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Abstract— Context information brings new opportunities for efficient and effective applications and services on mobile devices. 
A wide range of research has exploited context dependency, i.e. the relations between context(s) and the outcome, to achieve 
significant, quantified, performance gains for a variety of applications and services. These works typically have to deal with the 
challenges of multiple context sources leading to a sparse training data set, and the challenges of energy hungry context sensors. 
Often, they address these challenges in an application specific and ad-hoc manner. We liberate mobile application designers and 
researchers from these burdens by providing a methodical approach to these challenges. In particular, we 1) define and measure 
the context-dependency of three principal types of mobile usage (visited websites, phone calls, and app usage) in an application 
agnostic yet practical manner, providing insight into the performance of potential application. 2) Address the challenge of data 
sparseness when dealing with multiple context sources in a systematic manner. 3) Present SmartContext to address the energy 
challenge by automatically selecting among context sources while ensuring a minimum accuracy for each estimation. Our analysis 
and findings are based on one year of usage and context traces collected in real-life settings from 24 iPhone users. We present 
findings regarding the context dependency of three types of mobile usage from 24 users, yet our methodology and the lessons 
we learn can be readily extended to other types of usage as well as system resources. Our findings guide the development of 
context aware systems, and highlight the challenges and expectations regarding the context dependency of mobile usage. 

Index Terms—Mobile Computing, Mobile Applications, Human Factors.  

——————————      —————————— 

1. INTRODUCTION

ODERN mobile systems such as smartphones and 
tablets are already important part of our lives. They 

are not only computationally powerful but also have a rich 
capability to sense their external and internal environment. 
Similar to the definition by Schilit et al. in [1], we refer to 
the last known condition of these environments collec-
tively as context. Context dependency can be broadly de-
fined as a set of strict or probabilistic rules and relations 
between context(s) and the outcome [2]. 
Context has in the past been widely exploited to provide 
more usable mobile applications and services, such as con-
tent adaptation [3, 4], user interaction [5], and information 
delivery [6, 7]. Context has also been widely exploited to 
provide enhanced system efficiency and performance, 
such as for energy management [8, 9] and network selec-
tion [10]. These designs exploit the context dependency of 
mobile usage and mobile resources for specific purposes, 
and show significant, quantified, performance gains.  
Context aware systems often have to deal with two funda-
mental challenges. First: dealing with multiple sources of 
context is challenging; due to the curse of dimensionality  
[11], simply treating them as a multidimensional vector re-
sults in a sparse training set. Second: liberal application of 
context can quickly drain the devices battery, as some con-
text sensors are extremely energy hungry. To address the 
sparseness challenge, existing work often limit the number 

 

1 Note that we use the words app and application differently. App refers 
to applications that are installed on the phones, either built-in or obtained 
from the App Store. Application refers to its more general meaning, i.e. use 

of context sources, e.g. to one [8] or two [9], and/or employ 
ad-hoc or expert solutions to combine multiple sources of 
context, e.g. [10]. To address the energy challenge, they of-
ten employ ad-hoc schemes along one or more of these 
lines: reducing the frequency of accessing costly context 
[12-14], avoiding them altogether [10, 12, 13], or substitut-
ing them with other context [15-18].  
Ad-hoc and application specific approaches towards these 
challenges mean that the designers need to design and 
evaluate a new solution for every context-based system. 
Furthermore, before designing and evaluating their appli-
cation or service, its designers can only guess its perfor-
mance outcome. Our work is liberating in this regard. We 
provide a methodological solution for using multiple and 
various sources of context, while managing their energy 
costs. We provide a formal yet practical definition of con-
text dependency, which provides insight into the perfor-
mance of applications while remaining application agnos-
tic. We measure the context dependency of three principal 
types of mobile usage using unprecedented real-life con-
text and usage traces collected from 24 iPhone users over 
one year. The mobile usage we focus on are visited web-
sites, phone calls, and app usage1. We utilize context infor-
mation from sensors built into the phone (i.e. real-time 
clock, Cell ID, Accelerometer, and GPS), as well as the 
phone’s last known usage state (i.e. application, web, and 
phone use). Yet, our methodology and the lessons learned 
can be extended to other context and usage. In particular, 
we make four major contributions towards quantifying 
and measuring the context dependency of mobile usage: 
First, in Section 3, we identify estimation accuracy based on 
maximum a posteriori (MAP) estimation as an application 

case. Similarly, application agnostic means not dedicated to a single ser-
vice or purpose. 
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agnostic yet practical, measure for context dependency, In 
contrast with other theoretical metrics that are applicable 
to multinomial data, such as entropy as a measure of un-
certainty and pseudo R square as a measure of correlation, 
estimation accuracy provides practical insight into the per-
formance of many potential applications, while remaining 
application agnostic. To allow the efficient calculation of 
posterior probabilities, we present and compare the per-
formance of several forms categorizing and binning of con-
text measurements into a limited number of categories, for 
both continuous and discrete context sources. Further-
more, we address the challenge of data sparseness when 
dealing with multiple sources of context by comparing 
classifier combination methods.  
Second, in Section 4, we present a series of interesting find-
ings regarding the context dependency of mobile usage, as 
follows: 1) The effectiveness of different context varies 
based on the usage to be estimated, as well as the number 
of accepted responses. Yet, combining multiple sources of 
context uncovers their combined strength. 2) We find that 
even though multiple context sources are dependent, 
Bayesian Combination performs well for combining con-
text information.  3) The context-dependency of usage re-
mains relatively constant even for durations of one to three 
months, instead of the full 12 months. This indicates that a 
smaller data set would be sufficient for context-awareness. 
4) Supervised Binning can greatly increase estimation ac-
curacy by keeping a large number of samples in each cate-
gory or bin, while allowing fine molding of the bins. 5) 
Even though users are diverse in their usage, we are able 
to show substantial context dependency among all of 
them.  
Third, in Section 5, we present SmartContext, a framework 
to dynamically or statically optimize the cost / accuracy 
tradeoffs of context awareness, while ensuring a minimum 
accuracy for each estimation event. SmartContext takes ad-
vantage of the classifier combination algorithms we have 
explored that have little overhead. We show that by utiliz-
ing energy hungry context only at uncertain times, 
SmartContext can achieve an estimation accuracy within 
1% of the maximum possible accuracy, while significantly 
reducing energy costs by 60% or more.  
Fourth, in Section 6, we present and evaluate several sam-
ple applications that benefit from context dependency of 
mobile usage. These applications highlight the practical 
value of estimation accuracy as a measure of context de-
pendency, and attest to the effectiveness of context for es-
timating usage. Our best performing methods, i.e. using 
Supervised Binning and Bayesian combination, consist-
ently outperform common non-context-based methods. 

2. DATA COLLECTION  

Studying context dependency can be extremely challeng-
ing, as it needs a large trace collected in real life user stud-
ies. In this section, we describe the methodology used to 
collect and analyze the usage and context data from 24 iPh-
one users. We have already presented the details of the 
data collection in [19]. In this section, we provide infor-
mation relevant to this study. 

2.1. Field Study Participants  
The 24 participants were studied continuously for one 
year, from February 2010 to February 2011. All of them 
were undergraduate students at a small private university, 
located in a major metropolitan area of the USA. In general, 
they were representative of college students in terms of age 
(average age: 19.7, deviation: 1.1) and gender. They lived 
on campus and had a PC or laptop at their residence, in 
addition to access to the university’s computing labs.  
As compensation, each participant received a free iPhone 
as well as free service throughout the duration of the 
study, including 450 voice call minutes per month, unlim-
ited data, and unlimited SMS. We helped all participants 
port their phone numbers to and they were required to use 
the outfitted iPhones as their primary phone. They were 
not given specific instructions on how to use the device, 
other than to use it as they would normally use their 
phone.  

2.2. Logger Design and Implementation 
While extensive logging of PC usage has been reported in 
past literature, privacy concerns and battery lifetime limi-
tations, have limited the scope of mobile phone based stud-
ies. Indeed, privacy concerns and/or significantly reduced 
battery lifetime is likely to impact usage, thus the usage 
data would not accurately reflect real life user behavior [20, 
21]. Our study mitigates these concerns by limiting energy 
consumption and addressing user privacy concerns 
through one way hashing and on device data processing, 
as well as by partitioning, i.e. dividing the research team so 
that the data analysis and logger development team do not 
know or directly interact with the participants, in order to 
avoid linking data to the actual users. The key component 
of the study is an in-device, programmable logging soft-
ware that collects iPhone usage and context in situ. To run 
the iPhone logger continuously in the background, we had 
to jailbreak the iPhones. The main logger daemon is writ-
ten as a bash shell script and utilizes components written 
in various languages, including C, Perl, awk, SQL, and ob-
jective C, altogether comprising ~2000 lines of code.  
The logger records a plethora of context information. For 
this work we focus on logs regarding usage and context. 
The visited websites, app used, and phone calls are rec-
orded by the phone’s operating system, and our logger 
piggy-backs on the phone’s logs by periodically recording 
them. Further, whenever the phone’s CPU is not asleep, at 
15 minute intervals, the logger records the GPS location, 
cell ID, and a 15 second recording from the accelerometer 
at 25 Hz. The GPS location data is collected using Apple’s 
framework, which reports the GPS location if available, 
and, if not, the estimated location based on visible cell tow-

Table 1. Data samples collected  from the 24 users, 
during one year of logging 

Type of usage 

Total    

samples 

Mean samples 

per user 

Websites visited 17,000 700 

Phone calls 54,000 2,300 

Applications launched 508,000 21,200 
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ers and strengths. The logger attempts to retrieve the loca-
tion until the reported accuracy is less than 100m, or the 
location has been updated (by the framework) 3 times, in 
order to avoid draining the battery, yet still retrieve accu-
rate location data. For cell ID location, we query the 
phone’s GSM modem using the AT command set, return-
ing the currently associated cell ID.  
The collected data is recorded on the phones, and trans-
ferred nightly to our servers on a secure connection. Our 
logger has recorded thousands of usage samples through 
the study, as presented in Table 1. Due to the extremely 
large size of the traces, it is often necessary to process them 
sequentially. Therefore, we developed most of the tools to 
process them using the Perl language and Bash scripts. We 
also took advantage of several open source tools for this 
purpose, including Cluster 3.0 [22, 23]. 

2.3. Collected Data 

Usage 
We look into the three principal types of mobile usage: 
phone calls, web usage, and app usage. We limit the num-
ber of usage categories considered to 100, similar to what 
we did with discrete context. This simplifies data pro-
cessing, and can even increase accuracy by reducing usage 
cases with too few samples. We chose the number 100 
based on the CDF of usage, covering 87%, 93%, and 99% of 
web, phone, and app usage. 
We consider web usage as the independent websites a user 
visits, as presented by their domain names. We consider 
each visited domain as one entry, irrespective of the num-
ber of web pages under that domain. This would include 
the top level domain (TLD) and the first hierarchical sub-
domain, e.g. www.example.com/url/ would be counted 
as example.com. For phone calls, while our logger does not 
record actual phone numbers, it records a one-way hash 
that uniquely identifies each phone number. We consider 
all phone calls including ones that have a length of zero, 
indicating no conversation. For application usage, we con-
sider all applications the user utilizes, including built-in 
ones and those obtained from the App Store. We do not 
consider the home screen as an application, even though it 
is implemented as an application on the iPhone platform.  

Context 
We considered several sources of context in two broad cat-
egories; sensor context that is sensed through the phone sen-
sors, and usage context that is last known usage state of the 
phone. The sensor context we utilize are time&day, move-
ment (accelerometer power), cell ID location, and GPS lo-
cation. The usage contexts we utilize are the prior visited 
website, phone call, and application. 
For time&day, we separate weekends and weekdays, but 
otherwise treat days as the same. Separating weekends 
from weekdays not only makes intuitive sense, but our 
testing indicated that it performed better than treating all 
days the same. Therefore, with a one-minute resolution, 
time&day is a continuous number between 0 and 2880, to 
account for a two day period (a weekday and a weekend).  
For movement, we calculate the log of the power of the ac-
celerometer readings. The reason we utilize the log of 
power, instead of absolute power, is the distribution of 

power readings that is close to the power law. More than 
99% of the log(p) entries fall between 0.1 and 10000, and the 
range is therefore limited accordingly.  
For GPS location, we utilize the most accurate location pro-
vided by the iPhone API, which is provided in the geo-
graphic coordinate system, i.e. latitude and longitude. For 
cell ID location, we utilize the (single) cell ID reported by 
the phone.  

3. QUANTIFYING CONTEXT-DEPENDENCY 

As previously mentioned, context dependency can be 
broadly defined as a set of strict or probabilistic rules and 
relations between two often discrete variables context(s) 
and outcome [2]. Multiple theoretical, application agnostic 
metrics exist for measuring the relationship of such varia-
bles. These include entropy as a measure of uncertainty, 
and Pseudo R Square as a measure of correlation [24]. Yet, 
neither entropy nor Pseudo R Square can provide practical 
insight into the performance of context-aware applica-
tions. 
We present estimation accuracy, based on maximum a pos-
teriori probability (MAP) estimation, as our measure of 
choice for context dependency. Estimation accuracy can 
provide practical insight into the performance of many po-
tential context-aware applications, while remaining appli-
cation agnostic. In this section, we provide practical meth-
ods to calculate the a posterior probability of an outcome 
(g) given context (x), or P(g|x), from one or multiple con-
tinuous or discrete (multinomial) context sources.  

3.1. Formal Definition  
The use of context information can help increase the esti-
mation accuracy of MAP estimation. MAP estimation 
works as follows. Assumes g takes value from a finite set 
{g1, g2, …, gk}. Knowing the posterior probability of every 
possible outcome, g, under contextual information x=(x1, 
x2, …, xn), the optimal estimation for the outcome, �̂�, is  

�̂�(𝑥) = argmax
𝑖

𝑃(𝑔 = 𝑖|𝑥) 

where P(g|x) is the a posteriori probability. Now the ex-
pected estimation accuracy is ∑ 𝑃(𝑔 = �̂�(𝑥)|𝑥)𝑃(𝑥)x , which 
should be higher than P(𝑔 = �̂�), the expected estimation 
accuracy without the contextual observation x.  
For many applications, the cost of a false negative is con-
siderably higher than false positive. Therefore, providing 
multiple responses (i.e. best guesses) can be beneficial. 
Such responses would be in the form of �̂� = 𝑔1̂ ∪ 𝑔2̂ ∪ … . 
For example, in application preloading, the system could 
preload multiple applications to reduce the chance of not 
having the next application preloaded. We can use the 
same definition to allow multiple responses. In this case, 
the expected estimation accuracy would be  

∑ 𝑃(𝑔 ∈ �̂�(𝑥)|𝑥)𝑃(𝑥)x . 

 

 
 

Figure 1: Equal width discretization (top) would re-
sult in more natural boundaries. Equal frequency dis-
cretization (bottom) would use bins more efficiently 
and prevent too few samples in some bins. 
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3.2. Calculating Posterior Probabilities 
The key to MAP estimation is the accurate calculation of 
the a posteriori probability distribution P(g|x).  
It may initially appear straightforward to calculate 𝑃(𝑔|𝑥); 
simply dividing the number of times each possible out-
come 𝑔𝑖  has occurred under context conditions x by the 
number of times x has been observed in total. Recall that g 
takes value from a finite set, {g1, g2, …, gk}. However, if the 
number of times x has been observed is small, the estimates 
of 𝑃(𝑔|𝑥) are unreliable [25]. Due to the large number of 
possible context combinations, and the possibility of hav-
ing few, or no prior samples in a given context, posterior 
probability estimates may become inaccurate or impossi-
ble. This is true even for individual context sources, but can 
become significantly worse if multiple context sources are 
treated as multiple dimensions, due to the curse of dimen-
sionality [11]. In this subsection, we present the methods 
we use to address this challenge, for individual and multi-
ple context sources. 

Individual Context 
For individual context, we employ Laplace Correction [26, 
27] to reduce the negative impact of too few observations 
under some context conditions. Instead of calculating  

𝑃(𝑔𝑖|𝑥) =
𝑐𝑜𝑢𝑛𝑡(𝑔𝑖|𝑥)

𝑐𝑜𝑢𝑛𝑡(𝑥)
 

we employ Laplace Correction and calculate 𝑃(𝑔𝑖|𝑥) as  

𝑃(𝑔𝑖|𝑥) =
𝑐𝑜𝑢𝑛𝑡(𝑔𝑖|𝑥) + 𝑚. 𝑃(𝑔𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑥) +  𝑚
 

where m is the number of possible outcomes of g.  
Note that Laplace Correction only smoothes out the esti-
mate of 𝑃(𝑔𝑖|𝑥) when there are a small number of context 
samples. The effect of Laplace Correction is negligible for 
those if are significantly more samples than outcomes, i.e. 
count(x)>>m. 

Multiple Context 
As presented earlier, treating the context space as a multi-
dimensional space, with each dimension corresponding to 
one context source, will result in an unacceptably sparse 
data set due to the curse of dimensionality. In order to ad-
dress this challenge for calculating posterior probability, 
P(g|x), we employ classifier combination techniques. They 
enable us to treat each context source as a separate one-di-
mensional predictor, and combine multiple 𝑃(�̂�𝑖|𝑥𝑛) into 
𝑃(�̂�𝑖|𝑥1, 𝑥2, … , 𝑥𝑛). In other words, 

𝑃(�̂�𝑖|𝑥1, 𝑥2, … , 𝑥𝑛)
= 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑃(�̂�𝑖|𝑥1), 𝑃(�̂�𝑖|𝑥2), … , 𝑃(�̂�𝑖|𝑥𝑛) ) 

We explore three prominent classifier combination tech-
niques. The first is Simple or Naïve Bayesian, which works 
under the assumption that different sources of context are 
conditionally independent. The Bayesian rule calculates  

𝑃(𝑔|𝑥) =
𝑃(𝑥|𝑔)𝑃(𝑔)

𝑃(𝑥)
 

where                      𝑃(𝑥|𝑔) = 𝑃(𝑥1, |𝑔). … . 𝑃(𝑥𝑛  |𝑔) 

The assumption that different sources of context are inde-
pendent does not necessarily hold. Even so, Simple Bayes-
ian is known to often perform well even without this con-
dition [28, 29]. We therefore evaluate the performance of 
Simple Bayes alongside other methods. Similar to individ-
ual context, we utilize Laplace Correction to reduce the ill 
effects of too few samples in calculating each 𝑃(𝑥, |𝑔).  

The second combination technique we explore is the Max-
imum Rule. The probability of each outcome is reported 
proportional to the maximum probability of that outcome 
among all classifiers, so that the sum of probabilities re-
mains equal to one. Formally,  
𝑃(𝑔𝑖|𝑥1, 𝑥2, … , 𝑥𝑛) ∝ 𝑚𝑎𝑥(𝑃(𝑔𝑖|𝑥1), 𝑃(𝑔𝑖|𝑥2), … , 𝑃(𝑔𝑖|𝑥𝑛) ) 

For example, if one classifier selects outcome A with an 
80% posterior probability, and two other classifiers select 
outcome B with 70% and 60% posterior probabilities, out-
come A will be selected, and a posterior probability pro-
portional to 80% is reported. The Maximum Rule is known 
to be highly sensitive to noise [30], when one classifier may 
be producing a high confidence due to noisy data or too 
few samples. 
The third combination technique we explore is the Mean 
Rule, also known as the Average Rule. It calculates the prob-
ability of each outcome as the average of the reported prob-
abilities by each of the classifying methods. Formally, 
𝑃(𝑔𝑖|𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑚𝑒𝑎𝑛(𝑃(𝑔𝑖|𝑥1), 𝑃(𝑔𝑖|𝑥2), … , 𝑃(𝑔𝑖|𝑥𝑛) ) 
The Mean Rule is especially resilient to noise [31], and most 
useful when the classifiers are highly correlated.  

3.3. Discretizing Context  
Based on our definition of context dependency, we need to 
discretize continuous sources of context.  Continuous 
sources of context inherently have a single or multidimen-
sional structure to them, where samples close to each other 
are related. Such a structure allows for the use of unsuper-
vised clustering techniques to discretize them. There have 
been many methods in literature for unsupervised cluster-
ing of single and multi-dimensional entries, and conse-
quently creating the discrete cases. Furthermore, there is 
often the choice of equal frequency vs. equal width discretiza-
tion, as shown in Figure 1. An equal number of samples 
per cluster would guarantee efficient use of clusters, and 
prevent a too few number of samples in some clusters pro-
ducing inaccurate results. On the other hand, the equal 
sample constraint may artificially limit the boundaries in 
the clustering algorithm, resulting in inefficient clusters. 
Both equal width and equal frequency discretization are 
straightforward for one dimensional context, such as time 
and movement (accelerometer power). 
For continuous context in multiple dimensions, i.e. loca-
tion in our case, we refer to clustering literature to find a 
suitable unsupervised clustering algorithm. The resulting 
clusters would in turn become the categories. We have two 
requirements for such an algorithm. We chose the popular 

 
 
 
 
 
 
 
 

 
Figure 2: Estimating mobile usage is challenging due 
to the Power Law distribution of usage (average for all 
users); even given context based evidence, it is im-
probable for the posterior probability of a usage to 
rise above the more common usage. 
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k-mean clustering method because it satisfies our con-
straints; it clusters close samples together by minimizing 
the Within-Cluster Sum of Squares (WCSS), and it clusters 
entries into our desired number of clusters (k).  
For equal frequency discretization of multidimensional 
context, we propose and evaluate an extension to k-means. 
Assuming m entries and a cluster size of n (m=k.n), our al-
gorithm works as follows. First, a regular k-mean cluster-
ing is performed on the entries. The biggest cluster (i.e. 
most entries) is then selected, and the closest n entries to 
the mean are assigned to that cluster. The remaining en-
tries are clustered again, using the same method (i.e. m–n 
entries into k–1 clusters). This is repeated until all entries 
are clustered. To retain meaningful results and prevent 
overlapping entries to be placed into different clusters, the 
equal size constraint is relaxed when two entries overlap 
or the resulting cluster radius is too small (< 5 meters).  

3.4. Binning Context 
Even for context that is already categorical, in order to ef-
ficiently calculate P(g|x), it is necessary to limit the num-
ber of possible categories for x, i.e. by grouping together 
some of the categories. We use binning to refer to the pro-
cess of reducing the number of context categories. We de-
fine Simple Binning as follows. For binning categorical 
context into n bins, we simply choose the most popular n-
1 categories, and group all other categories as the n’th bin. 
This is especially reasonable if the distribution of context 
follows the power law, which is often the case. For con-
sistency, for continuous context, we define Simple Binning 
into n bins as discretizing the context into n categories. 
The number of bins chosen for any context involves an in-
herent tradeoff; more bins can allow finer molding of bins 
and more accurate posterior probability calculations, but 
at the same time would result in fewer samples per cate-

 

2 One can, however, use heuristic methods such as CHi-squared Auto-
matic Interaction Detector (CHAID) [32] to build a sub-optimal decision 

gory, increasing noise and reducing the accuracy of poste-
rior probability calculations. Clearly, not only does the 
number of bins affect accuracy, but also how the bins are 
formed can affect accuracy. Supervised Binning can poten-
tially make the best of both worlds in the above tradeoff by 
identifying and binning together categories that have sim-
ilar outcomes. Therefore, supervised binning can allow 
finer molding of bins, increasing accuracy, without reduc-
ing the number of samples per bin that would increase 
noise and reduce accuracy. Supervised Binning can also be 
performed on continuous context, by first discretizing it 
into a larger number of categories. 
There are two methods to perform Supervised Binning. 
First, one can either use the derived partitions from a clas-
sifier tree as the bins. An optimal classifier tree using (1 – 
estimation accuracy) as the loss function would be the op-
timal binning of context [11], but building it in our case is 
computationally prohibitive2. The second method, which 
we use, performs clustering on the outcome distances to 
determine the bins. We use k-mean clustering based on the 
2-norm distance of the normalized Laplace-corrected us-
age vectors to create the bins. Each usage vector is in the 
form of {P(g1|x), P(g2|x), …, P(g100|x)}. One must note that 
in order to preserve the integrity of results when binning, 
it is necessary to separate the training data used for creat-
ing the bins from the testing data. 

4. CONTEXT DEPENDENCY OF PHONE USAGE 

In this section, using the context and usage traces, and our 
formal definition of context dependency, we present a se-
ries of interesting findings regarding the context depend-
ency of web, phone, and app usage. As presented in Sec-
tion 3, we utilize prediction accuracy as the metric for eval-
uating context dependency. We note that context-based 

tree. 

 
 
 
 
 
 
 
 
 
 

       
 
 
 
 
 
 
 
 

       
Figure 3: Context dependency of web (left), phone (middle), and application (right) usage, presented as the accuracy 
of prediction, for 1 (top), and 10 (bottom) responses. One bin means no context information was used. 
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prediction of usage is extremely challenging due to the dis-
tribution usage that closely resemble the power law. We 
can see in Figure 2 that the most popular usage of each user 
constitutes a major proportion of their usage, and much 
higher than the next most popular usage, and so forth. 
Consequently, even given context based evidence, it is im-
probable for the posterior probability of any usage to rise 
above the more common usage.  
As mentioned in Section 2, applications and services in 
which the cost of a false negative is considerably higher 
than false positive can benefit from multiple responses in 
the form of �̂� = 𝑔1̂ ∪ 𝑔2̂ ∪ … . For example, for an app pre-
loading application, the system might preload multiple 
apps to reduce the chance of a miss. Accordingly, we con-
sider the case for multiple responses as well as the single 
response case. 

4.1. Individual Context 
We have studied the performance of individual context by 
measuring the estimation accuracy versus number of con-
text bins, as shown in Figure 3. One context bin would 
mean no context, i.e. always returning the most likely re-
sult(s). We utilize leave-out-one cross-validation (LOOCV) 
to preserve the integrity of our results. LOOCV removes 
the test sample from the training data set used to calculate 
posterior probabilities. We utilize Simple Binning in order 
to keep the meaning of bins easy to understand. Recall 
from Section 3.4 that for categorical context, Simple Bin-
ning utilizes the top n-1 categories and an ‘other’ category. 
For continuous context, it simply discretizes it into n bins.  
In this section, we present our findings regarding the per-
formance of each context, as well as the effect of the num-
ber of bins. Note that different context have a widely di-
verse range of effectiveness, depending on usage and the 
number of acceptable responses. Also, we see that more 
bins initially improves performance, but after a point will 
hurt performance. The reason is that even though more 
bins can allow finer molding of the model, hence a more 
accurate calculation of P(g|x), it would result in fewer 
samples per bin, increasing noise and reducing accuracy. 
An important finding not inherently obvious in the figures 
is that an increase in the number of context bins is useful 
only as long as there are a reasonable number of samples 
to reliably calculate the posterior probability of each bin. 
As a rule of thumb, there should be more than ten samples 
per bin, even though we are mitigating the ill effects of too 
few samples using Laplace correction. As shown in Table 

1, there are on average 700 website visits per user. There-
fore, it is unsurprising that in particular for equal cluster 
size contexts, there are diminishing results in going over 
10-50 context bins. On the other hand, since there are over 
two thousand phone call samples, increasing the number 
of context bins is fruitful up to 100-200 bins, where the re-
turns are diminished. This shows that the number of con-
text bins should be not preset, but dynamically adjusted by 
the system to ensure a specific number of samples per bin.  
We next provide findings specific to each context type 
shown in Figure 3, using the better performing discretiza-
tion method for each context, i.e. with and without the 
equal frequency constraint (Section 3.3) when applicable. 
Time&day: Recall that we found separating weekends 
from weekdays increases performance, compared to treat-
ing all days as the same. We also found that equal fre-
quency discretization of time&day performs better than 
equal width discretization. The effectiveness of time&day 
levels off early, when the number of bins is extended be-
yond ~20. 
Movement: Similar to time&day, equal frequency discreti-
zation of accelerometer power performs slightly better 
than equal width discretization. Interestingly, a relatively 
high number of bins (e.g. 100) are most effective here. This 
is in contrast with our original expectations that a small 
number of bins, e.g. to account for moving and non-mov-
ing states, would be sufficient. This finding suggests that 
accelerometer power can and should be used as a signature 
to classify a user’s detailed state, and not merely as an indica-
tor for whether they are moving or not. Previous research 
has shown a similar phenomenon with ambient sound for 
the purpose of room level  localization, i.e. SoundSense 
[33].  
GPS Location: In contrast to the single dimension contexts, 
location performed best without the equal frequency clus-
ter constraint. We believe this is due to the equal frequency 
constraint artificially breaking down meaningful clusters 
in order to satisfy the sample size constraint. Interestingly, 
without the equal frequency constraint, a larger number of 
bins do not reduce performance. We believe this is due to 
the extra clusters mostly absorbing outliers, instead of 
breaking down meaningful clusters. 
Cell ID Location: As each cellular cell spans a large cover-
age area, most of our users’ lives were under a small num-
ber of cell IDs. Therefore, there is little to gain from in-
creased number of context bins. Note that as cell ID is al-
ready discrete, discretization doesn’t apply here. 
Prior usage: We can see that all three types of usage are 
most dependent on the prior usage of the same type, ver-
sus other forms of prior usage. For example, phone calls 
are more dependent on the prior phone call. Yet, we see 
other types of usage are also more or less good indicators. 
The only exception was that prior app usage seems to have 
no effect on web usage.   

4.2. Combinations of Context 
By observing the performance of the three types of usage, 
we can see that combination methods are very useful when 
a number of meaningful context sources are present. The 
max-rule consistently outperforms the mean-rule for our 

   

 

 

 

 

 

 

Figure 4: Affect of seasonal variation of mobile usage 
on its context dependency is small, and one to three 
months of training logs is sufficient. Estimation accu-
racy for with one and ten responses, calculated on 
trace durations of one, three, six, and 12 months. 
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data. The mean-rule is known to perform well when clas-
sifiers are noisy and highly dependent [31]. Therefore, we 
conclude that that different context sources are likely not 
noisy or highly dependent. The surprising fact that Bayes 
often outperforms other combinations is another indicator 
that our context sources are either not highly (condition-
ally) dependent, and/or their dependencies are distrib-
uted evenly [29]. On the other hand, even though we use 
Laplace Correction to reduce the impact of data sparse-
ness, the performance of Bayes is reduced when there are 
more bins (with fewer samples and therefore more noise). 
Indeed, it is well known that Bayes is highly susceptible to 
noise. This is especially notable in web usage. 
We note that as expected, and as confirmed by the traces 
(not shown), treating multiple context sources in a multi-
dimensional manner results in virtually no improvement 
in estimation accuracy. This is unsurprising, as even with 
only 10 context bins, there were less than 1% of samples in 
any given context. More importantly, most samples be-
longed to bins that each contained less than 0.1% of sam-
ples.  

4.3. Seasonal Variation 
Our long-term traces allow us to answer an important hy-
pothesis regarding context dependency: how significant is 
the effect of the user’s seasonal and temporal behavior var-
iation on estimation accuracy? In other words, whether 
shorter durations may show higher context dependency 
due to the significant seasonal changes in user behavior 
[19], or would fewer samples in shorter durations reduce 
estimation accuracy.  
We find that the context-dependency of usage remains rel-
atively constant even for durations of one to three months, 
as shown in Figure 4. Furthermore, the fact that the perfor-
mance is not significantly reduced for shorter durations in-
dicates that a smaller data set, e.g. a month or more, would 
be sufficient for context-awareness. To this end, we present 
the same analysis as the prior section for the Bayes combi-
nation method, but instead of only calculating it for the en-
tire 12 month duration of the study, we calculate it over 
one, three, and six month durations as well. For each dura-
tion and usage, we select the best number of bins, and pre-
sent the average estimation accuracy of the multiple parti-
tions resulting from each duration, e.g. the results from the 
four 3-month durations are averaged together.  

4.4. Supervised Binning  
As mentioned previously, there is an inherent tradeoff in 
choosing the number of context bins; more bins can allow 
finer molding of the model, and more accurate results, but 
it would at the same time result in fewer samples per cate-
gory, increasing noise and reducing accuracy. Supervised 
Binning has the potential to make the best of both worlds, 
by identifying and binning together categories that have 
similar outcomes. We have studied the efficacy of binning, 
and have shown that it can greatly increase the accuracy of 
context based usage estimation. 
We apply Supervised Binning as follows. For continuous 
context, we first discretize it into ten times the categories, 
to allow for sufficient freedom for the binning algorithm 
while avoiding overfitting. It is computationally prohibi-
tive to apply LOOCV for binning, as it would require re-
calculation of the binning for each test case. Therefore, we 
utilize two-fold cross validation, splitting the data into two 
six-month durations, and use the first six months for train-
ing and the second for testing, followed by the opposite.  
We present significant performance increase of Supervised 
Binning in Figure 5. We use the Bayes combinatory 
method, since it produced the best results (Section 4.2). For 
fair comparison, we also show the performance of Simple 
Binning calculated using the same two-fold cross valida-
tion.  
One interesting question is whether it is necessary to per-
form supervised binning individually per user, or are there 
inherent features in context that are common between us-
ers, and can allow the supervised binning to be performed 
once for all users, i.e. using data from all users. Our results 
confirm the former; even for our small, relatively homoge-
neous population, supervised binning using data from all 
of our users fails to improve accuracy over simple binning. 

4.5. User Diversity 
The long-term traces allow us to analyze the diversity in 
the context dependency of our users, i.e. whether some us-
ers have more diverse usage, and whether some users’ us-
age is more context dependent. We utilize the Kernel Den-
sity Estimation (KDE) to present the distribution of estima-
tion accuracy among our participants, and compare it to 
the case without context information (only one bin), for 
one and ten acceptable responses, as shown in Figure 6. 
The estimation accuracy is calculated using our best meth-
ods, i.e. Bayesian combination and Supervised binning, 

 

 

 

 

 

 

 

 

                   

Figure 5: Supervised Binning, performed individually for each user, can greatly increase the accuracy of context-
based usage estimation. Estimation accuracy of web (left), phone call (middle), and application usage (right), cal-
culated using the Bayes method, for one, three, and ten acceptable responses. Compared to Supervised Binning on 
all users’ data, and individualized simple binning. One bin means no context information was used. 
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and we empirically set the KDE bandwidth to 0.05.  
Figure 6 shows that even though our 24 users were from 
undergraduates from the same school, there is considera-
ble diversity among participants’ usage patterns. Yet, all of 
them show significant context-dependency in their usage. 
Furthermore, the top one and ten usage cases, which serve 
as the baselines for context dependency, constitute a sig-
nificant share of usage for all participants. Finally, we note 
that among the three principal usage we studied, the esti-
mation accuracy for web usage had a much higher diver-
sity of context dependency, compared to its non-context 
case. This shows that there is more diversity in the context 
dependency of web usage, compared to phone and app us-
age. 

4.6. Prior Usage Context 
The methodological classifier combination approach to the 
data sparseness challenge of context awareness, presented 
in Section 4.2, allows the use of prior usage context in ad-
dition to sensor context. We refer to usage context as the 
last used websites, phone calls, and apps, and sensor con-
text refers to the measurements of the device’s sensors, i.e. 
time&day, cell ID, motion, and GPS. In this subsection, we 
examine the effectiveness of prior usage context of varying 
depth for estimation accuracy. The depth of prior usage 
context is defined as how many prior usages are consid-
ered and combined along with the sensor context. A zero 
depth means no usage context is utilized.  For the depth of 
one, the last used prior usage for web, phone, and apps is 
used, similar to other sensor context. So far, we have only 
utilized prior usage with a depth of one. Higher depth us-
age context can be treated in two ways. First, n’th depth 
usage context can be simply presented as yet another sin-
gle dimension usage context, which will be handled and 
combined similar to other context, as described in Sec-
tion 3. Second, is to treat each n-depth usage context as an 
n-dimensional vector. Compared to the first approach, this 
method suffers from sparseness, due to the curse of dimen-
sionality.  
We have found that for both of these methods, estimation 
accuracy drops when the depth of historical context is in-
creased beyond one. This limitation stems from inherent 
limitations of classifier combination for dependent data. 
Figure 7 shows the best estimation accuracy achieved 
through Bayesian combination and Supervised Binning, 
for different depths of prior usage context for phone usage. 
Web and app usage were similar, and are therefore not 
shown. It shows that after the depth of one, the gains start 
to diminish. This is due to the limitations of classifier com-
bination; the additional information provided by depths 

higher than one cannot offset the error induced by their de-
pendence Also, for the multidimensional treatment of n-
depth context, due to its sparseness for most of the sam-
ples, Laplace Correction simply returns the average a pos-
teriori probability as the conditional a posteriori probabil-
ity. In turn, this adds dependency and reduces perfor-
mance.  
In order to better support historical usage context, for 
depth of greater than one, it is obvious that the depend-
ency challenge needs to be addressed. Therefore, we pro-
pose and evaluate the following method for incorporating 
historical context: Treat usage context with a depth higher 
than one as multidimensional, but for each classification 
event and each type of usage, choose the highest depth that 
has more than m training samples. This method is referred 
to as auto-depth. The constant m is the minimum number 
of training samples deemed sufficient for an accurate a 
posteriori probability calculation. We set m to 10, based on 
the findings in Section 4. We find that the automatic depth 
selection approach works well, in terms of avoiding a per-
formance drop, i.e. more information doesn’t hurt. How-
ever, we observed no measurably significant performance 
increase after the depth of one. 

5. COST-AWARE CONTEXT COMBINATION 

Our findings so far attest to the performance and useful-
ness of context-based usage estimation. However, obtain-
ing and processing context information can incur signifi-
cant energy costs. Many ad-hoc methods, sometimes them-
selves context based, have been employed to reduce en-
ergy cost of context awareness while satisfying the system 
designers cost / accuracy trade-off. These methods typi-
cally reduce the frequency of accessing energy hungry con-
text sources, or to avoid using them altogether, substitut-
ing them by lower cost context sources.  
In this section, we address this challenge through a meth-
odological framework, SmartContext. It takes advantage 
of the methodology presented in Section 4, and builds 
upon the general problem of budgeted observation selec-
tion in the operations research community, to automati-
cally optimize the energy cost of context-based estimation, 
while satisfying the accuracy requirements and tradeoffs 
that the designer sets for each estimation event. We focus 
on energy costs, but other definitions of cost may be used 
as well. 

5.1. Assumptions and Requirements 
SmartContext takes advantage of and is compatible with 
any classifier combination method, as long as the combina-
tion method can provide the MAP estimate and estimation 

                 
Figure 6:  User diversity in context dependency is shown by the Kernel Density Estimation (KDE) distribution of 

estimation accuracy for one and ten responses. Web (left), phone (middle) and application usage (right). 

 

0

1

2

3

4

5

6

7

0% 20% 40% 60% 80% 100%

0

1

2

3

4

5

6

7

0% 20% 40% 60% 80% 100%

0

1

2

3

4

5

6

7

0% 20% 40% 60% 80% 100%

1,   no context
1,   bayes
10, no context
10, bayes



RAHMATI ET AL.:  PRACTICAL CONTEXT AWARENESS: MEASURING AND UTILIZING THE CONTEXT DEPENDENCY OF MOBILE USAGE 9 

 

accuracy using any combination of context sources with 
small processing overhead. All three classifier combination 
methods we evaluated have these features, but we will use 
Bayesian as it performed best. 
SmartContext selects context sources in order to meet an 
estimation accuracy, set by context-aware applications and 
services, for every estimation event. SmartContext requires 
that the training data set be available for all context 
sources, i.e. 𝑃(𝑔|𝑥𝑛) for all n. SmartContext requires the 
cost, or the expected cost, of utilizing each context source 
to be known in advance. Note that the costs can be inde-
pendent or dependent on each other. Further, the costs of 
some context sources are negligible. Therefore, they will be 
always utilized, limiting selection to context sources with 
non-negligible costs.  

5.2. Operation 
SmartContext’s operation consists of two main steps. The 
first is determining the ranking of context sources. In order 
to keep processing costs in check, this ranking must be pre-
calculated, but can be always static, or can be dependent 
on the context information gained at any step. In the next 
section we show that a static solution is both practical and 
performs well. In this case, the ranking needs to be per-
formed only once. The second step is the energy aware 
combination of context. This has negligible overhead, and 
is performed dynamically for every estimation event ac-
cording to the requirements and tradeoffs of the context-
aware application or service. 
Once the ranking is determined, the energy aware combi-
nation of context works as follows. For each classification 
event, SmartContext starts combining multiple sources of 
context information one by one, in the ordering deter-
mined in step one. This can be done with minimum pro-
cessing overhead, and for any combination of context 
sources, as explained in Section 4.2. After running the clas-
sifier combination with each additional context source, it 
checks the criteria of the requesting application or service, 
for that estimation event. In the evaluation presented here, 
a fixed minimum estimation accuracy for every estimation 
event is utilized. However, the application or service may 
set a different accuracy requirement for each estimation 
event, or even consider the expected cost of accessing the 
next context source in determining when to settle with the 
current estimation accuracy and stop accessing more con-
text sources. SmartContext assures the target estimation 
accuracy for each estimation event, as long as it is possible 
to reach that accuracy, while spending no excess cost in ac-
quiring unnecessary context. In other words, in some con-
ditions, no additional costly context is used, while in more 
uncertain conditions, SmartContext may use up to all the 
available context sources. The pseudo-code description of 
SmartContext is shown in Figure 10.  

5.3. Ranking of Context Sources 
The ranking of context sources is analogous to a well-stud-
ied problem in artificial intelligence and operations re-
search, which can be defined as follows:  

How to select a subset, X, of possible observations (i.e. predictors 
or information sources) V, that most effectively reduces uncer-
tainty and maximizes information gain? 

Review of existing methods 
Solutions toward this challenge are based on submodular-
ity, an important property of the information gain from 
multiple observations [34]. Submodularity is also intui-
tively named as the diminishing returns property. It states 
that the information gain from an observation helps more 
if one has a smaller set of observations so far. Vice versa, 
the information gain from an observation helps less if it is 
added to a larger set. This can be formally presented as fol-
lows. The set function 𝐹 ∶ 𝑉 → ℝ is submodular if 

𝐹(𝐴 ∪ 𝑋) −  𝐹(𝐴) ≥ 𝐹(𝐴′ ∪ 𝑋) −  𝐹(𝐴′) 
for all 𝐴 ⊂ 𝐴′ ⊆ 𝑉,  𝑋 ∉ 𝐴, i.e. adding X to a smaller set, A, 
helps more than adding it to a larger set, A’. The general 
problem of maximizing submodular functions is NP-hard 
[35], and general algorithms are unable to provide guaran-
tees in terms of processing time [36], unless there are cer-
tain assumptions, e.g. selecting a subset among a fixed tree 
ordering of possible observations [37]. However, artifi-
cially imposing such a dependency tree is heuristic in na-
ture and can reduce performance, e.g. in [38]. Further, cal-
culating the maximum-likelihood dependence tree re-
quires assumes pre-measured mutual information be-
tween unit cost observations are available  [39], neither of 
which are applicable to our case. 
Therefore, it is common practice to use the greedy (my-
opic) solution towards this selection problem [40]. The sub-
modularity property ensures that such greedy solutions 
are near-optimal, typically with provable constant factor 
performance guarantees. The greedy solution, assuming a 
unit cost for all observations, selects the observation with 
the most information at every step, i.e. the marginal in-
crease 𝐹(𝐴 ∪ 𝑋) −  𝐹(𝐴) is maximized. For this case, in [34], 
Nemhauser et al. prove that any set of equal-cost observa-
tions selected in this manner performs, at worst, a factor of 

Table 2. Ordering & measured energy cost of context 

Type of context Order Energy cost 

Prior Usage, time&day 0 negligible 

Accelerometer 1 1.65 J 

Cell ID 2 1.2 J 

GPS location 3 50 – 300 J 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Automatic depth selection is necessary to 
efficiently utilize prior usage context with depth 
greater than one. Effectiveness of prior usage context 
in increasing estimation accuracy, for phone usage, 
vs. depth of prior usage context for one and ten ac-
ceptable responses, averaged among the 24 partici-
pants. 
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(1 – 1/e), compared to the optimal set. More recently, the 
operations research community has proved the same 
bound when observations have different costs. Krause et 
al. prove that for independent costs, the greedy solution 
selects the observation with the maximum cost-effectiveness 
at every step, i.e. the marginal increase divided by cost of 
observation, (𝐹(𝐴 ∪ 𝑋) −  𝐹(𝐴))/𝑐𝑜𝑠𝑡(𝑋), is maximized 
[40]. Furthermore, they prove that approximation algo-
rithms are unable to provide guarantees better than a con-
stant factor of (1-1/e), i.e. (k . (1-1/e)). We therefore base 
our work on the solution provided by Krause et al. [40].  

Ranking Mobile Context 
SmartContext is based upon the greedy method described 
in the earlier section, guaranteeing [40] a performance 
bound of (1 – 1/e). However, the performance guarantee 
requires two assumptions. First, the costs of context 
sources (observations) must be independent from each 
other. Indeed, mobile context sources typically have inde-
pendent energy costs, as was our case. Second, the sub-
modularity or diminishing returns property must hold for 
our utility function (estimation accuracy). While this ap-
pears a reasonable assumption, it is necessary to verify it. 
Existing work typically use entropy as their utility func-
tion, and either assume that it is submodular [34], or prove 
that it is submodular under an assumption of independ-
ence [40]. We experimentally verify the overall submodu-
larity of estimation accuracy. For this purpose, it is neces-
sary to show that the estimation accuracy gain resulting 
from adding (combining) any context source decreases if 
more context sources were known (combined) beforehand. 
Note that since SmartContext assumes that free context is 
always utilized, it is necessary to verify the submodularity 
only among costly context. Figure 8 shows the estimation 
accuracy gain for Cell ID, acceleration, and GPS location. 
Therefore, we conclude that the greedy approach works 
well for context awareness. In this case, the best ordering 
is obtainable by ranking the context sources according to 
their cost effectiveness.  In this case, the cost effectiveness 
of each context source is the marginal estimation accuracy 
increase divided by its expected energy cost, i.e., (𝐹(𝐴 ∪
𝑋) −  𝐹(𝐴))/𝑐𝑜𝑠𝑡(𝑋). The expected energy cost can be pre-
measured by the system designer, as in our case, or can be 
measured automatically in software as in [41]. The energy 
costs of acquiring context on the iPhone 3GS are presented 
in Table 2. The estimation accuracy of each context source 

is shown in Figure 8. The resulting ranking is shown in Ta-
ble 2. Note that due to the often significant difference in the 
energy cost of context sources on mobile devices, their 
ranking becomes close to the order of their energy cost.  
Finally, we note that due to the relatively limited number 
of costly context sources on mobile devices, it is also possi-
ble to simply perform a thorough search, calculating the 
performance of SmartContext under all possible orderings 
of context sources. For our case, there are three costly con-
text sources, resulting in a total of 3! = 6 possible rankings. 
Unsurprisingly, for each of the experimental cases of Sec-
tion 5.4, the rankings we obtained using the through search 
are the same as the greedy ranking. 

5.4. Evaluation  
We have evaluated SmartContext using the in-situ traces. 
Figure 9 shows, for different (minimum) target accuracies, 
how often each context source is utilized for Cell ID, Accel-
erometer, and GPS, and how often the target accuracy is 
achieved, as well as the overall average achieved estima-
tion accuracy. Note that SmartContext always uses 
time&day and previous usages, as we assume they are 
available for free. We can see that even without energy 
hungry context sources, and only using free context, it is 
often possible to achieve good estimation accuracy, and the 
additional accuracy provided by the costly sources are in-
cremental. This is expected, because each source of context 
has a small incremental value, as shown in Section 4.1, and 
because submodularity ensures diminishing returns, as 
shown in Section 5.3 and Figure 8.  
Yet, we show significant energy savings are possible, with 
very little sacrifice of accuracy. . For example, for web, 
phone, and app usage respectively, for one acceptable re-
sponse, setting the (minimum) target accuracy to 25%, 
50%, and 50%, achieves 89%, 67%, and 61% energy saving, 
while providing overall estimation accuracy within 1% of 
the case using all context sources. For ten acceptable re-
sponses and 75%, 80%, and 85% (minimum) target accura-
cies, respectively, the energy savings are 71%, 65%, and 
89%, while again achieving overall estimation accuracy 
within 1% of the case using all context sources. 
Note that as the ordering of context and the posterior prob-
abilities are pre-calculated, e.g. during charging, they do 
not increase the overhead of SmartContext during opera-
tion. Further, the combination algorithms require little pro-
cessing, therefore SmartContext has a negligible overhead. 

 

 

 

 

 

 

 

 

Figure 8:  Submodularity of estimation accuracy; the average estimation accuracy gain resulting from combining 
a certain context decreases if more contexts were known (combined) beforehand. Free indicates time&day and 
previous usage. Free + 1 and free + 2 indicate one or both of the remaining two contexts (except the one to be 
added). Left: web usage. Middle: phone call usage. Right: app usage 
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6. SAMPLE APPLICATIONS 

The context dependency of mobile usage not only provides 
insight to the social behavior of humans, but can be uti-
lized in many applications, such as those in Figure 12. In 
this section, we provide several potential applications to 
highlight the efficacy and simplicity of our approach. Their 
performance gains are based on our best performing meth-
ods, i.e. using Supervised Binning and Bayesian combina-
tion. 

 Web bookmarks 
It is known that a few websites account for most of the typ-
ical user’s usage [42]. Accordingly, some browsers, e.g. 
Opera, offer a list of favorites or home screen that is con-
figurable by the user or automatically generated. This 
would provide with access to the user’s most common 
websites. Others provide a user configurable home page 
that is automatically loaded when the browser is run. Sim-
ilar to Section 4, we focus on individual domains, instead 
of pages within a domain.  
A context-aware web favorites list is a sample application 
that can present more likely choices to the user according 
to their context. Our findings, presented in Figure 11, show 
that a context-based solution for providing the user with 
either a single default home page, or a list of 10 websites, 
significantly outperforms an ideal static selection, with a 

miss rate of 15% vs. 25% for a list of 10 websites, and 42% 
vs. 68% for the single home page, and less than half the 
ideal static solution. Interestingly, the ideal static list of 10 
favorite websites outperforms the 10 most recently visited.  

Phone favorites list 
In order to assist users in making phone calls, phones typ-
ically provide the user with a redial button, a list of recent 
phone calls, and/or a user configurable favorites list. For 
example, the iPhone used in our study provided a list of 
recent phone calls as well as a user configurable favorite 
contacts list. A context-aware phone favorites list is a sam-
ple application that can present more likely choices to the 
user according to their context.  
On average, a static list of each user’s top 10 contacts has a 
miss rate of 32%, and a recent call list has a miss rate of 
28%. On the other hand, a context aware favorites list can 
reduce the users’ need to go through their phonebook by 
approximately five fold, to 6%. Furthermore, the miss rate 
of a redial button is 64%, but the context-based dial button 
has a miss rate of 27% (Figure 11). 

App Quicklaunch and Preloading 
Most phones often have a list of apps that are more readily 
available for users to run, i.e. quicklaunch. The iPhone pro-
vides room for four such apps, which are readily available 
on any page of the home screen, and users can also organ-
ize their apps so the most common are placed in the first 
page. A context-aware quicklaunch list is a sample appli-
cation that dynamically updates the quicklaunch list ac-
cording to the users’ context. Our findings show that it 
would have a miss rate of 16%, compared to the 39% miss 
rate of the ideal static quicklaunch, an improvement of 
three times. For 10 apps, the miss rate is just 4%, compared 
to 13% for the static case (Figure 11). 
Preloading is another possible application, where context-
based estimation of the application to be used can enhance 
performance. App preloading, including context-based 
methods have been widely studied in the past [43]. We 
have measured the app launch times on the substantially 

DetermineCostPerformanceOrdering(context_sensors) 

ForEach (sensor) in (sorted_free_context) do { 

    accuracy, usage = CombineNextContext(sensor) 

} 

ForEach (sensor) in (sorted_costly_context) do { 

    If AppConditionMet(accuracy, usage, costs[]) 

        Exit Loop 

    accuracy, usage = CombineNextContext(sensor) 

} 

Return (accuracy, usage) 

Figure 10: Pseudo-code for SmartContext 

 

     

     
 

Figure 9: Performance of SmartContext. For a range of minimum accuracy targets, how often costly context (i.e. 

accelerometer, cell ID, GPS) is accessed, how often the minimum accuracy target is met, and the overall average 

estimation accuracy. Web (left), phone (middle), and application (right) usage, for 1 (top), and 10 (bottom) re-

sponses. 
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faster iPhone 4. The measurements were repeated three 
times for each app, and we excluded content load times, if 
applicable. For the without preloading case, each app’s 
process was manually terminated between the runs. For 
the preloaded case, we started the app once, and closed it 
before the measurement run. Without preloading, the av-
erage load time was 2.0 seconds (median = 2.1, deviation = 
0.5). With preloading, the load times were 0.6 seconds for 
all the measured apps. These measurements show that, on 
average, preloading can improve app load times over three 
fold. We note that the iPhone and many other platforms 
utilize a most recently used algorithm to keep multiple 
apps in memory, given memory limitations. We compare 
our performance to the MRU algorithm, and show that the 
miss rate for 10 preloaded apps, the improvement is from 
9% to 4% (Figure 11).  Furthermore, for 3 preloaded apps, 
the miss rate is reduced from 31% to 17%, almost half.  

7. RELATED WORK 

Prior work (e.g. [2]) also define context dependency as a 
set of strict or probabilistic rules and relations between 
context(s) and the outcome. Others design and implement 
frameworks for sensing and processing context infor-
mation [44, 45]. For a survey, see Baldauf et al. [46].  These 
work attest to the significance and usefulness of context. 
Context information, has in the past been widely used for 
specific applications such as implicit user interaction (e.g. 
by Schmidt [5]) and information delivery (e.g. a reminder 
system by in [6], a tourist guide in [7], and content adapta-
tion in [3] and [4]). For a survey of such cases, see Chen and 
Kotz [47]. Others have presented system mechanisms 
based on context information, e.g. estimating and predict-
ing wireless network conditions [10], network routing [48], 
battery management [8, 49], and energy efficient GPS duty 
cycling [12, 13]. Further, Eagle and Pentland have shown 
that device usage patterns are indeed structured and pre-
dictable [50]. These designs and others depend on the con-
text dependency of device usage, and show significant, 
quantified, performance gains by exploiting context.   
A number of other work depend on knowledge regarding 
usage to perform. For example, the work in [10] predicts 
network conditions to choose the best network interface, 
but assume network usage is pre-known, even though it 
depends on the behavior of applications, services, and the 

user. As another example, the authors of [8] show that bat-
tery consumption is context dependent. The authors of [9] 
further research this problem by focusing on phone call us-
age, and show that call lengths, and therefore their energy 
consumption, are context dependent. Further, Eagle and 
Pentland have shown that device usage patterns are in-
deed structured and predictable [50]. The usefulness of 
context has been so significant that many researchers have 
designed and implemented frameworks for the specific 
task of sensing and processing context [44-46]. 
Our work presents a methodological solution for using 
multiple and various sources of context while managing 
their energy costs, and presents a formal definition of con-
text dependency as well as practical methods to calculate 
it. We abstain from focusing on a single application or ser-
vice, yet we provide practical insight into the relationship 
between context-dependency and the performance 
achievements of individual applications.  
A number of recent research have dealt with reducing the 
cost of acquiring context. These work attest to the chal-
lenge of energy efficiency in context awareness, but typi-
cally focus on single applications and/or static configura-
tions. They use one or more of the following three tech-
niques to reduce energy cost, while retaining acceptable 
performance. First: frequency reduction, as in [12-14]  re-
duces the sampling frequency of energy hungry context 
sensors. Second: sensor substitution utilizes lower energy 
cost context instead of energy hungry ones, as in [10, 12, 
13]. Third: sensor elimination attempts to utilize a subset of 
sensors. We take the third approach in SmartContext, but 
unlike previous work that focus on and take advantage of 
the properties of a specific application, such as activity de-
tection [15-18], we provide a generic framework for system 
designers to dynamically or statically optimize the cost / 

 

 

      
Figure 11:  Performance of context-based applica-

tions, presented as miss rates. Top: web bookmarks. 

Middle: phone favorites. Bottom: application 

launching or preloading 
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ble quick launch bar (bottom row). 
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accuracy trade-offs of context awareness. A more general 
problem of selecting the most effective subset of sensors, 
also referred to as observations or predictors, has been the 
focus of decades of research in the artificial intelligence 
and operations research communities.  These work focus 
on the optimization of information, typically defined as ei-
ther joint entropy or information gain (delta entropy). It is 
common practice to use the greedy (myopic) solution to-
wards this selection problem [40, 51, 52], with guaranteed 
performance bounds, due to the processing complexities of 
finding the optimal solution [35-37]. SmartContext builds 
upon the greedy solution of Krause et al. [40], but is 
adapted to using estimation accuracy instead of infor-
mation gain. 
There has been several research utilizing phone logging, 
e.g. [53-56]. Compared to our traces, they collect very lim-
ited context information due to privacy concerns and bat-
tery lifetime limitations. We have overcome these chal-
lenges by the careful design and implementation of the 
study, and have collected unprecedented data.  
Finally, there has also been considerable research on deter-
mining user state from context information e.g. physical 
activity [57]. In this work, we abstain from extracting user 
state, either directly or as an interim stage, and instead fo-
cus on the relationship between device usage and context 
information. 

8. SUMMARY AND CONCLUSION 

We have found that estimation accuracy based on MAP es-
timation is a practical application agnostic measure for 
context dependency, yet can provide insight into the real-
life performance of many applications, several of which are 
briefly presented here. These applications attest to the ef-
fectiveness of context for estimating usage, and highlight 
the practical value of estimation accuracy as the measure 
of choice for context dependency.  
We have also found that due to the power law distribution 
of usage, estimating mobile usage is very challenging. Yet, 
we show that careful yet methodological treatment of mul-
tiple sources of context, e.g. combination, discretization, 
binning, can greatly increase estimation accuracy. In par-
ticular, we have found that 1) it is necessary to maintain a 
reasonable number of usage samples in each category, i.e. 
no less than ten, and equal frequency discretization of sin-
gle dimension context helps achieve this. 2) Classifier com-
bination methods can address the data sparseness chal-
lenge when utilizing multiple context sources, and Bayes-
ian combination works best, even though the contexts are 
dependent. 3) Individualized supervised binning greatly 
improves estimation accuracy by keeping a more samples 
in each bin while allowing the fine molding of bins. 
Finally, even though the energy cost of some context 
sources can be a substantial challenge for context based ap-
plications. We address this challenge through the 
SmartContext framework, which ensures using only as 
much context sources to meet a minimum accuracy set by 
the application designer for each estimation event. We 
show that SmartContext can achieve an estimation accu-
racy within 1% of the maximum possible, while reducing 
energy costs by 60% or more. 
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