Traffic Light Browser |_ﬂ_ﬁ @
NASA is not the only place where defect detectors are  |[rie e Tree Leamers Fautt g
applied. Widely-used verification and validation (V&V) il ety i
. . . il Astronaut Disptay{doutla Name |sEe{Twoeba. ]
textbooks (e.g. [15]) advise a battlemap-like analysis to elapesaTime)  (Disolvs e _ [ CTRETHES
(e.g.) decide which modules are worthy of manual inspec-  —— : Astronaut
tions. We know of several large government software con- o QWL e |l
tractors that won't review software moduleslesstools MR : fa. Sor e
like McCabes QA predict th_at they are_fa_ult prone. Hen(_:e, . ﬂ:i?ﬁ."ﬂ, P_wm—MJIII’e se..
defect detectors have a major economic impact on a project T Tl ge..|
when they may force programmers to rewrite code. SICalILISHASTRONALIT_LIST), _w_?gﬁ_mgmm;;ggﬁ'e g, i
drpHali MICI;I' l' mss ag g
™ . ision 2
Critics of defect detectors might argue that the detec- ; ’ § Sturtle 0pir e, (8
BoostersSeperaten S6File Se..|

tors based on simplistic syntactic measures might miss im- SeosratoBonstars 771 /File Se.
portant semantic issues. Advocates of deep semantic tech- |-~ :

nigues such as formal methods might argue that a global
analysis of a program to find livelocks is more important
than (e.g.) a battlemap-analysis, especially for mission-
critical software. In reply, we note that automatic formal
methods can be very expensive. These costs include the hir-
ing of scarce PhD-level consultants with the required math-
ematical background; and the remodelling of the software
into a mathematical format. Further, these automatic meth-
ods may take an exponential amount of time to execute, de-
spite decades of optimization research [12]. Hence, even
proponents of automatic formal methods use defect detec-
tors to find software sections that are both small enough
to be practical for automatic formal methods, yet critical
enough to justify their formal modelling cost.

Figure 2. A “traffic light browser” for source

code. Module source code is shown on the
left and a package hierarchy is shown on the
right. Packages are colored according to how
strongly we believe they contain faults. An-
alysts can sort the package list by colors to
focus on just the most fault prone modules.

Debates on the merits of detect detectors notwithstand-
ing, the issue of how to best focus limited resources is a
daily discussion at the NASA V&YV facility. In response . pp—— T
to this need, we are augmenting source code browsers with JMT:Clzd,gg(S) mggﬂlgg
defect detectors. In the “Traffic Light Browser” of Figure 2,
code modules are colored red, green, or yellow. Red mod-
ules are those with known faults. Yellow modules are those
predicted to be fault prone by the defect detectors. Green
modules are neither faulty nor predicted to be faulty. This
browser is based on open-source tools (JAVA) and can be
adapted to new languages faster and cheaper than (e.g.) the
McCabes toolkit. However, no matter how promising some-
thing like the Traffic Light Browser appears to be, it is only 1 L L L
as good as its defect detectors. This is the old problem 1 10 100 1000 10000
of garbage in, garbage out: if the detectors are bad then LOC
the screens will be misleading. What is required is some
methodology for the V&V of defect detectors.

1000

100

Reported defects

=
o
T

Figure 3. Defect and LOC data from two C++
The rest of this article defines such a methodology by = NASA systems. Note that IM1 is much larger
augmenting ROC curves wittvst andef fort knowledge. than KC2.
These augmented curves will be generated using code met-
rics and defect data taken from KC2 and JM1, the two
NASA C++ applications shown in Figure 3.
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Formally, a defectletectorhunts for asignalthat a soft- e
ware module is defect prone. Signal detection theory [6] of- 0 ! ! !
fersreceiver operator characteristiROC) curves that are 0 0.25 0.5 0.75 1
an analysis method for assessing different detectors. ROC PF= probability of false alarm

curves are widely used in various fields including assessing

different clinical computing systems [1] and assessing dif-

ferent machine learning methods [13]. The central intuition Figure 5. Regions of a typical ROC curve.
of ROC curves is that different detectors can be assessed

via how often they correctly or incorrectly respond to the .
presence or absence of a signal. have low probabilities of false alarms. Such defect detec-

To draw a ROC curve, the ROC sheet of Figure 4 must tors are best when the V&V budget is limited and the extra
be first completed. If a detector registers a signal, some-€ffort associated with chasing false alarms is unacceptable.
times the signal is actually present (cell D) and sometimes On the other hand, detectors that fall into thigk-
itis absent (cell C). Alternatively, the detector may be silent @dverse regiorof Figure 5 have high probabilities of de-
when the signal is absent (cell A) or present (cell B). tecting a signal. Howgve_r, due to thg usual relationship be-

Figure 4 lets us define treecuracy or “ Acc”, of a detec- tweenPD and PF, this high probability comes at the cost
tor as the number of true negatives and true positives seerPf @ high false alarm rate. Hence, detectors that fall into this
over all events: region are best for safety-critical system where the cost of

A+ D chasing false alarms is out-weighted by the cost of system

e failure.
A+B+C+D

If the detector registers a signal, there are two cases of in-3.1 Beyond Standard ROC Curves
terest. In one case, the detector has correctly recognized the

accuracy= Acc =

signal. Thisprobability of detectionor “PD", is the ratio It is important to fully consider the resource implications
of detected signals, true positives, to all signals: of a detector. V&V in general and IV&V in particular is
D usually a resource-bound activity. The disadvantage of stan-
probability detection= PD = 51D dard ROC curves is that they are insensitive to certain re-
source implications. Hence, we introduce the twin concepts
In the other case, therobability of a false alarmor “PFE™, of cost andef fort:
is the ratio of detections when no signal was present to all
non-signals: e Cost represents the resources requibedorea detec-
o tor can be executed,;

e Effort represents the resources requiedtér a de-
A+C tector reports a signal.

In the ideal case, a detector has a high probability of de-
tecting a genuine fault{ D) and a very low probability of
false alarm PF). This ideal case is very rare. Typically, en-
gineers must trade-off betwedt and PD. For example,

a typical ROC curve is shown in Figure 5. Note that a high
PD (indicated by the box along the left) is only achievable 3.2 Effort
when PF (the box at the top of the graph) is also high.

The advantage of ROC curves is that they allow for cost-  To better understandf fort, recall that test engineers
benefit trade-offs between different detectors. Defect detec-use detectors to focus their limited resources; e.qg. if a mod-
tors that fall into thecost-adverse regioshown in Figure 5 ule triggers a detector, then it will require a time-consuming

probability false alarm= PF' =

We saw above that selecting detectors may be a process
of trading off PD vs PF. We shall see below that similar
trade-offs are required betweemst andef fort.



module found in defect tracking log? The McCabe metrics are a collection of four software metrics: essential

no yes complexity, cyclomatic complexity, design complexity and LOC, Lines
no; A =395 B=67 of Code [8].
signal i.e.v(g) <10 | LOC4 =6816 | LOCp = 3182 Essential Complexity, o#v(G), is the extent to which a flowgraph can
detected? yes Cc=19 D=39 be “reduced” by decomposing all the subflowgraphgzothat areD-
i.e.v(g) >10 | LOCc =1816 | LOCp = 7443 structured primesSuchD-structured primesire also sometimes referred
to as “proper one-entry one-exit subflowgraphs” (for a more thoroligh
Acc = accuracy = 83% discussion of D-primes, see [4Dv(G) is calculated by:
PF = Prob.falseAlarm = 5%
ev(G) =v(G) —m
PD = Prop.detected = 37%
= effort = 48% Wherem is the number of subflowgraphs ¢f that are D-structureq
primes. [4]
Cyclomatic Complexity, oo(G), measures the numberlafearly inde-

. . pendent pathsA set of paths is said to Bmearly independeni no path
Figure 6. A ROC sheet assessing the detec- in the set is a linear combination of any other paths in the set through a
tor v(g) > 10. Each cell {A,B,C,D} shows the program'sflowgraph A flowgraph is a directed graph where each ndde
number of modules, and the lines of code corresponds to a program statement, and each arc indicates the flow of

associated with those modules. that fall into control from one statement to anothe(() is calculated by:

each cell of this ROC sheet. v(@)=e—n+2

whereG is a program’s flowgrapkhg is the number of arcs in the flowt
graph, anch is the number of nodes in the flowgraph [4]. For example,
. . the following simple flowgraph has a cyclomatic complexity of 3, since
manual software inspection. Hence, when modules are Ser the graph has 6 arcs and 5 node&) = 6 — 5 + 2 = 3).

lected by a detector, this adds somgfort to the V&V

task. Based on a cost-model developed by one contractof ]

here at NASA's IV&V facility, our analysis will assume that

ef fortis linearly proportional to lines of codeUnder that 1 :
assumption, thef fort for a detector is what percentage of

the lines of code in a system are selected by a detector. 2 *

In Figure 6, a defect tracking tool has been used as the
oracle that reports if a defect was ever reported for a mod-
ule. That figure shows the lines of coda(}C") of the mod-

. ——( )a—
ules from a NASA system that fall into each cell of ROC &
sheet using the detecton(iy) > 10”. This detector is the 4
stand_ard McCabe_s d(_etector for fault prone quules (_and is Iil —_—
explained further in Figure 7). Thef fort associated with
this detector is the amount of code that it selects for further
V&V: The standard McCabes rules, are used to identify fault-prone modules in
the battlemap analysis of Figure 1.dfg) > 10, the battlemap shows
£f > LOC¢e + LOCp that module in a dark color.
effort=FE = Design Complexity, oiv(G), is the cyclomatic complexity of a mod-
LOC4 + LOCp + LOCc + LOCp ule’s reduced flowgraph. The flowgrap&, of a module is reduced
to eliminate any complexity which does not influence the interrelatipn-
ship between design modules. This complexity measurement reflects the
3.3 Cost modules calling patterns to its immediate subordinate modules [8].

To better understanebst, recall that a detector needs in- Figure 7. The McCabes static metrics

formation before it can execute. A battlemap-style analysis

requires the McCabes QA tool and site licenses for thistool  |n order to makeost trade-offs, we need more details
may be expensive. Collecting information for other detec- on the cost of various detectors. The detectors used in this
tors may be much cheaper. For example, detectors basedtudy have theosts shown below. These costs are listed in
on simple lines of code counts can be implemented usingincreasingorder of magnitude; i.e.

very simple parsers than can be coded in a few minutes. We

discuss below the varioussts of a spectrum of detectors. cost] < costy < costs < costy < costs < costg

2This assu_mption is very easily changgd. The tool we use to generate  (C'ost;- using just basic lines of codeConsider a lines
PACE curves inputs a comma separated file where each row represents iN5f code (LOC) measure for a software module that counts
formation from one module. The first column of this file storesdfigort . .
value associated with evaluating this module. To repeat our analysis with &ll lines between module start and the last closing bracket.

a different effort model, we need only change this first column. This simplistic LOC counter would be trivial to implement



to be
the

Halstead argued that modules that are hard to read are more likely
fault prone [5]. Halstead estimates reading complexity by counting
number of concepts in a module. Primitive concepts are:

p1 = number of unique operators
w2 = number of unique operands
N; = total occurrences of operators
Ny = total occurrences of operands

For example, the expressioaturn max(w+x,x+y) hasN; = 4
operatorgreturn, mazx, +, +), N2 = 4 operand{w, z, z,y), p1 =
3 unique operator¢return, maz, +), anduz = 3 unique operands
(w,z,y).

Using these measurements, Halstead definetetigthof a programpP

as:N = N; + N and the vocabulary aP to bep = pq + pa.

From these basic measure, Halstead derives other metrics shown i
ure 9.

n Figr

Figure 8. The basic Halstead metrics.

for any number of programming languages.

Costo- using just basic HalsteadAnother measure of
code complexity advocated by Halstead [5] is the number
of operators and operands in a module (for more on the
Halstead metrics, see Figure 8). A simple tokenizer, such
as available with the standard JAVA distributfprwould
suffice for finding all the operators and operands. Given
a hash table of known keywords in a particular language,
and functions defined in the current program, it would be
fast to compute the operators and operands.

Costs- using just derived Halsteadsiven operators and
operand frequencies, Halstead computes a range of metric
including T', the Halstead estimate for how long it would
take a human to read a module. The calculation of these
derived metrics is shown in Figure 9.

Costy4- using McCabe The McCabes metrics may be
quite costly to collect since expensive compiler tools are re-

S)

Apart from the basic metrics shown in Figure 8, Halstead also de
further metrics. These other metrics use the following values:

potential operator count
potential operand count

11

I
w7 andps as theminimumpossible number of operators and opera
for a module. This minimum number would occur in a (potentially f
tional) language in which the required operation already existed, pos
as a subroutine, function, or procedure. In such a q&ses 2, since at
least two operators must appear for any function; one for the name q
function, and one to serve as an assignment or grouping symboép-
resents the number of parameters, without repetition, which would 1
to be passed to the function or procedure.
According to Halstead, theolumeof P, akin to the number of mentg|
comparisons needed to write a program of length N, is:

V = N xlogap

V* is the volume of the minimal size implementation of P.

V™ = (24 p2")log2(2 + p2™)
The program levebf a programP with volumeV is:

L=V*)V
The inverse of level iglifficulty:
D=1/L

According to Halstead's theory, we can calculate an estithate L as:

H2
x 22

. 2
L=1p="2
N2

K1
The intelligence content of a prograih,is:

I=LxV
The effort required to generafe is given by:

_ n1N2Nlogap

E:T
2p2

L
where the unit of measuremeatis elementary mental discrimination
needed to understanfd. The required programming tinig for a pro-
gram of effortE is:

T = E/18seconds

quired to compute the flowgraphs. One advantage of buying
McCabes is that the above attributes are all collected auto-
matically by this tool.

Costs- using Delhi attributes“Delphi” is a fancy nhame
for “ask an expert’. Theost of the delphi method may
be very high. Firstly, experts may base their assessment o
the output of expensive commercial toolkits. Secondly, it is
hard to find such experienced test engineers, then convinc
them to reveal their trade secrets.

Costg- using combinations of the abavall our exam-

Figure 9. The derived Halstead metrics.

ples to date assumesihgletondetectors; i.e. rules thatonly 4  Generating Detectors

test one attribute.Group detectors use sets of attributes,
combined in some manner. Thest of such groups is
the cost of collecting the information needed by members
of this group. Note that thesests don't just sum since,

ives

ds
C_
sibly
f the

eed

metrics are free to collect. For example, if a group uses two
hasic Halstead measures and one McCabe measure, then the
cost of that group is only thevst of buying one McCabe li-
gense (since that one McCabe’s license can collect all the
McCcabe measures and the Halsteads as well).

The claim of this article is that when different detectors

are assessed by a PACE analysioffability of detection
and false alarm, #curacy, ©st, Hfort), then theROCKY

sometimes, spending money of one metric means that OtheFnethod out-performs other, more standard, methods such

3stringTokenizer , segjava.sun.com/products/jdk/1.
2/docs/apiljavalutil/StringTokenizer.html

as traditional, delphi, linear regressignand model trees
Those standard methods often combine many attributes to



produce a group detector. Before contrasting PACE with predicted values. This correlation ranges from 1 (for per-
these standard methods, we must define them. For an exfectly correlated) to -1 (for perfectly negatively correlated)
planation of the attributes used in the following detectors, and is calculated as follows:

see Figures 7, 8 and 9.

Thetraditional method of generating detectors is to use

the thresholds used by the McCabes IQ battlemap. of pi = predictedvalue
v(g) > 10 andiv(g) > 4. We will study here three such e = actualvalue
detectors: n = number of observations
T = Ipsan ofn observations
i(Pi —p)(ai —a
v(g) > 10 (1) e =2 e
iv(g) > 4 () g _ PP
iv(g) > 4V v(g) > 10 3) T prn-l
S, = i(ai — a)2
n—1
As explained above, thBelphi method is a fancy name ‘ Spa
for “ask an expert”. The NASA IV&V facility has many correlation = 3.5,

such expert test engineers and so we can access sPeéral
phi detectors. A numeric predictiorp; for defects generated by linear
regression becomes a defect detector by testing;for 1.

Two such detectors learnt by linear regression from the KC2

v(g) > 20 “) dataset are shown below. Detector 11 was learnt using only
ev(g) > 8 ®) the LOC measure and detector 12 was learn using just the
v(g) > 20V ev(g) > 8 (6) basic Halstead measufes
ev(g) > 7 )
LOC > 118 ®) (0.0164 +0.0114LOC) > 1 (11)
LOC > 118 Veuv(g) > 7 9) 0.128 +0.01477 +0.011p11 — 0.0243p2 (12)

—0.0111N; + 0.0282N>

Detectors 4, 5 and 6 come from an analysis by Chapman A grawback with linear regression is that tsemine is
and Solomon [3]. Detectors 7, 8 and 9 come from another fiwaq through all points. That is, linear regression assumed
Menzies et.al. [11]. Another, more elabor@elphidetec- 4t gl the data comes from a single simple linear distribu-
toris: tion. Where this is not true, it may be better to divide the
space into different regions and then make a different de-
rHy+z230 (10) cision about each region. Two techniques for doing so are
where regression treeandmodel trees
Regression tree learners such as CART [2] generate deci-
sion trees whose leaves are numeric values. Numeric values
are calculated from these trees by starting at the root, and
following the branches that are relevant to the current situa-
tion. Regression tree learning was applied to the KC2 data
set, but the resulting correlations were far worse than either
those found by linear regression or the model tree learning
Linear regressioris an alternate method welphi that technique described below, and so regression tree learning
does not require expensive human expertise. Linear regreswill not be discussed further in this article.
sion is a standard statistical method that fits a straight line A significant improvement of the regression tree tech-
to a set of points. The line offers a set of predicted values nigue is the M5-Prime model tree learner [14, 16]. A model
p;. If the points are scattered, then a single regression linetree is a decision tree with different linear regression equa-
can't pass through each point. The distance from these pretions at each leaf. Model trees are used like linear regres-
dicted values to the actual valuesis a measure of the error  sion to generate defect detectors: if the predictiom;is
associated with that line. Linear regression packages search “4Detectors learnt from derived Halstead or McCabes are not shown

for lines _that minimize that Eerror. This error may be €X- nere since, using those attributes, model tree learning found predictors with
pressed in terms of theorrelation between the actual and  higher correlation.

z = ifv(g)> 10 then v(g) else 0
if ev(g) > 4 then ev(g) * 4 else 0
if LOC > 200 then 50 else 0




then the detector is triggered when > 1. Using this ROCKYseems to be a naive way to generate detectors.
method, the following detectors were generated from KC2 This learner can only generate singleton detectors while the
using nearly all available attributes (basic and derived Hal- other methods described above can generate group rules.
stead McCabes, but naiOC): Also, ROCKYs use of a Gaussian assumption may be inap-
propriate for certain data distributions (e.g. highly-skewed

o if Mo <495 1 data). NeverthelesROCKYis our preferred method of gen-
= if I<=247 erating detectors. We will see below tHROCKYgenerates
then _ then 0.0375 a widerrange of detectors that any of the other methods
g else 0.284 described above.
g if No <142 >1 (13)
then 06 ;
e 8% 5 PACE Analysis
% else _ 0.164*ev(g)+ ) ) ) B
- - 0.0128+T The previous section described 14 specific detectors plus

hundreds oROCKY¥based detectors. Those detectors are
assessed below using PACE curves. This section must be
read carefully. The conclusions described here are drawn
only from two data sets. The external validity of the follow-
ing conclusions depends on how often we see the following
observationswe describe in other datasets.

The PACE curves for KC2 and JM1 are shown in Fig-

A simpler model tree detector was learnt by M5-Prime
from KC2 using just the McCabes metrics:

(0.0376 + 0.125 x v(g) — 0.0852 x ev(g)) > 1  (14)

Model tree learning is a state-of-the-art machine learning

technique. A much simpler technique, is ®ROCKYdetec-

ure 10. Recall that JIM1 is a much larger data set than KC2

tor learner that exhaustively explores all singleton rules of (10,885 modules versus 520 modules) and so there is more

the form
attribute > threshold

noisein the JM1 plots (e.g. théF plot in KC2 seems
smoother than th&F plot in IM1).
The top half of each plot shows the detector number.

Here attributeis every numeric attribute presentin a dataset gq, example, the top row of each plot is labellBel-

and threseholdis found as follows. Every numeric at-

phi[4,5,6,7,8,9,10Wwhich denotes that detectors 4 through

tribute is assumed to come from a gaussian distribution. 19 o4 where used to generate these dots. By looking ver-
Thresholds are then selected corresponding to equal areasica|ly down from the marks on thBelphi[4,5,6,7,8,9,10]

under that distribution. For example, in one of the datasets,ye can infer (e.g.) thef fortrange associated with these

we examinep(g) had a mean oft = 4.9 and a standard
deviation ofc = 11. If this Gaussian is converted to a

unit Gaussian (by subtracting the mean and dividing by the
standard deviation), then standard Z-tables could be used to

calculate as(g) threshold value of 7.65 could be found as
follows:

area 0.6 (just for example)

Z area) = vig) =
%
Z " (area) 0.25
) v(g).threshold(area) 7.65

ROCKYgenerates one detector

X > X.threshold(area) (15)
for the range

attribute €  {LOC,v(g),ev(g),iv(g), N, V,
L,D77E7B7T7,U/17l’627N1,N2}
area € {0.05,0.1,0.15,...0.9,0.95}

That is, the detector 15 is really hundreds of detectors

detectors. In doing so, we see that:

Observation 1 All the Delphi detectors lie in a
narrow e f fortrange; i.e. 30% to 50%.

If the available budget for V&V fell outside this
ef fortrange, then theséelphi detectors would be inap-
propriate.

The linear regression detectors (markdr[11,12]fare
even worse than thBelphi predictors. In these two data
sets:

Observation 2 Linear regression detectors only
service a very narrowrangeef fort (approxi-
mately 50% to 55%).

Figure 10 also shows us that:

Observation 3 Model treesand traditional de-
tectors (markedModel trees[13,14]and Tradi-
tional[1,2,3] respectively) service a widetinge
of ef fort than linear regression but their cover-
age within that range is very poor.

Hence, there may be V&V f forts not covered by these
detectors.
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Figure 10. PACE curves from two NASA applications. Numbers in square brackets on the y-axis

denote detector numbers from

§4.




In the case of model trees and linear regression, one reaBased on the above observations concerninge, we say
son for their narrow range might be that our analysis in- that:
appropriately constrained their effectiveness. In this study, ) ,
detectors were generated only on the model trees and lin- ~ OPservation 7 ROCKY's  singleton detectors
ear regression runs that generated the highest correlations. ~ Out-perform group detectors learnt from other,
If all the model trees and regression results had been used, ~ Much more complex, methods.

and not just the ones with highest correlation, then perhapsAssuming thatange is desirable (since it permits a discus-

a wider range of detectors would have been found. HOW- gjo of 4 wider range of options), then the singleton detec-

ever, we arr]e r;](_)tr;notwéted to peLform such a study since,y, .5 shown ag15+] out-perform the group detectors pro-
except in the higlef fort region, theaccuracycurves are posed by Delphi, linear regression, or model trees. This

essentially flat. That is: observation is the subject of active research at this site. We

Observation 4 Accuracy is not correlated to ef- are experimenting with a new kind of learner. This learner
fort, probability of detection, or probability of incorporates issues of fort,cost, PD, andPF notthe in-
false alarms. ner loop of all its learning. We speculate that such a learner

) ) ) might be able to generate good group detectors. However, at
Machine learners are typically assessed in terms of averaggys time, we don’t have any results that allow us comment
accuracy seen in 10-way cross validation frigHence, if on this speculation.

certain features change dramatically (suctP@sand P D) Some other interesting patterns can be seen in these

Wh|Ie_ accuracy remains constant strongly means that acCUpacE curves. For example:

racy is a useful predictor for those other features. As seen

in Figure 10, focusing merely on accuracy can hide other Observation 8 The probability of false alarms is

important features of the learnt theory such as a low proba- usually low (less than 20%).

bility of detection. For a more detailed critique on the draw- )

backs of assessing learners merely on accuracy, see [13]. This is finding suggests that resource-bound V&V can still
The detectors marked15+] were generated from be effective. Suppose that budgetary constraints mean that

ROCKYusing subsets of of attributes with differentsts. only (e.g.) 40% of the code can be read. In both KC2 and

Recall from§3.3 that the McCabes metrics were expensive, M1, the detectors found &f fort = 0.4 have aPF' of less

compared to simpler metrics suchBOC. The advantage ~ than 10%. An aggressive test engineer might summarize

of the McCabes metrics are clear from Figure 10: they cover thiS Position to her project manager as follows:

a very widerange of ef fort. The disadvantage of Mc-

: . Ok, so you've only given me time to read 40% of
Cabes, at least in these two data sets, is that:

the code. That means (in the case of KC1) that the
Observation 5 Cheaper metrics cover the same probability of detecting an error is, at best, 35%.
range as McCabes. That'’s fine: if that's the available budget then so
be it. BUT if Ido detect something then you have
to check it out, since my probability of false alarm
is so low (less than 1 in 20).

For example, thelerived Halsteadnetrics seem to cover
just as much, or more, as McCabes
As we move to cheaper metrics suchtesic Halstead

andLOC, we see that: Another feature of these results is:
Observation 6 The range for the cheapest de- Observation 9 The upper bound on the proba-
tectors is very wide, but the coverage within those bility of detection isf fort.

ranges is patchy.
o ) That is, the more you analyze, the higher the chances of
This is especially true for the cheapest detectors generateqlmdmg an error. This, in itself is no great breakthrough.

from justLOC. However, what also seems to be the case is that:
5Ten times, the learning is performed on a random selection of 90% of . - . .

the data, then tested on the 10% not seen during training. Observat'on 10 The probability of d.eteCtmn IS
5In conversations with NASA IV&V test engineers, it has been argued (approximately) linearly correlated withf fort.

that McCabes metrics predict for more that just defects. For example, as
essential complexityv(g) grows, the number of pathways that need test-  So the good news is that higher software quality need not

ing in a module increases. Modules with many pathways, it is claimed, are ha exponentiallymore expensive. The bad news is that:
hard to understand and hard to maintain. At this time, we have no data to

accept or refute this claim. However, if ever detectors for expensive main- Observation 11 There is an upper-bound on the
tainability were proposed, and historical records of defect effort could be

accessed, then PACE curves could be used to assess these maintainability eﬁeCtiYeneSS of these metrics, and that upper
detectors. bound is well belowPD = 1.
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In KC2 and JM1, the probability of false alarm starts climb- How can we alert our customers if the allocatefifort

ing rapidly after the probability of detection rises over 80% is inappropriate to this V&V task?As mentioned above,
and 60% respectively. Thatis, there are upper limits on soft- Scenario #1s ef fort allocation implies that the maximum
ware quality improvements based on simple static sourceeffort was43%. In KC2, thePD, PF associated with this

code metrics such asOC, Halstead, or McCabes. For
PD > 0.6 (approx), test engineers will have to explore

ef fort is approximately 35% to 40%. If the safety require-
ments of that mission imply a detection probability higher

other, more elaborate (and probably more expensive) dethan (e.g.) 50%, then clearly the resource allocation to Sce-
fect detection methods. For a cost-benefit analysis of othemario #1 is inappropriate.

methods for safety-critical systems, see [7, 10].

6 Business Decisions and PACE

PACE curves allow for the selection of detectors based
on criteria generated from the current business scenario. T
illustrate that selection process, we will consider two sce-
narios:

Scenario #1: A NASA V&V team has been given fifteen
days to analyze 100,000 LOC of non-critical software

In Scenario #2 the failures of this system could be life
threatening and, given the high visibility of this project, pos-
sible career limiting as well for the responsible test engi-
neer. Hence, higl® Ds are required. HighPDs incur the
cost of high false alarm rates: in KC2,D = 1.0 results in

a PF~0.75 and in JM1,PF = PD at about the 0.8 level.

(1-|ence if funding is not available to chase high false alarm

rates or aPD greater than 0.75, then there exists no re-
source allocation to Scenario #2 that is demonstrably useful
according to Figure 10. In this case, other defect detection
methods are required (see [7,10]).

to be used in an unmanned routine space mission. ThatVhat detectors best manage the win/loss ratios associated
team uses a home-grown manual inspection procesaVith finding/missing an error in our applicationRepend-

to assess software. That process takes, on average, 19 on how the above questions are answered, the KC2 and
minute per eight LOC and can be conducted up to six JM1 projects may have moved away from defect detectors

hours per day.

Scenario #2: A NASA IV&V test engineer is responsible
for evaluating a safety critical piece of software in a
manned spacecraft which regularly launches in a blaze
of publicity with all senior NASA management watch-

ing.

To apply PACE to these scenarios, we review the ques-
tions listed in the introduction.
What are the safety implications of an incorrect detector?

e Clearly, the safety implications of an incorrect detector
are more dire in Scenario #2 than Scenario #1.

Given limited resources, how muelfi fort can we allocate
to this V&V task?

e In Scenario #1,
8(LOCperminute)

there is time to inspect

x  60(minutesperhour) x
6(hoursperday) * 15(days) = 43200LOC which
implies a maximune f fort of {8200 ~ 43% of the

system. InScenario #2, no such limits are known.

Thecosts of collecting the data required to run detectar
is $Y". Is detectorX worth that expense?

e In Scenario #2, the cost of (e.g.) a McCabes license,
while expensive, is negligible compared to the cost as-
sociated with loss of life or mission. However, in Sce-

nario #1, there may be a case for looking at less expen-

sive detectors since Figure 10 shows that such cheape
detectors can still be very effective.
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based on static code measures. If not, then the detectors
properties closest the desired fort, PD, and PF could

be read from Figure 10. The appropriate detector could then
be read from the ascii report tablesROCKY

7 Conclusion

Defect detectors are used widely in software engineering
to contain the cost of software code reviews. Traditional
methods of generating detectors have been shown to have
lessrange than the detectors generated RQCKY Since
a wide detectorange enables a wide ranging discussion
of V&V options, we therefore recommeri@OCKYas the
preferred generator.

Our results showed that certain traditional detectors may
be inferior for certain software projects. Hence, there is a
pressing need for organizations to collect the data required
to build their own detectors. Here at the NASA IV&V Fa-
cility, we are therefore building a centralized repository of
code metrics and defect reports from a wide range of NASA
projects. We anticipate that this repository will serve three
important functions:

Audit A PACE analysis of the repository data could raise
an alert if the detectors used for V&V were inappro-
priate.

Generate ROCKYcould use the same data to generate de-
tectors tuned to particular projects.

Reuse Early in the life-cycle, when there aren’t enough de-
fect reports for a PACE analysis, V&V personnel could
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