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Abstract

We searched major electronic databases to identify peer-reviewed literature inves-

tigating the role of temperature on the stress response and mortality of captured and

released fish. We identified 83 studies that fit these criteria, the majority of which

were conducted in North America (81%) on freshwater fish (76%) in the orders

Perciformes (52%) and Salmoniformes (28%). We found that hook-and-line fisheries

(65% of all studies) were more commonly studied than all net fisheries combined

(24%). Despite the wide recognition for many species that high water temperatures

exacerbate the effects of capture on released fish, this review is the first to

quantitatively investigate this problem, finding that warming contributed to both

mortality and indices of stress in 70% of articles that measured each of those

endpoints. However, more than half (58%) of the articles failed to place the

experimental temperatures into a biological context, therefore limiting their broad

applicability to management. Integration of survival and sublethal effects to

investigate mechanisms of fish mortality was relatively rare (28%). Collectively, the

results suggest that capture–release mortality increases at temperatures within,

rather than above, species-specific thermal preferenda. We illustrate how knowledge

of ecologically relevant high temperatures in the capture and release of fish can be

incorporated into management, which will become increasingly important as climate

change exerts additional pressure on fish and fisheries.
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Introduction

Globally, commercial fishers capture and release

approximately 7 million tonnes of fish per year

(Kelleher 2005), and as many as 19 million

tonnes (30 billion fish) per year are estimated to

be captured and released from recreational fisher-

ies (Cooke and Cowx 2004). Fish are released

because they may have little or no commercial

value, they are not of the desired size, legislation

prohibits their retention because the species or

population is threatened, or in some recreational

fisheries, release is mandated to maintain popula-

tion characteristics of an unexploited population

(Redmond 1986; Ross 1997). Regardless of fishing

method or motivation for releasing captured fish, a

capture-and-release event commonly consists of

multiple separate stressors, including encountering

the gear (physical injury), struggling to become

free (strenuous exercise), barotrauma (fish caught

at depth), human handling (potential further

injury, mucous and scale loss, fear response and

struggling) and air exposure (oxygen deprivation

and collapse of gill structures) (Arlinghaus 2007).

Sublethal effects of these stressors include altered

blood chemistry, behavioural impairments, de-

pressed growth and reproductive rates and in-

creased vulnerability to disease (Wendelaar Bonga

1997; Barton 2002). Mortality from these stressors

has been examined for multiple gear types and

species and varies from 0 to 100% of released fish

(Alverson et al. 1994; Bartholomew and Bohnsack

2005).

While a number of factors can influence post-

release mortality, such as species and gear type

(Chopin and Arimoto 1995; Bartholomew and

Bohnsack 2005), decades of research have revealed

that water temperature plays an important but

complex role in post-release survival. Indeed, tem-

perature has long been termed the ‘master factor’ in

the biology of fishes for its governance over phys-

iological processes (Brett 1971). Being ectotherms,

many fish have a relatively narrow range of

temperatures in which they are able to thrive, grow

and reproduce (Elliot 1981). When environmental

(and thus body) temperatures are elevated above

the optima for a particular species, fish may exhibit

abnormal behaviour such as bursts of activity,

collisions with objects and rapid ventilation (Elliot

1981), aerobic scope and cardiac function can

decline (Farrell 1997; Pörtner 2001), susceptibility

to disease generally increases (Ellis 1981), oxygen

availability decreases, food conversion efficiency

decreases (Kinne 1960; Andrews and Stickney

1972; Wurtsbaugh and Davis 1977) and physio-

logical indices of stress such as plasma cortisol levels

are elevated (Wendelaar Bonga 1997; Barton

2002). Physiological homeostasis is disturbed

through changes in reaction rates and membrane

permeability (Hazel 1984), resulting in increased

metabolic demand, decreased blood osmolality and

serum electrolytes (Houston and Schrapp 1994;

Claireaux and Audet 2000) and decreased proba-

bility of survival (Elliot 1981). At temperatures

below the thermal optimum, fish have a reduced

metabolism and aerobic scope and thus an impaired

ability to catch prey, escape predators and navigate

obstacles. Cold shock (acute decreases in tempera-

ture) and very cold temperatures may result in

behavioural disturbances such as darting or collid-

ing with objects, loss of dorsoventral orientation or

coma (reviewed in Donaldson et al. 2008b). Theo-

retically, overcoming a capture stressor may be

more difficult for a fish under thermal stress than for

one in an optimal thermal environment. Previous

reviews have examined fisheries-related capture in

relation to physiological stress and survival (e.g.

Arlinghaus et al. 2007), but the role of water

temperature has not been explicitly reviewed in

this context.

The focus of this paper was to conduct a quan-

titative review examining the role of environmental

temperature on the survival and physiological con-

dition of ray-finned fishes (class Actinopterygii) in

response to capture and release. Our main objectives

were to (i) quantitatively summarize and interpret

trends across studies with respect to geographical

location, year of study, focal species, objectives,

duration and methodological approaches, (ii) quan-

tify the extent to which elevated water temperatures

contribute to mortality from fisheries-related capture

and release, (iii) determine the role of elevated water

temperatures in influencing sublethal parameters,

such as physiological stress, and (iv) identify thermal

ranges in which thermal effects begin to influence

mortality, for species where sufficient data enabled

such comparisons. Herein, we quantitatively address

each of these objectives to summarize existing

knowledge and highlight the novel and integrative

approaches currently being explored. Further, we

discuss challenges faced in the interpretation of

existing research to guide management decisions on

fisheries regulations and temperature, using salmon

fisheries as a key example.
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Methods

Literature search

ISI Web of Knowledge (WK) and Aquatic Sciences

and Fisheries Abstracts (ASFA) were used to identify

peer-reviewed literature examining the interactions

between capture stress and temperature for fishes

in the class Actinopterygii. We included papers

published from 1965 to December 2009. Keywords

were selected using an iterative process, where

searches were conducted in both databases and

continually revised to maximize the number of

relevant articles returned. Once the final sets of

keywords were established and the database was

assembled, we manually removed irrelevant articles

by reading abstracts and full articles where neces-

sary. Articles were excluded if it was not evident

from the abstract that the experiment included a

capture-type stressor (real or simulated) examined

at more than one temperature.

To capture as many articles as possible that

examined some form of capture stress under more

than one temperature, we used combinations of

search terms in two separate searches. To qualify for

the first search, papers had to include in their title,

abstract or keywords (hereafter collectively referred

to as keywords) one term from each of four

categories: temperature (‘temperature’, ‘thermal’,

‘climate change’ or ‘season’), consequences (‘mor-

tality’, ‘fate’, ‘survival’, ‘stress’, ‘fitness’, ‘condition’,

‘behaviour’, ‘physiology’ or ‘injury’), capture

(‘strenuous exercise’, ‘exhaustive exercise’, ‘capture

and release’, ‘catch and release’, ‘by-catch’,

‘by-catch’ ‘handling’ or ‘escape’) and taxa (‘teleost’

or ‘fish’ or ‘Actinopterygii’; WK search only) and

must not have any of the exclusion terms (‘shell-

fish’, ‘crustacean’, ‘invertebrate’, ‘mollusc’, ‘dol-

phin’, ‘turtle’, ‘seabird’, ‘bird’, ‘shark’, ‘whale’,

‘shrimp’, ‘prawn’, ‘nephrop’ or ‘lobster’). Similarly,

the exclusion terms removed all studies examining

species other than ray-finned fishes. The second

search required papers to identify in their keywords

one of the temperature words identified above, as

well as ‘hooking mortality’, ‘angling mortality’ or

‘discard mortality’, and to not have any of the

exclusion terms listed above. While there is a large

body of knowledge studying exercise under different

temperatures, we included only those that studied

‘strenuous’ or ‘exhaustive’ exercise to represent one

of the stressful facets of the capture–release experi-

ence (Milligan 1996). All articles resulting from the

two searches were put into a database for consid-

eration. Wildcards were used in most search terms

(e.g. ‘escap*’ would capture escapes, escapees,

escaped and escape).

This search process was supplemented by a

single-pass reading of papers captured in the data-

base search to find relevant studies cited by other

authors. Articles examining only culture-related

stressors such as transport or confinement were

removed. This resulted in a total of 83 peer-

reviewed articles (Table 1). One article in our

database involved the collective analysis of data

from eight previous studies, two of which were

included in this review. We did not exclude this

article as the majority of included data was not

incorporated elsewhere in this review.

Papers that did not mention temperature in their

abstract were eliminated, potentially biasing our

results towards papers that found an effect of

temperature on the lethal or sublethal effects of

capture. Those that found no effect of temperature

may have been less likely to report that in an

abstract than those that detected an effect. We

contend that our approach was justified because

temperature is widely considered the master factor

in the biology of fishes and is acknowledged to

influence capture–release mortality in the published

reviews on this topic (e.g. Muoneke and Childress

1994; Chopin and Arimoto 1995; Bartholomew

and Bohnsack 2005 and Arlinghaus et al. 2007).

The failure to report the presence or absence of a

temperature effect in a capture–release study

(if examined) would be a substantial oversight.

Literature review

Articles were queried for publication trends (e.g.

continent where research took place, year of pub-

lication, journal name), marine or freshwater envi-

ronment, laboratory or field experiment (or both),

holding method [including free-swimming in the

field, fish tanks, temporary holding tanks ashore of

study area or on a boat, or large artificial (labora-

tory) ponds], species, capture method or gear type

used (or imposed stressor such as exercise or air

exposure), temperatures used, temperature context

for a particular habitat or species and temperature

effects on mortality. In addition, we queried any

sublethal indices the authors explicitly chose to

examine stress or impairment, including but not

limited to physiological metrics such as plasma and

muscle metabolites, muscle or tissue constituents
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such as glycogen, adenosine triphosphate (ATP),

adenosine diphosphate (ADP), adenosine mono-

phosphate (AMP), ions and hormones, physical

injuries caused by gear or handling, behavioural

observations, disease and immune impairment, and

vulnerability to predation. We collectively termed

these ‘sublethal impairments’. Within this category,

lactate, glucose, cortisol, ATP, ADP, AMP, phos-

phocreatine (PCr), pyruvate, haematocrit, haemo-

globin, glycogen, heart rate, stroke volume, cardiac

output, equilibrium loss, ventilation rate, pH, total

protein, oxygen consumption, partial pressure of

carbon dioxide (PCO2) and bicarbonate (HCO3) were

classified as measures of stress and exercise physi-

ology. Osmolality, chloride, sodium and potassium

concentrations and haematocrit were classified as

measures of osmoregulation. Any physical trauma

or bodily harm was classified as an index of injury.

All other sublethal metrics were classified as ‘other’.

It is important to note that if studies evaluated

injury as a predictor variable but not as a response

variable with respect to both capture stressor and

temperature, then this was not included in our

sublethal impairment category. Variables and clas-

sifications used in this review are presented in

Appendix 1.

Some variables queried were not always overtly

stated in the articles. For example, papers were

queried for ‘focal sector’, which was the target

audience or group that results would be applicable

to. These included recreational fisheries (sport or

leisure fishing), commercial fisheries (fishing for

profit), what we termed ‘fisheries science’ (where

the fishery method or sector was not explicitly

stated in the title or abstract, but the study

relevance to a particular fishery was discussed in

the body of the article) and basic science (funda-

mental biological questions independent of any

fisheries sector). Where unavoidable, subjective

decisions were made in order to classify papers.

Classes were not mutually exclusive for many of the

variables (e.g. some articles examined more than

one species, gear type or physiological metric), and

the result is that percentages of classes within one

queried variable do not always sum to 100%.

We queried the papers with regard to several

temperature-related questions: what temperatures

were studied, were temperatures naturally occur-

ring or manipulated, what was the effect of

temperature on stress indices and mortality (e.g.

was the effect positive, negative, both or neither)

and what was the biological temperature context of

the study? For this last question, we looked for

authors to place the temperatures examined into

context with regard to the focal species and classi-

fied them as high, within thermal tolerance (‘nor-

mal’), low or ‘no context given’. All references and

summary temperature information are listed by

species in Table 1. Articles were queried as to

whether increasing temperature had a significant

effect on mortality or any sublethal indices quanti-

fied and whether this effect was positive (greater

survival or lower sublethal impairment parameters),

negative or neutral (no effect).

Thermal preference and/or optimal growth tem-

perature data are available on many species; there-

fore, we attempted to use the existing data in the

literature to see if overall patterns in the results

presented in this review could illuminate whether

final thermal preferendum or optimal temperatures

for growth (henceforth ‘optimal temperatures’)

corresponded with optimal temperatures for capture

and release. Our chain of reasoning for choosing

this parameter was as follows: (i) the final thermal

preferendum and the optimum temperature for

growth closely approximate one another (Jobling

1981; Kellogg and Gift 1983), (ii) data on optimal

temperatures for growth are available for many

species, presumably due to their applications in

aquaculture, (iii) these parameters may not vary

between populations of species that have wide

geographical ranges (Beitinger and Fitzpatrick

1979) and (iv) using optimal (growth) or preferred

temperatures as a context against which to study

capture–release mortality is particularly interesting

because within this zone, fish are not thermally

stressed given the absence of secondary acute

stressors (as opposed to critical temperatures, which

are lethal in the short- or long term). This allows us

to evaluate whether the optimal thermal window

narrows when capture–release stressors are applied.

While it is difficult to compare across studies,

because a number of other factors are variable (e.g.

air temperature, air exposure, gear types, time in

live-wells, water conditioner or aeration, number of

monitoring days), we examined the temperature at

which mortality began to increase within a given

set of circumstances. We examined size classes

separately because for many species, there are

ontogenetic differences in the optimum temperature

for growth, with optimal temperatures decreasing

with increasing body size (e.g. Björnsson et al.

2001; Imsland et al. 2005 and references therein).

Presented are the optimal temperatures for species

Temperature effects on capture–release M K Gale et al.
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that had more than one mortality study included in

this review (Table 2).

Results

Klein (1965) was the earliest peer-reviewed study

identified in our database. It was published in The

Progressive Fish-Culturist (became North American

Journal of Aquaculture in 1999) and studied hooking

mortality in rainbow trout (Oncorhynchus mykiss,

Salmonidae). Eighty-three studies matched our

search criteria, with most of these occurring in the

last 20 years (Fig. 1). Studies occurred predomi-

nantly in North America (81%) and Europe (17%;

Appendix 1), and 76% were focused on freshwater

species (Appendix 1). Studies were published in 18

peer-reviewed journals, with more than half of all

studies being from one of the American Fisheries

Society publications, which include the North

American Journal of Fisheries Management (45%),

and Transactions of the American Fisheries Society

(14%; Appendix 1). Fisheries Research and the

Journal of Fish Biology were also common publica-

tion venues (10 and 8%, respectively).

While the target sector was not always obvious or

discrete, the majority focused on the recreational

sector (64%), followed by the commercial sector

(27%; Appendix 1), with considerable overlap. We

classified six studies (7%) as ‘fisheries science’,

because while the title and abstract of the paper

were not clearly aimed at a particular fisheries

sector, the fisheries applications of the research were

discussed in the body of the paper. The remaining

four studies (5%) addressed fundamental scientific

questions and did not express a direct applied

research focus. No studies explicitly examined

artisanal or Aboriginal fisheries.

Studies examined 21 families of fishes from nine

orders. Perciformes was the most commonly studied

order (52%, with 25% of all studies focused on the

family Centrarchidae), followed by Salmoniformes

(consists of only the family Salmonidae, 28%). Of

the 52 species studied, 35 were only examined in

one article (Fig. 2). Most papers (88%) investigated

a single species. Largemouth bass (Micropterus

salmoides, Centrarchidae) was the most commonly

studied species (18% of total), followed by striped

bass (Morone saxitalis, Moronidae; 11%), rainbow

trout (8%) and Atlantic salmon (Salmo salar,

Salmonidae; 8%; Fig. 2).

Most studies focused on real or simulated capture

stressors (71 studies, 86%; Appendix 1), which

include multiple identifiable stressors such as han-

dling, exercise, confinement and air exposure. Other

studies focused on specific components of the

capture–release experience, which authors identi-

fied as strenuous exercise (8%), handling (6%), air

exposure (4%) and tagging or sampling (4%). Of the

54 studies examining hook-and-line fishing meth-

ods, almost all of these (50 studies, 93%) were

focused on the recreational fishing sector. Twelve

studies (17% of the 71 capture studies) examined

the effects of trawling. Gill nets and purse seines

were the capture method in three studies each (4%

of the 71 capture studies). An additional three

studies employed manual chasing, including two

that used this method to simulate angling (Cooke

et al. 2003; Suski et al. 2006) and a third that

discussed their results in a recreational fishing

context (Wilkie et al. 1997). Other fishing methods

examined were traps (two studies), beach seines

(one study) and hoop nets (one study). No studies

compared electrofishing results at multiple temper-

atures.

Warmer temperatures resulted in higher mortal-

ity in 49 of the 70 (70%) papers that quantified

survival after capture (84% of all papers quantified

mortality). Only one study found lower mortality in

warmer water, and in this case, Rutecki and Meyers

(1992) speculated that sablefish (Anoplopoma fim-

bria, Anoplopomatidae) mortality was related to

disease. Of the 55 studies that were performed in a

field setting, most (44 studies, 80% of field studies)

used visual assessment to quantify mortality, almost

exclusively by utilizing temporary lakeside, stream-

side or on-board holding tanks. One exception was

Loftus et al. (1988), who held lake trout (Salvelinus

namaycush, Salmonidae) by stringers through the lip

and tethered them to a buoy. Telemetry was utilized

in six studies (11% of field studies), and mark–

recapture was used in two studies (4% of field

studies). Mortality occurring within <24 h was

examined in nine studies (13% of 70 mortality

studies) and 1- to 2-day mortality in 15 studies

(21%), whereas 23 studies (33%) quantified mor-

tality greater than 2 days but £1 week. Twenty-

four studies (34%) examined mortality for longer

than 1 week.

Thirty-seven articles (45% of all 83 studies)

measured sublethal impairments, including physio-

logical indices of stress such as elevations of

metabolites or stress hormones in the plasma

(57% of 37 sublethal studies) or muscle tissues

(16%), cardiac parameters (e.g. heart rate, stroke
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é

(1
9
9
4
);

E
lli

o
tt

a
n
d

H
u
rl
e
y

(1
9
9
7
);

P
e
te

rs
o
n

a
n
d

M
e
tc

a
lf
e

(1
9
7
9
)

A
n
d
e
rs

o
n

e
t

a
l.

(1
9
9
8
);

D
e
m

p
s
o
n

e
t

a
l.

(2
0
0
2
);

T
h
o
rs

ta
d

e
t

a
l.

(2
0
0
3
);

W
ilk

ie
e
t

a
l.

(1
9
9
6
,

1
9
9
7
);

S
a
lm

o
tr

u
tt

a

B
ro

w
n

tr
o
u
t

1
2
–
1
4

a

1
6

b

N
o

te
m

p
e
ff

e
c
t

(0
–
1
4
)

n
o

te
m

p
e
ff

e
c
t

(1
0
–
2
0
)

B
a
rn

a
b
é
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volume, cardiac output, 11%), behavioural impair-

ment (8%), injury (5%), immune suppression (3%)

or vulnerability to predation (3%). Included in these

were 23 studies (28% of all studies) that examined

both mortality and sublethal indices. Twenty-six of

the studies (70% of 37 sublethal studies) demon-

strated increasing sublethal impairment with

increasing temperature. For studies that presented

both survival and sublethal effects, 12 (52% of 23

survival and sublethal studies) showed both in-

creased mortality and a sublethal index of stress or

impairment with increasing temperature. Twelve

studies compared recovery rates from capture, and

warmer temperatures were shown to facilitate or

expedite recovery in half of these cases (e.g. Dalla

Via et al. 1989; Kieffer et al. 1994; Wilkie et al.

1997; Pottinger et al. 1999; Galloway and Kieffer

2003; Hyvärinen et al. 2004).

Of the 19 studies that included a temperature

deemed high for the focal species, all but one (95%

of 19 high temperature studies) detected negative

effects of increasing temperature on the survival or

impairment indices of captured fish. More than half

of all studies (58% of 83 studies) did not put their

experimental temperatures into any context with

regard to species optima; only two of these reported

temperatures that were abnormally high for the

associated habitat. We found that for 10 of the 15

most studied species in this review (‡2 mortality

studies), mortality began increasing at temperatures

within the optimal growth or preferred tempera-

tures from the literature (Table 2).

Discussion

Most studies were published in the recent decade,

likely reflecting the increasing interest in science

that links temperature and fisheries management

because of the growing awareness and concern of

climate change (Food and Agriculture Organization

of the United Nations 2008). Our finding that the

majority of studies occurred in freshwater and in

North America, and that half focused on recrea-

tional fishing, is likely driven by the popularity of

recreational catch-and-release fishing in that conti-

nent, where management policies mandate or

recommend release of captured fish in several

jurisdictions [in Canada, see the Fishery (General)

Figure 1 Number of publications by year, with shading indicating taxonomic order.
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Regulations – Fisheries Act (1993) or in the United

States, see the Magnuson-Stevens Fisheries Conser-

vation and Management Act (2006)]. In contrast,

in recent years, some European jurisdictions have

banned catch-and-release fishing (described in

Arlinghaus 2007) on humane or ethical grounds,

and these sorts of policy decisions could be limiting

the scientific exploration of capture and release in

those regions. The predominance of scientific studies

focused on the Centrarchidae and Salmonidae

families (53%), a trend consistent with the general

pattern of freshwater recreational fisheries in North

America. In the United States and Canada, the most

common sport fisheries include those for bass

(Centrarchidae) and trout (Salmonidae; Fisheries

and Oceans Canada 2005, United States Depart-

ment of the Interior, Fish and Wildlife Service, and

U.S. Department of Commerce, U.S. Census Bureau

2006).

We found that survival study durations from

immediate (Meals and Miranda 1994) to up to

2 years (Thompson et al. 2007) were well repre-

sented in the literature. Several authors suggested

that physical injury (Plumb et al. 1988; Nelson

1998; Cooke and Hogle 2000), physiological mech-

anisms such as intercellular acidosis (Wood et al.

1983; Milligan and Wood 1986; Kieffer et al. 1994)

or physiological damage caused by air exposure

(Ferguson and Tufts 1992; Davis and Olla 2001;

Cooke et al. 2002) are leading causes of immediate

or short-term (hours) mortality. Although it has

been shown that long-term mortality and popula-

tion-level effects can be linked with immune sup-

pression and subsequent disease development

(Wedemeyer and Wood 1974; Wendelaar Bonga

1997), reduced reproductive success of stressed

individuals (Schreck et al. 2001; Schreck 2010),

disrupted gametogenesis because of reallocation of

energy during reproductive maturation (Patterson

et al. 2004), altered courting or mating behaviour

or interrupted nest-guarding or other parental care

activities (Cooke et al. 2002), only a few studies in

this review examined factors less directly influenc-

ing fitness. For example, Lupes et al. (2006) found

that sablefish immune function was compromised

after the capture stressor (simulated hooking and

trawling in laboratory tanks), potentially pre-dis-

posing released fish to disease and delayed mortal-

ity, and the response was the same at various water

temperatures (up to 16 �C). Other innovative and

Figure 2 Number of publications by species, with shading indicating taxonomic order.
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promising new approaches for studying the effects of

thermal and capture stressors used indices of reflex

impairment (Davis and Ottmar 2006; Davis 2007,

2010) or vulnerability to predation (e.g. Olla and

Davis 1989; Mesa et al. 2002). Jepsen et al. (2008)

found that predation of brown trout (Salmo trutta,

Salmonidae) by pikeperch (Sander lucioperca, Perci-

dae) in laboratory ponds was unaffected by tagging/

handling treatments but increased with tempera-

ture; however, it is unclear whether this was

because of decreased predatory avoidance by the

trout or increased predatory effort by the pikeperch

in warmer water. Regardless, this experiment

investigated an important ecological component of

the potential effect of capture and thermal stressors

acting together. Our results showed that researchers

are beginning to study mortality levels and fitness

consequences in a broader context; however, the

ultimate population-level effects of the capture and

release of fish remains unknown for most species.

Many investigators adopted laboratory-based

approaches such that temperatures and other

stressors could be precisely manipulated (e.g. Barton

and Schreck 1987; Kieffer et al. 1994). Although

many of the ecological complexities of the real world

were not incorporated into this type of research, it

can be an important starting point for understand-

ing key relationships between thermal and other

stressors. Some studies (Cooke et al. 2003; Suski

et al. 2006) utilized manual chasing to exhaustion

in laboratory tanks as a means of simulating the

‘playing’ and ‘landing’ components of an angling

event under specific thermal conditions and eliciting

a stress response similar to that of angling (Milligan

1996). A limitation of this approach is that in

addition to physiological stress and exercise, fish

sustain injuries from escaping or being released

from fishing gears (Chopin and Arimoto 1995;

Broadhurst et al. 1999; Cooke and Hogle 2000;

Davis 2002; Bartholomew and Bohnsack 2005;

Arlinghaus et al. 2007). Therefore, the results of

manual chase studies likely represented a best-case

scenario for how captured and released fish

responded or survived in relation to specific thermal

conditions. For example, while Suski et al. (2006)

observed no mortality in largemouth bass four

hours after simulated angling using manual chas-

ing, Meals and Miranda (1994) reported pre-release

mortality in multiple largemouth bass angling

tournaments at similar temperatures.

Interpreting mortality rates and stress responses

in a laboratory setting is difficult because holding

wild fish in pens, tanks or cages can be stressful for

some fishes (Billard et al. 1981; Barton and Iwama

1991; Conte 2004; Roscoe et al. 2010); thus,

captivity could contribute to mortality and indices

of stress to an unknown degree that is not related

directly to a simulated capture–release event. Most

field-based experiments also involved holding fish in

tanks, albeit temporarily, to assess survival or stress

responses. Only six studies in the current review

utilized telemetry to assess survival (Lee and

Bergersen 1996; Bettoli and Osborne 1998; Thors-

tad et al. 2003; Bettinger et al. 2005; Thompson

et al. 2007, 2008), which allowed for the evalua-

tion of released fish in their natural environment,

thus eliminating the effects of captive holding.

However, attachment or implantation of transmit-

ters could also contribute to mortality and/or

sublethal impairment, and few field studies utilizing

telemetry control for tag effects, as monitoring of

non-tagged individuals in the field presents sub-

stantial logistic challenges. Ideally, researchers

would develop and analyse the procedures best

suited to their studies (including quantifying detri-

mental effects) before collecting data (Bridger and

Booth 2003). If methodologies are carefully chosen

(e.g. using proven surgical techniques and trans-

mitter specifications for the specific study animals

and choosing study designs with appropriate control

and sham treatments and adequate statistical

power; Cooke et al. 2011), effects should be minimal

and the benefits in terms of data collected are

immense (Bridger and Booth 2003; Cooke et al.

2004b; Donaldson et al. 2008a). Because telemetry

is likely one of the best ways to assess both detailed

and long-term effects of capture–release on individ-

ual survival, and only a small fraction of all studies

have adopted this approach, we thus have only a

limited understanding of the full extent of the

ecological implications of thermal effects on the

capture–release of fish.

The primary objectives of this review were to

quantify the extent to which elevated water tem-

peratures contributed to mortality from fisheries-

related capture and release and determine the role

of elevated water temperatures in influencing sub-

lethal parameters, such as physiological stress. The

majority of studies found that warmer temperatures

had a negative effect on fish condition or survival

after release. However, less than one-third of the

articles we reviewed integrated mortality and some

sublethal index of stress or impairment. There are

two very good examples of how such an integrated
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approach, in the laboratory and field, has helped to

elucidate the potential physiological mechanisms

responsible for capture-induced mortality. Wilkie

et al. (1996) examined angling stress by intercept-

ing wild Atlantic salmon in freshwater as they

returned to spawn, manually hooking them

through the jaw, then playing them to exhaustion.

They then sampled fish for blood and white muscle

after 0, 2 or 4 h, or observed them for 12 h, to

investigate the impacts of fishing in warm summer

temperatures (22 �C) versus those at cool fall

temperatures (6 �C). They found that summer

angling resulted in greater mortality, impaired

glycogen resynthesis rates and slowed white muscle

lactate elimination and metabolic proton load cor-

rection. Olla et al. (1998) simulated trawling in

adult sablefish, monitoring mortality in laboratory

tanks for 60 days and incorporated some basic

measures of stress physiology in plasma after the

capture simulation. They estimated that the critical

post-capture temperature for sablefish that live at

4–6 �C is 12–15 �C and discovered that peak

plasma lactate, but not glucose and cortisol,

increased with temperature. Plasma lactate and

blood pH are both common metrics in capture-and-

release experiments because they are a corollary of

intracellular acidosis, which may be the reason that

fish sometimes die after strenuous exercise (Wood

et al. 1983). The slower recovery of pH and greater

mortality after angling in warm water observed in

Wilkie et al. (1996) was consistent with that expla-

nation. While Olla et al. (1998) did not speculate as

to the mechanism underlying the mortality they

observed, the integrative nature of their study was

beneficial because it analysed the effects of ecolog-

ically relevant temperatures for sablefish caught in

trawls off the north-west coast of the United States

and suggested that in future studies, serum lactate

has the potential to be used as a surrogate for

mortality. We conclude from the papers we

reviewed that the weight of evidence suggests

thermal and capture stressors are often additive in

nature, such that when experienced together they

may be more detrimental to fish than either one

experienced alone.

An important, yet surprising, finding in this

review was the lack of context given for the

temperatures used in more than half of the studies

included. Considering that each fish species (and

sometimes population) has an optimal temperature

(see references in Hart 1952; Beitinger and Fitzpa-

trick 1979; Johnston and Ball 1997; Beitinger et al.

2000; Pörtner 2001, 2002; Farrell et al. 2008), it is

imperative that the reader understands the context

of each temperature for the species and life stage

being studied. Indeed, the degree of thermal stress is

determined not only by the environmental temper-

ature but also by the species, their genetics and their

prior thermal experience (i.e. acclimation; Pörtner

2001). It is not clear whether this has occurred

because authors have assumed their target audi-

ence was thoroughly knowledgeable of their study

organism and thus knew the implications of the

experimental temperatures or because they have

used the term ‘high’ temperature to suggest that

their warmest experimental temperature was not

only relatively high but also abnormally high for the

species or population. Regardless, this widespread

lack of temperature context is problematic as it

effectively limits the ability of readers to compare or

synthesize results across species and habitats. This

lack of clarity could lead to confusion over the

ramifications of findings in many of these studies.

Moreover, because of the large number of papers

that fell into this category, it was difficult for us to

accurately and succinctly summarize the overall

effects of increasing temperatures on capture-and-

release experiences in an ecologically meaningful

way.

Perhaps the most remarkable finding in our

literature review was that temperature-mediated

capture–release mortality occurred even within

temperatures considered to be optimal or preferred

for species with sufficient temperature optimum and

preference data to warrant comparison (Table 2).

Capture–release mortality of sablefish, spotted seat-

rout (Cynoscion nebulosis, Sciaenidae), Atlantic cod

(Gadus morhua, Gadidae), bluegill (Lepomis macro-

chirus, Centrarchidae), smallmouth bass (Micropte-

rus dolomieu, Centrarchidae), largemouth bass,

striped bass, cutthroat trout (Oncorhynchus clarkii,

Salmonidae), rainbow trout, paddlefish (Polyodon

spathula, Polyodontidae), pikeperch and walleye

(Sander vitreus, Percidae) began increasing at tem-

peratures within or below their optimal range (see

references in Table 2). We found the exceptions to

this trend were Pacific halibut (Hippoglossus stenol-

epis, Pleuronectidae), Atlantic salmon and brown

trout. Collectively, these results suggest that tem-

peratures even within preferred or optimal ranges

may increase mortality to an unacceptable level for

many species, representing a potentially unexpected

challenge for managing these fisheries. Generally,

optimal and preferred temperature experiments are
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carried out under idealized conditions. Evidence that

a secondary stressor such as capture–release nar-

rows or shifts species’ optimal temperature ranges

suggests that other secondary stressors, such as

poor water quality or disease, may similarly con-

strict or shift the optimal temperature window.

Thus, there is a strong need for researchers to assess

the optimal temperature range for a given species

under non-idealized conditions.

Management implications

Fisheries managers may refer to scientific capture-

and-release literature if they are considering using

closures or restrictions to protect threatened species

or stocks by reducing the number of harvested

individuals. Our finding of a general trend in warm

temperatures exacerbating mortality and sublethal

impairments suggests that a better understanding of

these processes may aid managers in making

decisions on fisheries regulations during times of

challenging environmental conditions. Dozens of

studies examined in the present review recom-

mended avoiding (catch and release) angling or

commercial fishing openings (by-catch) when tem-

peratures were relatively high. In some cases,

authors recommended a specific temperature

threshold above which fishing should be avoided

or the resulting increased mortality should be

accounted for (e.g. 25 �C for Puerto Rican large-

mouth bass (Neal and Lopez-Clayton 2001) and

16 �C for Hudson River striped bass (Millard et al.

2005)). Other recommendations from the articles in

this review include gear or technique recommen-

dations (Klein 1965; Alós 2009), limiting or elim-

inating air exposure after capture (Cooke et al.

2003), improved sorting techniques (Dunning et al.

1989) and minimizing handling times (Meka and

McCormick 2005).

Nearly one-third (29%) of studies focused on

Oncorhynchus, Salmo and Salvelinus spp., and

although climate warming in the next century

may have the most serious effects on cool- and cold-

water species such as these, assessing impacts of

climate change was rarely stated explicitly as a

rationale for the research. For Atlantic salmon,

there seems to be sufficient information on the

effects of temperature upon capture–release stress

and mortality (Wilkie et al. 1996, 1997; Anderson

et al. 1998; Jurvelius et al. 2000; Dempson et al.

2002; Galloway and Kieffer 2003; Thorstad et al.

2003) to aid in the development of specific guide-

lines for release of captured fish under different

thermal conditions. Of the seven articles we uncov-

ered, five found a significant increase in mortality or

some sublethal impairment at the highest temper-

atures (ranging from 14 to 24 �C). Anderson et al.

(1998) found that after 72 hours, survival declined

from 100% at temperatures <16.5 �C to 20% at

20 �C. Wilkie et al. (1997) found that 30% of fish

released after angling perished at 23 �C, but none

perished following release at temperatures <18 �C.

Post-angling mortality was 40% in Wilkie et al.

(1996) at 22 �C. Dempson et al. (2002) detected no

statistical differences in survival; however, mortality

increased from 0% at the coolest temperatures to

12% above 18 �C. Two studies found no effects of

increasing temperature (Jurvelius et al. 2000; Gal-

loway and Kieffer 2003) up to 18 �C, although

Jurvelius et al. (2000) found overall high mortality

for (landlocked) Atlantic salmon released from

trawls when temperatures were 10–18 �C. In sum-

mary, temperatures exceeding 20 �C were com-

monly associated with increased mortality of

Atlantic salmon released from fisheries capture,

and authors often suggested avoiding catch and

release above this temperature.

While some important management guidelines

have been implemented based on the results of

capture–release science, such as recreational Atlan-

tic salmon fisheries closures when temperatures met

or exceeded 22 �C in Newfoundland rivers

(Dempson et al. 2001), guidelines in North America

(state, provincial and federal jurisdictions) often fail

to provide useful direction to fishers (Pelletier et al.

2007). In their recent review of North American

guidelines, Pelletier et al. (2007) found that only

seven of 49 agencies made recommendations about

avoiding catch-and-release fishing in extremely

warm water, despite the popularity of angling

tournaments in summer months. We reviewed the

available online guidelines and discovered that

despite the increasing body of knowledge, the

proportion of agencies (12 of 61) that warned that

post-release mortality might increase in warm water

has remained unchanged. The American National

Oceanic and Atmospheric Administration’s (NOAA)

Code of Angling Ethics makes no mention of warm

temperatures (NOAA 2010). When agency guide-

lines do suggest avoiding high temperatures, they

almost always fail to state temperature thresholds.

For example, in Canada, Atlantic salmon fishing is

governed by the federal government (Fisheries and

Oceans Canada), whose ‘Angler’s Guide’ recom-
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mends that catch and release of Atlantic salmon

should cease during ‘extreme environmental condi-

tions (low water levels and high water tempera-

tures)’ (Fisheries and Oceans Canada 2010). The

Atlantic Salmon Federation guide on live-release

also recommends avoiding fishing in ‘high temper-

atures’, but also neglects to state how high is too

high (Atlantic Salmon Federation 2010). We con-

tend that a specific temperature threshold is imper-

ative to angler compliance, simply because vague

recommendations fail to inform anglers, even when

they have intentions of using best practices. How-

ever, we recognize that such recommendations are

challenging given the general paucity of data

identified here and our finding that even within

species-specific thermal preferenda, capture–release

mortality may increase.

Conclusion and future directions

Collectively, the studies we reviewed found that

temperature stress often contributed significantly to

the levels of impairment and mortality of fish

released after capture. Very few studies examined

the effects of high temperatures that are ecologically

meaningful in terms of current peak temperature

events in a given habitat or future projections of

climate change, as was evident by the lack of

supporting context for the experimental tempera-

tures. Our finding that warm temperatures can

increase mortality within species-specific optimal

temperature ranges demonstrates the importance of

evaluating temperature effects in context to improve

capture-and-release research and regulations. Fu-

ture research should use standardized methodolo-

gies to determine how thermal stress interacts with

capture stressors. Improved communication of the

ecological context and management implications of

research would allow the incorporation of more

research findings into the regulatory planning

process. Ideally, authors will explicitly compare

their results with optimal or preferred temperature

ranges for the study species. Because global climate

change may result in the capture and release of fish

in warming environments, we must attempt to gain

greater insight into the synergistic effects of thermal

and capture stressors for species that are frequently

released from capture. This is especially urgent for

species or populations whose numbers are threa-

tened with precipitous declines or extinction. For

example, Pacific salmon (anadromous Oncorhynchus

spp.) are similarly vulnerable to capture–release and

warm temperatures as Atlantic salmon, making

them excellent candidates for this type of research.

To our knowledge, there is a complete lack of peer-

reviewed studies combining thermal and capture–

release stressors on adult anadromous Pacific

salmonids. This paucity exists despite the fact that

some populations of Pacific salmon are threatened

or endangered and living in environments already

affected by climate change (e.g. sockeye (O. nerka,

Salmonidae) in Washington and British Columbia,

and coho (O. kisutch, Salmonidae) from California to

British Columbia (Brown et al. 1994; Gustafson

et al. 2007)). Further, these species are still highly

sought after by fisheries, and climate change

projections suggest continuing future warming

(Morrison et al. 2002; Ferrari et al. 2007), making

this type of research warranted for these species.
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Appendix 1

Summary of variables queried of each study, response classes and the number of studies that fell into each class.

Variable Class Studies

Order Perciformes 43

Salmoniformes 23

Scorpaeniformes 7

Cypriniformes 4

Pleuronectiformes 4

Gadiformes 3

Acipenseriformes 2

Clupeiformes 1

Esociformes 1

Journal North American Journal of Fisheries Management 37

Transactions of the American Fisheries Society 12

Journal of Fish Biology 7

Fisheries Research 8

Fisheries Management and Ecology 4

Progressive Fish-Culturist (NAJA) 2

Canadian Journal of Fisheries and Aquatic Sciences 2

Journal of Applied Ichthyology 1

African Journal of Marine Science 1

California Fish and Game 1

Diseases of Aquatic Organisms 1

Hydrobiologia 1

ICES Journal of Marine Science 1

Journal of Experimental Biology 1

Journal of Freshwater Ecology 1

Physiological Zoology 1

Physiological and Biochemical Zoology 1

Texas Journal of Science 1
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Appendix 1 (Continued).

Variable Class Studies

Continent North America 67

Europe 14

Africa 1

Australia 1

Environment Freshwater 62

Marine 18

Both 1

Estuary 2

Experiment Laboratory 28

Field 51

Both 4

Stressor Capture 71

Exercise 7

Handling 5

Air 3

Tagging/Sampling 3

Sector Recreational 51

Commercial 20

Fisheries Science 6

Basic Science 4

Recreational and Commercial 2

Fishing Gear Type Hook/line (includes longline) 54

Trawl 12

Gill net 3

Manual (Hand) Chase 3

Purse seine 3

Traps 2

Beach seine 1

Hoop net 1

Holding Method Brief Holding (lake or streamside, boat) 39

Holding tanks 30

Free-swimming – field 15

Large experimental pond 4

Mortality Assessment Visual 64

Telemetry 6

Mark/Recapture 2

Sublethal Impairment Measures Stress & Exercise physiology 29

Osmoregulatory physiology 12

Behaviour 3

Immune Impairment 2

Injury 1

Predation vulnerability 1

Reproductive physiology 1
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Appendix 1 (Continued).

Variable Class Studies

Species Temperature Context None 48

High 19

Moderate/Optimal/Normal 12

Low 2

Note that classes are not mutually exclusive, i.e. one article may fall into more than one class per variable. See Methods

section, for more details on classifications.
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