
When Can We Test Less?1

Tim Menzies, Justin Di Stefano, Kareem Ammar
Lane Department of Computer Science

West Virginia University, USA
tim@menzies.us , justin@lostportal.net ,

kammar@csee.wvu.edu

Kenneth McGill, Pat Callis
NASA IV&V Facility

Goddard Space Flight Center
kenneth.g.mcgill@ivv.nasa.gov

Patrick.E.Callis@ivv.nasa.gov

Robert (Mike) Chapman
Galaxy Global Corporation

Robert.M.Chapman@ivv.nasa.gov

John Davis
DN American

jfdavis@mindspring.com

Abstract

When it is impractical to rigorously assess all parts of
complex systems, test engineers use defect detectors to focus
their limited resources. In this article, we define some prop-
erties of an ideal defect detector and assess different meth-
ods of generating one. In the case study presented here, tra-
ditional methods of generating such detectors (e.g. reusing
detectors from the literature, linear regression, model trees)
were found to be inferior to those found via aPACE analy-
sis.

1 Introduction

It may be too expensive to rigourously evaluate all parts
of large software systems. When working against fixed
deadlines, test engineers often use defect detectors to find
areas of code that deserve more attention. For example, Fig-
ure 1 shows thebattlemapgenerated by the McCabes QA
tool. The darker modules in this display are predicted to be
more error prone, using a method described later in this pa-
per (see Figure 7). The intent of the battlemap is to tell test
engineers what modules to “attack” first.

The danger with defect detectors is that they are imper-
fect, and if they have weaknesses then errors in what they
test can slip by unnoticed. If the defect detector is flawed,
then test engineers will focus on the wrong parts of the sys-
tem; hence, they may miss important software errors.

We present here a new method forassessingandgener-
atingdetectors. The new generation method is an extension
to receiver operator characteristics (ROC) curves which we

1Submission: 9th International Software Metrics Symposium, Sydney,
Australia, September 3-5, 2003http://metric.cse.unsw.edu.
au/Metrics2003/ . WP: 03/metrics03/whatmatters.tex.

Figure 1. A battlemap from http://www.
mccabe.com/mccabe_qa.php .

call PACE curves (PACE is short for Probability of detec-
tion and false alarm, Accuracy, Cost, Effort). The new
generationmethod is calledROCKY. Unlike other genera-
tion methods,ROCKYtakes into account PACE-type issues
when finding detectors. We will show here thatROCKYcan
out-perform traditional detectors such as those used in the
battlemap.

Our conclusions will not be some simplistic statement of
the form (e.g.) “v(g) ≥ 10 (cyclomatic complexity) is a
good predictor for software defects”. We strive to replace
such simplistic statements with dialogue such as:

• What are the safety implications of an incorrect detec-
tor?

• Given limited resources, how mucheffort can we al-

locate to this V&V task?
• How can we alert our customers if the allocated

effort is inappropriate to this V&V task?
• Thecosts of collecting the data required to run detec-

tor X is $Y . Is detectorX worth that expense?
• What detectors best manage the win/loss ratios associ-

ated with finding/missing an error in our application?

Based on case studies from two NASA systems, we will
offer two findings. First, the “best” detector for an applica-
tion depends on local factors. In order to find the “best” de-
tector for a particular development, it is thereforevital that
organizations maintain anactive data repositoryon past and
present software projects. This repository should include
software product detailsandassociated defect logs.

Second, some methods of generating detectors are too
restrictive; i.e. they block a full discussion about V&V
options. Ideally, we’d like arangeof detector options so
that test engineers can make arguments like (e.g.) “we can’t
work too well with the current level of funding but a 10%
increase gets you a great increase in the chances of us fund-
ing an error”. Such an argument is impossible unless the test
engineer has a range of detectors around the current funding
point. Hence, the best detector generators produce a wide
range of options. This paper compares our own detector
generator (ROCKY) with a set of other detector generation
methods such as:

• a McCabe battlemap;
• simple linear regression;
• a Delphi method;
• regression tree learners [2] or
• state-of-the-art model tree learners [14].

It will be our claim thatROCKYis better than these other
methods since its detectors have widerrange.

We begin this paper with a discussion on why we have
elected to study defect detectors. Next, we will define ROC
curves then extend them to includecostandeffort informa-
tion. The resultingPACE curveswill then be used to assess
ROCKYagainst the other detector generators.

Before beginning, we pause for two caveats:

• In §5, we list the 11 observations used to make our
conclusion. These conclusions are based on case stud-
ies with two NASA applications. All our conclusions
must therefore be treated as tentative until we can
check for those 11 observations in a larger number of
applications.

• While the case studies of this paper use static code
metrics, it would be a mistake to assume that PACE
curves areonly useful for McCabe metrics. On the
contrary, we study PACE curves since they are a
method of assessing detectors based on any form of
metric. For example, in the near future we are look-
ing at conducting a PACE analysis to comparatively

evaluate static code metrics such as McCabe versus
entropy-based metrics or metrics generated from a run-
time pointer analysis of a “C” program.

2 Why Study Defect Detectors?

We study defect detectors for two reasons. First, we
work for the NASA Independent Verification and Valida-
tion (IV&V) Facility which has a duty to assess and im-
prove software practices within NASA. Second, in our ex-
perience, defect detectors are widely used within NASA and
elsewhere.

The IV&V Facility in Fairmont, West Virginia is respon-
sible for verifying that software developed or acquired to
support NASA missions complies with the stated require-
ments. Additionally, the Facility validates that the software
is suitable for its intended use. In short, the Facility ensures
that the software is being developed properly, and that the
right software is being developed or acquired.

As the sole entity with the responsibility for IV&V of all
NASA mission software, the IV&V Facility is in a unique
position to create and maintain a master repository of soft-
ware metrics. Under this charter, the IV&V Facility reviews
requirements, code, and test results from NASA’s most crit-
ical projects; hence, many of the required metrics are col-
lected as a matter of course. No other organization has in-
sight into such a broad range of NASA projects. This af-
fords the IV&V Facility an unequalled opportunity to re-
search not only the early life cycle indicators of software
quality, but other topics as well. Many large corporations
have similar software metrics repositories; however, it is
not always in their best interest to release data or results
to the public. In the case of the IV&V Facility, the ob-
jective is to improve NASA’s mission software regardless
of the source. Once NASA projects agree to distribution,
then sanitized data1 would be made available to NASA, in-
dustry, and academia to support software development and
research by other organizations. This is consistent with the
IV&V Facilities research vision of “See more, learn more,
tell more.”

More specifically, defect detectors are worth studying
since they are widely used in the software industry. For ex-
ample, certain government organizations mandate the use of
an independent consultancy team to verify and validate soft-
ware. In the case of NASA, these IV&V teams work under
strict budgetary constraints which can limit how much of
a system can be tested rigorously. Criticality Assessment
and Risk Analysis (CARA), a process developed by Titan
Systems Corporation for NASA, is a mechanism for priori-
tizing modules so an informed decision can be made about
what to cull [9]. In the case where too much code passes the

1Sanitized data has project-specific identifiers removed.

2

CARA cull, contractors often use static code metrics (e.g. a
battlemap-like analysis) for a second-level cull.

NASA is not the only place where defect detectors are
applied. Widely-used verification and validation (V&V)
textbooks (e.g. [15]) advise a battlemap-like analysis to
(e.g.) decide which modules are worthy of manual inspec-
tions. We know of several large government software con-
tractors that won’t review software modulesunlesstools
like McCabes QA predict that they are fault prone. Hence,
defect detectors have a major economic impact on a project
when they may force programmers to rewrite code.

Critics of defect detectors might argue that the detec-
tors based on simplistic syntactic measures might miss im-
portant semantic issues. Advocates of deep semantic tech-
niques such as formal methods might argue that a global
analysis of a program to find livelocks is more important
than (e.g.) a battlemap-analysis, especially for mission-
critical software. In reply, we note that automatic formal
methods can be very expensive. These costs include the hir-
ing of scarce PhD-level consultants with the required math-
ematical background; and the remodelling of the software
into a mathematical format. Further, these automatic meth-
ods may take an exponential amount of time to execute, de-
spite decades of optimization research [12]. Hence, even
proponents of automatic formal methods use defect detec-
tors to find software sections that are both small enough
to be practical for automatic formal methods, yet critical
enough to justify their formal modelling cost.

Debates on the merits of detect detectors notwithstand-
ing, the issue of how to best focus limited resources is a
daily discussion at the NASA IV&V facility. In response
to this need, we are augmenting source code browsers with
defect detectors. In the “Traffic Light Browser” of Figure 2,
code modules are colored red, green, or yellow. Red mod-
ules are those with known faults. Yellow modules are those
predicted to be fault prone by the defect detectors. Green
modules are neither faulty nor predicted to be faulty. This
browser is based on open-source tools (JAVA) and can be
adapted to new languages faster and cheaper than (e.g.) the
McCabes toolkit. However, no matter how promising some-
thing like the Traffic Light Browser appears to be, it is only
as good as its defect detectors. This is the old problem
of garbage in, garbage out: if the detectors are bad then
the screens will be misleading. What is required is some
methodology for the V&V of defect detectors.

The rest of this article defines such a methodology by
augmenting ROC curves withcost andeffort knowledge.
These augmented curves will be generated using code met-
rics and defect data taken from KC2 and JM1, the two
NASA C++ applications shown in Figure 3.

Figure 2. A “traffic light browser” for source
code. Module source code is shown on the
left and a package hierarchy is shown on the
right. Packages are colored according to how
strongly we believe they contain faults. An-
alysts can sort the package list by colors to
focus on just the most fault prone modules.

1

10

100

1000

1 10 100 1000 10000

R
ep

or
te

d
de

fe
ct

s

LOC

KC2: 520 modules
JM1: 10,885 modules

Figure 3. Defect and LOC data from two C++
NASA systems. Note that JM1 is much larger
than KC2.

3

signal present?
no yes

signal no A= true negative B
detected? yes C D= true positive

Figure 4. A ROC sheet.

3 ROC Curves

Formally, a defectdetectorhunts for asignal that a soft-
ware module is defect prone. Signal detection theory [6] of-
fers receiver operator characteristic(ROC) curves that are
an analysis method for assessing different detectors. ROC
curves are widely used in various fields including assessing
different clinical computing systems [1] and assessing dif-
ferent machine learning methods [13]. The central intuition
of ROC curves is that different detectors can be assessed
via how often they correctly or incorrectly respond to the
presence or absence of a signal.

To draw a ROC curve, the ROC sheet of Figure 4 must
be first completed. If a detector registers a signal, some-
times the signal is actually present (cell D) and sometimes
it is absent (cell C). Alternatively, the detector may be silent
when the signal is absent (cell A) or present (cell B).

Figure 4 lets us define theaccuracy, or “Acc”, of a detec-
tor as the number of true negatives and true positives seen
over all events:

accuracy= Acc =
A + D

A + B + C + D

If the detector registers a signal, there are two cases of in-
terest. In one case, the detector has correctly recognized the
signal. Thisprobability of detection, or “PD”, is the ratio
of detected signals, true positives, to all signals:

probability detection= PD =
D

B + D

In the other case, theprobability of a false alarm, or “PF ”,
is the ratio of detections when no signal was present to all
non-signals:

probability false alarm= PF =
C

A + C

In the ideal case, a detector has a high probability of de-
tecting a genuine fault (PD) and a very low probability of
false alarm (PF). This ideal case is very rare. Typically, en-
gineers must trade-off betweenPF andPD. For example,
a typical ROC curve is shown in Figure 5. Note that a high
PD (indicated by the box along the left) is only achievable
whenPF (the box at the top of the graph) is also high.

The advantage of ROC curves is that they allow for cost-
benefit trade-offs between different detectors. Defect detec-
tors that fall into thecost-adverse regionshown in Figure 5

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

P
D

=
 p

ro
ba

bi
lit

y
of

 d
et

ec
tio

n

PF= probability of false alarm

risk-adverse region

cost-adverse region

Figure 5. Regions of a typical ROC curve.

have low probabilities of false alarms. Such defect detec-
tors are best when the V&V budget is limited and the extra
effort associated with chasing false alarms is unacceptable.

On the other hand, detectors that fall into therisk-
adverse regionof Figure 5 have high probabilities of de-
tecting a signal. However, due to the usual relationship be-
tweenPD andPF , this high probability comes at the cost
of a high false alarm rate. Hence, detectors that fall into this
region are best for safety-critical system where the cost of
chasing false alarms is out-weighted by the cost of system
failure.

3.1 Beyond Standard ROC Curves

It is important to fully consider the resource implications
of a detector. V&V in general and IV&V in particular is
usually a resource-bound activity. The disadvantage of stan-
dard ROC curves is that they are insensitive to certain re-
source implications. Hence, we introduce the twin concepts
of cost andeffort:

• Cost represents the resources requiredbeforea detec-
tor can be executed;

• Effort represents the resources requiredafter a de-
tector reports a signal.

We saw above that selecting detectors may be a process
of trading offPD vs PF . We shall see below that similar
trade-offs are required betweencost andeffort.

3.2 Effort

To better understandeffort, recall that test engineers
use detectors to focus their limited resources; e.g. if a mod-
ule triggers a detector, then it will require a time-consuming

4

module found in defect tracking log?
no yes

signal
no;
i.e. v(g) < 10

A = 395
LOCA = 6816

B = 67
LOCB = 3182

detected? yes
i.e. v(g) ≥ 10

C = 19
LOCC = 1816

D = 39
LOCD = 7443

Acc = accuracy = 83%

PF = Prob.falseAlarm = 5%

PD = Prop.detected = 37%

E = effort = 48%

Figure 6. A ROC sheet assessing the detec-
tor v(g) ≥ 10. Each cell {A,B,C,D} shows the
number of modules, and the lines of code
associated with those modules, that fall into
each cell of this ROC sheet.

manual software inspection. Hence, when modules are se-
lected by a detector, this adds someeffort to the V&V
task. Based on a cost-model developed by one contractor
here at NASA’s IV&V facility, our analysis will assume that
effort is linearly proportional to lines of code2. Under that
assumption, theeffort for a detector is what percentage of
the lines of code in a system are selected by a detector.

In Figure 6, a defect tracking tool has been used as the
oracle that reports if a defect was ever reported for a mod-
ule. That figure shows the lines of code (LOC) of the mod-
ules from a NASA system that fall into each cell of ROC
sheet using the detector “v(g) ≥ 10”. This detector is the
standard McCabes detector for fault prone modules (and is
explained further in Figure 7). Theeffort associated with
this detector is the amount of code that it selects for further
V&V:

effort = E =
LOCC + LOCD

LOCA + LOCB + LOCC + LOCD

3.3 Cost

To better understandcost, recall that a detector needs in-
formation before it can execute. A battlemap-style analysis
requires the McCabes QA tool and site licenses for this tool
may be expensive. Collecting information for other detec-
tors may be much cheaper. For example, detectors based
on simple lines of code counts can be implemented using
very simple parsers than can be coded in a few minutes. We
discuss below the variouscosts of a spectrum of detectors.

2This assumption is very easily changed. The tool we use to generate
PACE curves inputs a comma separated file where each row represents in-
formation from one module. The first column of this file stores theeffort
value associated with evaluating this module. To repeat our analysis with
a different effort model, we need only change this first column.

The McCabe metrics are a collection of four software metrics: essential
complexity, cyclomatic complexity, design complexity and LOC, Lines
of Code [8].
Essential Complexity, orev(G), is the extent to which a flowgraph can
be “reduced” by decomposing all the subflowgraphs ofG that areD-
structured primes. SuchD-structured primesare also sometimes referred
to as “proper one-entry one-exit subflowgraphs” (for a more thorough
discussion of D-primes, see [4]).ev(G) is calculated by:

ev(G) = v(G)−m

wherem is the number of subflowgraphs ofG that are D-structured
primes. [4]
Cyclomatic Complexity, orv(G), measures the number oflinearly inde-
pendent paths. A set of paths is said to belinearly independentif no path
in the set is a linear combination of any other paths in the set through a
program’sflowgraph. A flowgraph is a directed graph where each node
corresponds to a program statement, and each arc indicates the flow of
control from one statement to another.v(G) is calculated by:

v(G) = e− n + 2

whereG is a program’s flowgraph,e is the number of arcs in the flow-
graph, andn is the number of nodes in the flowgraph [4]. For example,
the following simple flowgraph has a cyclomatic complexity of 3, since
the graph has 6 arcs and 5 nodes (v(G) = 6− 5 + 2 = 3).

The standard McCabes rules, are used to identify fault-prone modules in
the battlemap analysis of Figure 1. Ifv(g) ≥ 10, the battlemap shows
that module in a dark color.
Design Complexity, oriv(G), is the cyclomatic complexity of a mod-
ule’s reduced flowgraph. The flowgraph,G, of a module is reduced
to eliminate any complexity which does not influence the interrelation-
ship between design modules. This complexity measurement reflects the
modules calling patterns to its immediate subordinate modules [8].

Figure 7. The McCabes static metrics

In order to makecost trade-offs, we need more details
on the cost of various detectors. The detectors used in this
study have thecosts shown below. These costs are listed in
increasingorder of magnitude; i.e.

cost1 < cost2 < cost3 < cost4 < cost5 < cost6

Cost1- using just basic lines of code: Consider a lines
of code (LOC) measure for a software module that counts
all lines between module start and the last closing bracket.
This simplistic LOC counter would be trivial to implement

5

Halstead argued that modules that are hard to read are more likely to be
fault prone [5]. Halstead estimates reading complexity by counting the
number of concepts in a module. Primitive concepts are:

µ1 = number of unique operators

µ2 = number of unique operands

N1 = total occurrences of operators

N2 = total occurrences of operands

For example, the expressionreturn max(w+x,x+y) hasN1 = 4
operators(return, max, +, +), N2 = 4 operands(w, x, x, y), µ1 =
3 unique operators(return, max, +), andµ2 = 3 unique operands
(w, x, y).
Using these measurements, Halstead defined thelengthof a programP
as:N = N1 + N2 and the vocabulary ofP to beµ = µ1 + µ2.
From these basic measure, Halstead derives other metrics shown in Fig-
ure 9.

Figure 8. The basic Halstead metrics.

for any number of programming languages.
Cost2- using just basic Halstead: Another measure of

code complexity advocated by Halstead [5] is the number
of operators and operands in a module (for more on the
Halstead metrics, see Figure 8). A simple tokenizer, such
as available with the standard JAVA distribution3, would
suffice for finding all the operators and operands. Given
a hash table of known keywords in a particular language,
and functions defined in the current program, it would be
fast to compute the operators and operands.

Cost3- using just derived Halstead: Given operators and
operand frequencies, Halstead computes a range of metrics
including T , the Halstead estimate for how long it would
take a human to read a module. The calculation of these
derived metrics is shown in Figure 9.

Cost4- using McCabe: The McCabes metrics may be
quite costly to collect since expensive compiler tools are re-
quired to compute the flowgraphs. One advantage of buying
McCabes is that the above attributes are all collected auto-
matically by this tool.

Cost5- using Delhi attributes: “Delphi” is a fancy name
for “ask an expert”. Thecost of the delphi method may
be very high. Firstly, experts may base their assessment on
the output of expensive commercial toolkits. Secondly, it is
hard to find such experienced test engineers, then convince
them to reveal their trade secrets.

Cost6- using combinations of the above: All our exam-
ples to date assumedsingletondetectors; i.e. rules that only
test one attribute.Group detectors use sets of attributes,
combined in some manner. Thecost of such groups is
the cost of collecting the information needed by members
of this group. Note that thesecosts don’t just sum since,
sometimes, spending money of one metric means that other

3StringTokenizer , seejava.sun.com/products/jdk/1.
2/docs/api/java/util/StringTokenizer.html

Apart from the basic metrics shown in Figure 8, Halstead also derives
further metrics. These other metrics use the following values:

µ∗1 = potential operator count

µ∗2 = potential operand count

µ∗1 andµ∗2 as theminimumpossible number of operators and operands
for a module. This minimum number would occur in a (potentially fic-
tional) language in which the required operation already existed, possibly
as a subroutine, function, or procedure. In such a case,µ∗1 = 2, since at
least two operators must appear for any function; one for the name of the
function, and one to serve as an assignment or grouping symbol.µ∗2 rep-
resents the number of parameters, without repetition, which would need
to be passed to the function or procedure.
According to Halstead, thevolumeof P , akin to the number of mental
comparisons needed to write a program of length N, is:

V = N ∗ log2µ

V ∗ is the volume of the minimal size implementation of P.

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)

Theprogram levelof a programP with volumeV is:

L = V ∗/V

The inverse of level isdifficulty:

D = 1/L

According to Halstead’s theory, we can calculate an estimateL̂ of L as:

L̂ = 1/D =
2

µ1
∗ µ2

N2

The intelligence content of a program,I, is:

I = L̂ ∗ V

The effort required to generateP is given by:

E =
V

L̂
=

µ1N2Nlog2µ

2µ2

where the unit of measurementE is elementary mental discriminations
needed to understandP . The required programming timeT for a pro-
gram of effortE is:

T = E/18seconds

Figure 9. The derived Halstead metrics.

metrics are free to collect. For example, if a group uses two
basic Halstead measures and one McCabe measure, then the
cost of that group is only thecost of buying one McCabe li-
cense (since that one McCabe’s license can collect all the
McCcabe measures and the Halsteads as well).

4 Generating Detectors

The claim of this article is that when different detectors
are assessed by a PACE analysis (Probability of detection
and false alarm, Accuracy, Cost, Effort), then theROCKY
method out-performs other, more standard, methods such
as traditional, delphi, linear regression, andmodel trees.
Those standard methods often combine many attributes to

6

produce a group detector. Before contrasting PACE with
these standard methods, we must define them. For an ex-
planation of the attributes used in the following detectors,
see Figures 7, 8 and 9.

The traditional method of generating detectors is to use
the thresholds used by the McCabes IQ battlemap. of
v(g) ≥ 10 andiv(g) ≥ 4. We will study here three such
detectors:

v(g) ≥ 10 (1)

iv(g) ≥ 4 (2)

iv(g) ≥ 4 ∨ v(g) ≥ 10 (3)

As explained above, theDelphi method is a fancy name
for “ask an expert”. The NASA IV&V facility has many
such expert test engineers and so we can access severalDel-
phi detectors.

v(g) > 20 (4)

ev(g) > 8 (5)

v(g) > 20 ∨ ev(g) > 8 (6)

ev(g) > 7 (7)

LOC > 118 (8)

LOC > 118 ∨ ev(g) > 7 (9)

Detectors 4, 5 and 6 come from an analysis by Chapman
and Solomon [3]. Detectors 7, 8 and 9 come from another
Menzies et.al. [11]. Another, more elaborateDelphi detec-
tor is:

x + y + z ≥ 30 (10)

where

x = if v(g) > 10 then v(g) else 0

y = if ev(g) > 4 then ev(g) ∗ 4 else 0

z = if LOC > 200 then 50 else 0

Linear regressionis an alternate method todelphi that
does not require expensive human expertise. Linear regres-
sion is a standard statistical method that fits a straight line
to a set of points. The line offers a set of predicted values
pi. If the points are scattered, then a single regression line
can’t pass through each point. The distance from these pre-
dicted values to the actual valuesai is a measure of the error
associated with that line. Linear regression packages search
for lines that minimize that error. This error may be ex-
pressed in terms of thecorrelation between the actual and

predicted values. This correlation ranges from 1 (for per-
fectly correlated) to -1 (for perfectly negatively correlated)
and is calculated as follows:

pi = predicted value

ai = actual value

n = number of observations

x = mean ofn observations

SPA =

P
i(pi − p)(ai − a)

n− 1

Sp =

P
i(pi − p)2

n− 1

Sa =

P
i(ai − a)2

n− 1

correlation =
SPAp
SpSa

A numeric predictionpi for defects generated by linear
regression becomes a defect detector by testing forpi ≥ 1.
Two such detectors learnt by linear regression from the KC2
dataset are shown below. Detector 11 was learnt using only
theLOC measure and detector 12 was learn using just the
basic Halstead measures4.

(0.0164 + 0.0114LOC) ≥ 1 (11)�
0.128 + 0.0147I + 0.011µ1 − 0.0243µ2

−0.0111N1 + 0.0282N2

�
≥ 1 (12)

A drawback with linear regression is that thesameline is
fitted through all points. That is, linear regression assumed
that all the data comes from a single simple linear distribu-
tion. Where this is not true, it may be better to divide the
space into different regions and then make a different de-
cision about each region. Two techniques for doing so are
regression treesandmodel trees.

Regression tree learners such as CART [2] generate deci-
sion trees whose leaves are numeric values. Numeric values
are calculated from these trees by starting at the root, and
following the branches that are relevant to the current situa-
tion. Regression tree learning was applied to the KC2 data
set, but the resulting correlations were far worse than either
those found by linear regression or the model tree learning
technique described below, and so regression tree learning
will not be discussed further in this article.

A significant improvement of the regression tree tech-
nique is the M5-Prime model tree learner [14,16]. A model
tree is a decision tree with different linear regression equa-
tions at each leaf. Model trees are used like linear regres-
sion to generate defect detectors: if the prediction ispi,

4Detectors learnt from derived Halstead or McCabes are not shown
here since, using those attributes, model tree learning found predictors with
higher correlation.

7

then the detector is triggered whenpi ≥ 1. Using this
method, the following detectors were generated from KC2
using nearly all available attributes (basic and derived Hal-
stead McCabes, but notLOC):

0
BBBBBBBBBBBB@

if N2 ≤ 49.5

then

8
<
:

if I <= 24.7
then 0.0375
else 0.284

else

8
>>>><
>>>>:

if N2 ≤ 142
then 1.06

else

8
<
:

0.663−
0.164 ∗ ev(g)+
0.0128 ∗ T

1
CCCCCCCCCCCCA

≥ 1 (13)

A simpler model tree detector was learnt by M5-Prime
from KC2 using just the McCabes metrics:

(0.0376 + 0.125 ∗ v(g)− 0.0852 ∗ ev(g)) ≥ 1 (14)

Model tree learning is a state-of-the-art machine learning
technique. A much simpler technique, is ourROCKYdetec-
tor learner that exhaustively explores all singleton rules of
the form

attribute ≥ threshold

Here,attributeis every numeric attribute present in a dataset
and threseholdis found as follows. Every numeric at-
tribute is assumed to come from a gaussian distribution.
Thresholds are then selected corresponding to equal areas
under that distribution. For example, in one of the datasets
we examine,v(g) had a mean ofµ = 4.9 and a standard
deviation ofσ = 11. If this Gaussian is converted to a
unit Gaussian (by subtracting the mean and dividing by the
standard deviation), then standard Z-tables could be used to
calculate av(g) threshold value of 7.65 could be found as
follows:

area = 0.6 (just for example)

Z−1(area) =
v(g)− µ

σ

Z−1(area) ≈ 0.25

) v(g).threshold(area) ≈ 7.65

ROCKYgenerates one detector

X ≥ X.threshold(area) (15)

for the range

attribute ∈ {LOC, v(g), ev(g), iv(g), N, V,
L, D, , E, B, T, µ1, µ2, N1, N2}

area ∈ {0.05, 0.1, 0.15, . . . 0.9, 0.95}
That is, the detector 15 is really hundreds of detectors

ROCKYseems to be a naive way to generate detectors.
This learner can only generate singleton detectors while the
other methods described above can generate group rules.
Also, ROCKY’s use of a Gaussian assumption may be inap-
propriate for certain data distributions (e.g. highly-skewed
data). Nevertheless,ROCKYis our preferred method of gen-
erating detectors. We will see below thatROCKYgenerates
a widerrange of detectors that any of the other methods
described above.

5 PACE Analysis

The previous section described 14 specific detectors plus
hundreds ofROCKY-based detectors. Those detectors are
assessed below using PACE curves. This section must be
read carefully. The conclusions described here are drawn
only from two data sets. The external validity of the follow-
ing conclusions depends on how often we see the following
observationswe describe in other datasets.

The PACE curves for KC2 and JM1 are shown in Fig-
ure 10. Recall that JM1 is a much larger data set than KC2
(10,885 modules versus 520 modules) and so there is more
noise in the JM1 plots (e.g. thePF plot in KC2 seems
smoother than thePF plot in JM1).

The top half of each plot shows the detector number.
For example, the top row of each plot is labelledDel-
phi[4,5,6,7,8,9,10]which denotes that detectors 4 through
10 of§4 where used to generate these dots. By looking ver-
tically down from the marks on theDelphi[4,5,6,7,8,9,10],
we can infer (e.g.) theeffortrange associated with these
detectors. In doing so, we see that:

Observation 1 All the Delphi detectors lie in a
narroweffortrange; i.e. 30% to 50%.

If the available budget for V&V fell outside this
effortrange, then theseDelphi detectors would be inap-
propriate.

The linear regression detectors (markedLR[11,12] fare
even worse than theDelphi predictors. In these two data
sets:

Observation 2 Linear regression detectors only
service a very narrowrangeeffort (approxi-
mately 50% to 55%).

Figure 10 also shows us that:

Observation 3 Model treesand traditional de-
tectors (markedModel trees[13,14]and Tradi-
tional[1,2,3], respectively) service a widerrange
of effort than linear regression but their cover-
age within that range is very poor.

Hence, there may be V&Vefforts not covered by these
detectors.

8

0

0.2

0.4

0.6

0.8

1

ROCKY: LOC[15+]

ROCKY: basic Halstead[15+]

ROCKY: derived Halstead[15+]

ROCKY: Mccabe[15+]

Traditional[1,2,3]

linear regression[11,12]

Model trees[13,14]

Delphi(4,5,6,7,8,9,10)

0 100 200

Detectors, sorted by associated "% effort"

KC2: 520 modules

accuracy

% effort
PD

PF

effort

accuracy
% effort

pd
pf

0

0.2

0.4

0.6

0.8

1

ROCKY: LOC[15+]

ROCKY: basic Halstead[15+]

ROCKY: derived Halstead[15+]

ROCKY: Mccabe[15+]

Traditional[1,2,3]

linear regression[11,12]

Model trees[13,14]

Delphi(4,5,6,7,8,9,10)

0 100 200

Detectors, sorted by associated "% effort"

JM1: 10,885 modules

accuracy

% effort
PD

PF

effort

accuracy
% effort

pd
pf

Figure 10. PACE curves from two NASA applications. Numbers in square brackets on the y-axis
denote detector numbers from §4.

9

In the case of model trees and linear regression, one rea-
son for their narrow range might be that our analysis in-
appropriately constrained their effectiveness. In this study,
detectors were generated only on the model trees and lin-
ear regression runs that generated the highest correlations.
If all the model trees and regression results had been used,
and not just the ones with highest correlation, then perhaps
a wider range of detectors would have been found. How-
ever, we are not motivated to perform such a study since,
except in the higheffort region, theaccuracycurves are
essentially flat. That is:

Observation 4 Accuracy is not correlated to ef-
fort, probability of detection, or probability of
false alarms.

Machine learners are typically assessed in terms of average
accuracy seen in 10-way cross validation trial5. Hence, if
certain features change dramatically (such asPF andPD)
while accuracy remains constant strongly means that accu-
racy is a useful predictor for those other features. As seen
in Figure 10, focusing merely on accuracy can hide other
important features of the learnt theory such as a low proba-
bility of detection. For a more detailed critique on the draw-
backs of assessing learners merely on accuracy, see [13].

The detectors marked[15+] were generated from
ROCKYusing subsets of of attributes with differentcosts.
Recall from§3.3 that the McCabes metrics were expensive,
compared to simpler metrics such asLOC. The advantage
of the McCabes metrics are clear from Figure 10: they cover
a very widerange of effort. The disadvantage of Mc-
Cabes, at least in these two data sets, is that:

Observation 5 Cheaper metrics cover the same
range as McCabes.

For example, thederived Halsteadmetrics seem to cover
just as much, or more, as McCabes6.

As we move to cheaper metrics such asbasic Halstead
andLOC, we see that:

Observation 6 The range for the cheapest de-
tectors is very wide, but the coverage within those
ranges is patchy.

This is especially true for the cheapest detectors generated
from justLOC.

5Ten times, the learning is performed on a random selection of 90% of
the data, then tested on the 10% not seen during training.

6In conversations with NASA IV&V test engineers, it has been argued
that McCabes metrics predict for more that just defects. For example, as
essential complexityev(g) grows, the number of pathways that need test-
ing in a module increases. Modules with many pathways, it is claimed, are
hard to understand and hard to maintain. At this time, we have no data to
accept or refute this claim. However, if ever detectors for expensive main-
tainability were proposed, and historical records of defect effort could be
accessed, then PACE curves could be used to assess these maintainability
detectors.

Based on the above observations concerningrange, we say
that:

Observation 7 ROCKY’s singleton detectors
out-perform group detectors learnt from other,
much more complex, methods.

Assuming thatrange is desirable (since it permits a discus-
sion of a wider range of options), then the singleton detec-
tors shown as[15+] out-perform the group detectors pro-
posed by Delphi, linear regression, or model trees. This
observation is the subject of active research at this site. We
are experimenting with a new kind of learner. This learner
incorporates issues ofeffort,cost, PD, andPF not the in-
ner loop of all its learning. We speculate that such a learner
might be able to generate good group detectors. However, at
this time, we don’t have any results that allow us comment
on this speculation.

Some other interesting patterns can be seen in these
PACE curves. For example:

Observation 8 The probability of false alarms is
usually low (less than 20%).

This is finding suggests that resource-bound V&V can still
be effective. Suppose that budgetary constraints mean that
only (e.g.) 40% of the code can be read. In both KC2 and
JM1, the detectors found ateffort = 0.4 have aPF of less
than 10%. An aggressive test engineer might summarize
this position to her project manager as follows:

Ok, so you’ve only given me time to read 40% of
the code. That means (in the case of KC1) that the
probability of detecting an error is, at best, 35%.
That’s fine: if that’s the available budget then so
be it. BUT if Ido detect something then you have
to check it out, since my probability of false alarm
is so low (less than 1 in 20).

Another feature of these results is:

Observation 9 The upper bound on the proba-
bility of detection iseffort.

That is, the more you analyze, the higher the chances of
finding an error. This, in itself is no great breakthrough.
However, what also seems to be the case is that:

Observation 10 The probability of detection is
(approximately) linearly correlated witheffort.

So the good news is that higher software quality need not
beexponentiallymore expensive. The bad news is that:

Observation 11 There is an upper-bound on the
effectiveness of these metrics, and that upper
bound is well belowPD = 1.

10

In KC2 and JM1, the probability of false alarm starts climb-
ing rapidly after the probability of detection rises over 80%
and 60% respectively. That is, there are upper limits on soft-
ware quality improvements based on simple static source
code metrics such asLOC, Halstead, or McCabes. For
PD ≥ 0.6 (approx), test engineers will have to explore
other, more elaborate (and probably more expensive) de-
fect detection methods. For a cost-benefit analysis of other
methods for safety-critical systems, see [7,10].

6 Business Decisions and PACE

PACE curves allow for the selection of detectors based
on criteria generated from the current business scenario. To
illustrate that selection process, we will consider two sce-
narios:

Scenario #1: A NASA IV&V team has been given fifteen
days to analyze 100,000 LOC of non-critical software
to be used in an unmanned routine space mission. That
team uses a home-grown manual inspection process
to assess software. That process takes, on average, 1
minute per eight LOC and can be conducted up to six
hours per day.

Scenario #2: A NASA IV&V test engineer is responsible
for evaluating a safety critical piece of software in a
manned spacecraft which regularly launches in a blaze
of publicity with all senior NASA management watch-
ing.

To apply PACE to these scenarios, we review the ques-
tions listed in the introduction.
What are the safety implications of an incorrect detector?

• Clearly, the safety implications of an incorrect detector
are more dire in Scenario #2 than Scenario #1.

Given limited resources, how mucheffort can we allocate
to this V&V task?

• In Scenario #1, there is time to inspect
8(LOCperminute) ∗ 60(minutesperhour) ∗
6(hoursperday) ∗ 15(days) = 43200LOC which
implies a maximumeffort of 43200

100000 ≈ 43% of the
system. InScenario #2, no such limits are known.

Thecosts of collecting the data required to run detectorX
is $Y . Is detectorX worth that expense?

• In Scenario #2, the cost of (e.g.) a McCabes license,
while expensive, is negligible compared to the cost as-
sociated with loss of life or mission. However, in Sce-
nario #1, there may be a case for looking at less expen-
sive detectors since Figure 10 shows that such cheaper
detectors can still be very effective.

How can we alert our customers if the allocatedeffort
is inappropriate to this V&V task?As mentioned above,
Scenario #1’s effort allocation implies that the maximum
effort was43%. In KC2, thePD, PF associated with this
effort is approximately 35% to 40%. If the safety require-
ments of that mission imply a detection probability higher
than (e.g.) 50%, then clearly the resource allocation to Sce-
nario #1 is inappropriate.

In Scenario #2, the failures of this system could be life
threatening and, given the high visibility of this project, pos-
sible career limiting as well for the responsible test engi-
neer. Hence, highPDs are required. HighPDs incur the
cost of high false alarm rates: in KC2,PD = 1.0 results in
a PF≈0.75 and in JM1,PF = PD at about the 0.8 level.
Hence, if funding is not available to chase high false alarm
rates or aPD greater than 0.75, then there exists no re-
source allocation to Scenario #2 that is demonstrably useful
according to Figure 10. In this case, other defect detection
methods are required (see [7,10]).
What detectors best manage the win/loss ratios associated
with finding/missing an error in our application?Depend-
ing on how the above questions are answered, the KC2 and
JM1 projects may have moved away from defect detectors
based on static code measures. If not, then the detectors
properties closest the desiredeffort, PD, andPF could
be read from Figure 10. The appropriate detector could then
be read from the ascii report tables ofROCKY.

7 Conclusion

Defect detectors are used widely in software engineering
to contain the cost of software code reviews. Traditional
methods of generating detectors have been shown to have
lessrange than the detectors generated byROCKY. Since
a wide detectorrange enables a wide ranging discussion
of V&V options, we therefore recommendROCKYas the
preferred generator.

Our results showed that certain traditional detectors may
be inferior for certain software projects. Hence, there is a
pressing need for organizations to collect the data required
to build their own detectors. Here at the NASA IV&V Fa-
cility, we are therefore building a centralized repository of
code metrics and defect reports from a wide range of NASA
projects. We anticipate that this repository will serve three
important functions:

Audit A PACE analysis of the repository data could raise
an alert if the detectors used for V&V were inappro-
priate.

Generate ROCKYcould use the same data to generate de-
tectors tuned to particular projects.

Reuse Early in the life-cycle, when there aren’t enough de-
fect reports for a PACE analysis, V&V personnel could

11

search the repository for detectors from prior projects
that were similar to the current project. As defect data
for the current project is collected, those reused detec-
tors must be audited.

Our future direction is to see which, if any, of the 11
observationsin §5 can be made in other software projects.
To this end, we are working with the NASA organization to
gain access to more code metrics and defect data sets. Our
goal in 2003 is a PACE analysis on five to twenty different
software projects. To this end, we would welcome data sets
from non-NASA sources.

For more details on the IV&V metrics repository, con-
tact Pat Callis (Patrick.E.Callis@ivv.nasa.gov)
or Mike Chapman (Robert.M.Chapman@ivv.nasa.
gov). For an AWK-script to generate PACE curves, con-
tact Tim Menzies (tim@menzies.us).

Acknowledgements

The editorial assistance of Lisa Montgomery was both
both timely and useful and we are most grateful. This re-
search was conducted at West Virginia University under
NASA contract NCC2-0979 and NCC5-685. The work was
sponsored by the NASA Office of Safety and Mission As-
surance under the Software Assurance Research Program
led by the NASA IV&V Facility. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not con-
stitute or imply its endorsement by the United States Gov-
ernment.

References

[1] K. P. Adlassnig and W. Scheithauer. Performance evaluation
of medical expert systems using roc curves.Computers and
Biomedical Research, 22(4):297–313, 1989.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and regression trees. Technical report,
Wadsworth International, Monterey, CA, 1984.

[3] M. Chapman and D. Solomon. The relationship of
cyclomatic complexity, essential complexity and error
rates, 2002. Proceedings of the NASA Software As-
surance Symposium, Coolfont Resort and Conference
Center in Berkley Springs, West Virginia. Available
from http://www.ivv.nasa.gov/business/
research/osmasas/conclusion2002/Mike_C%
hapman_The_Relationship_of_Cyclomatic_
Complexity_Essential_Complexity_and_
Erro%r_Rates.ppt .

[4] N. E. Fenton and S. Pfleeger.Software Metrics: A Rigor-
ous & Practical Approach (second edition). International
Thompson Press, 1995.

[5] M. Halstead.Elements of Software Science. Elsevier, 1977.

[6] D. Heeger. Signal detection theory, 1998. Available from
http://white.stanford.edu/˜heeger/sdt/
sdt.html .

[7] M. Lowry, M. Boyd, and D. Kulkarni. Towards a theory for
integration of mathematical verification and empirical test-
ing. In Proceedings, ASE’98: Automated Software Engi-
neering, pages 322–331, 1998.

[8] T. McCabe. A complexity measure.IEEE Transactions on
Software Engineering, 2(4):308–320, Dec. 1976.

[9] D. McCaugherty. Criticality analysis and risk assess-
ment (cara). presentation by Averstar Inc., Febru-
ary 1998. See also,http://www.ivv.nasa.gov/
about/tutorial/sld025.htm .

[10] T. Menzies and B. Cukic. How many tests are enough? In
S. Chang, editor,Handbook of Software Engineering and
Knowledge Engineering, Volume II, 2002. Available from
http://tim.menzies.com/pdf/00ntests.pdf .

[11] T. Menzies, J. S. DiStefeno, M. Chapman, and K. Mcgill.
Metrics that matter. In27th NASA SEL workshop on Soft-
ware Engineering, 2002. Available fromhttp://tim.
menzies.com/pdf/02metrics.pdf .

[12] T. Menzies, J. Powell, and M. E. Houle. Fast formal anal-
ysis of requirements via ’topoi diagrams’. InICSE 2001,
2001. Available fromhttp://tim.menzies.com/
pdf/00fastre.pdf .

[13] F. Provost, T. Fawcett, and R. Kohavi. The case against
accuracy estimation for comparing induction algorithms.
In Proc. 15th International Conf. on Machine Learning,
pages 445–453. Morgan Kaufmann, San Francisco, CA,
1998. Available fromhtpp://citeseer.nj.nec.
com/provost98case.html .

[14] J. R. Quinlan. Learning with Continuous Classes. In5th
Australian Joint Conference on Artificial Intelligence, pages
343–348, 1992. Available fromhttp://citeseer.
nj.nec.com/quinlan92learning.html .

[15] S. Rakitin. Software Verification and Validation for Practi-
tioners and Managers, Second Edition. Artech House, 2001.

[16] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1999.

12

