
Merging Logical Topologies Using End-to-end
Measurements

Mark Coates
Department of E.C.E.

McGill University
Montreal, Quebec, Canada

coates@ece.mcgill.ca

Michael Rabbat
Department of E.C.E.

Rice University
Houston, Texas

rabbat@rice.edu

Robert Nowak
Department of E.C.E.

Rice University
Houston, Texas

nowak@rice.edu

ABSTRACT
Knowledge of network topology is useful for understanding
the structure of the Internet, for developing and testing new
protocols, and as prior information to network tomography
algorithms. Building on existing techniques for inferring a
single-source tree topology using end-to-end measurements,
we address the problem of merging multiple tree topologies.
We develop a multiple source active probing methodology
and statistical framework for testing whether the paths from
two sources to two receivers branch at a common internal
node. This information can then be used to determine where
portions of the tree topology from one source to a set of re-
ceivers overlap with the tree topology from a different source
to the same set of receivers. The algorithm uses a novel
random probing structure and easily made measurements of
packet arrival order. As a result, we do not require precise
time synchronization among the participating hosts. Suc-
cessful experiments performed over a university LAN and
over the Internet verify that our methodology is versatile
and robust.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques;
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—network topology

General Terms
Algorithms, Measurement, Theory

Keywords
Network tomography, Topology discovery, End-to-end mea-
surement, Multiple-source network tomography, Packet ar-
rival order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

1. INTRODUCTION
The physical topology of a network describes the connec-

tivity of the elements which comprise the network, including
switches, routers, hubs and hosts. Knowledge of the physical
topology of a network is extremely important for the suc-
cessful execution of many network management tasks such
as fault monitoring and isolation, server placement and re-
source sharing. The physical topology can be depicted as a
graph, with internal nodes representing switching elements
and edge nodes representing hosts (see the example in Figure
1). The routing topology of a network is related to the phys-
ical topology, and can be represented as a directed labelled
graph. Over a period of routing stability the routing topol-
ogy describes the paths traversed by packets sent from one
end-host to another. A debate has begun within the research
community as to properties of network topology graphs [13,
15]. Further understanding of these network properties will
lead to improvements in the design and testing of network
protocols.

Much work has been done in the area of identifying rout-
ing topologies using techniques based on information from
the network BGP tables, and based on the traceroute pro-
gram. Such work includes the Internet Mapping Project [7],
the Mercator project [14], Caida’s skitter project [1], and
Rocketfuel [19]. These techniques hinge on eliciting spe-
cial responses from internal network devices. Consequently,
these techniques fail when the internal devices do not be-
have as expected. Internal devices such as routers, switches,
and hubs may not elicit responses as expected either because
they have this feature turned off (ICMP TTL Exceeded re-
sponses are optional) or because they are not capable of
eliciting such responses (i.e. layer-2 devices). Barford et al.
report that in experiments conducted in 2001, 13% of the
internal nodes they encountered did not respond [3]. We
conjecture that this number will only increase as system
administrators disable this feature in routers due to rising
network security concerns.

Techniques based only on end-to-end measurements avoid
the problems experienced by traceroute-like techniques, as
they do not rely on internal network devices to do any-
thing more than route packets. However, end-to-end tech-
niques are only able to infer a subset of the physical routing
topology called the logical topology. Nodes in the physical
topology only appear as part of the logical topology if they
represent points in the network where the paths from two
sources to a receiver join (joining points), or if they repre-
sent points where the paths from a source to two receivers

A B

4321

C

a

i

f

c
b

d

(a)

B

2

e

d

1 43

f

A

2

b

a

1 43

c

C

2

h

g

1 43

i

(b)

A

2

b

a

1 43

c

B

f

d

C

= e i

h =

= g

(c)

Figure 1: Physical and logical topologies of an example network. (a) The physical network showing routing
paths. Circles indicate internal network elements (switches and routers), squares A-C are sources, and
square 1-4 are receivers. Dot-dash lines are routes from source A, dashed lines routes from source B, and
solid lines routes from source C. (b) The three logical tree topologies that can be determined from the
individual sources (as might be estimated by the algorithms of [4, 8, 9]). This set of three topologies does
not reflect the equivalence, or even relative position, of the nodes. In this case, node c is equivalent to
node e, node d to node g, and node f to node h. The unlabelled nodes in the physical topology do not
appear in the logical topologies. (c) The generalized logical topology of the multi-source network, showing
the correspondence between branching nodes in the logical tree topologies. This topology clearly indicates
how each source-destination path relates to all other paths.

branch (branching points). A single logical link is used to
connect two such nodes if there is a (traversed) physical
path between them. Logical links may encapsulate multiple
physical links and nodes which are traversed consecutively.
Figure 1(b) depicts logical topologies from the perspective
of each source in Figure 1(a), and Figure 1(c) depicts the
logical topology for the multiple source network.

While the logical topology does not describe the complete
routing topology, it may still be useful for the purpose of net-
work mapping when traceroute-based techniques fail. Addi-
tionally, the logical topology is relevant to network tomogra-
phy, where end-to-end measurements are used to infer net-
work internal properties such as delay distribution or packet
drop rate. Combining topology and performance informa-
tion is extremely useful for the evaluation of the resource
sharing capability of the network under the current config-
uration, and also can guide the decisions of source-based
routing algorithms. Thus, techniques which identify logi-
cal routing topologies using only end-to-end measurements
are useful both for filling in the holes where other network
mapping techniques fail and as an initial step in network
tomography algorithms.

In this paper we build upon existing techniques which in-
fer the logical tree topology by actively making end-to-end
measurements from a single source. Specifically, we inves-
tigate the problem of merging two single-source trees from
different sources to a given set of receivers in order to obtain
the multiple-source, multiple receiver topology. We refer to
such topologies as general topologies, following [6], thereby
distinguishing them from the tree topologies that have been
the focus of much of the logical network topology discovery
literature [4, 8, 9, 11, 10, 12, 18]. The special responses
elicited by techniques based on traceroute contain an IP
address which can be used to identify internal nodes. How-
ever, because end-to-end measurements do not depend on
these special responses there is no easy way to label internal
nodes in an inferred logical topology such that the internal
nodes inferred by one source can be related to the nodes in

the logical topology inferred by another source when using
end-to-end measurements. Consequently, merging two log-
ical topologies is not a trivial task. We develop a multiple
source active probing procedure and statistical framework
for identifying where the paths from one source to a set of
receivers enter a different source’s tree topology. This infor-
mation can then be used to relate internal nodes in the two
trees thereby merging the single-source topologies.

The active measurement procedure we present utilizes
semi-randomized probing at the sources, and packet arrival
order measurements made at the receivers. As a result,
no precise clock synchronization is necessary, significantly
enhancing the applicability and robustness of the scheme.
Based on the arrival order of packets sent from multiple
hosts, the procedure makes decisions about the location
where the paths from one source to the receivers join the
tree topology of another source. Implementation of the al-
gorithm is easily accomplished using either unicast or mul-
ticast packets. Additionally, because our scheme only uses
end-to-end measurements, it can identify both layer-2 and
layer-3 network devices. We have explored the efficacy of
the algorithm through experiments in a LAN environment
and over the Internet, using hosts located at universities in
North America and Europe.

1.1 Related Work
A number of authors have identified techniques that rely

solely on edge-based measurements to estimate the logical
network topologies that arise when a single source com-
municates with multiple receivers. The papers [11, 10, 12,
18] focus on topologies reflecting the routes taken by multi-
cast packets, whereas the papers [4, 8, 9] investigate unicast
topology identification. All of the techniques assume that,
from the source’s point of view, the logical topology of a
single-source, multiple-receiver network is a tree and is sta-
ble over the measurement period. This assumption can be
violated by load balancing strategies and route changes.

The tree-oriented topology identification schemes that uti-

lize solely end-to-end measurement involve three main steps.
Firstly, end-to-end measurements are made (e.g., end-to-end
loss, delay, and delay differences). Secondly, a set of “end-
to-end” metrics are estimated based on the measurements.
Examples of previously used metrics include counts of joint
loss events, delay covariances, and shared loss rates. In the
third step of the topology identification schemes, inference
algorithms use the estimated metrics to identify the topol-
ogy.

A means of extending these tree identification techniques
to the multiple-sender case is not clear. The schemes can
obviously be used to estimate the individual tree topologies
observed from each source in a multi-source tree, but the
measurements do not provide enough information to enable
reconstruction of the correspondence between the trees. In
no technique is there a logical extension from the single-
source probes to multiple-source probes that would provide
additional information. In this paper, we develop a mea-
surement framework and inference scheme that permits es-
timation of the connections between the single-source trees.

There are several techniques that are capable of map-
ping multiple-source layer-3 physical topologies, but they
require that internal routers respond to ICMP requests and
identify themselves using their IP addresses. The Mercator
project [14], Caida’s skitter project [1], and the techniques
described in [3, 7] all use traceroute [2] in some form to de-
termine the path from a source to a receiver. In contrast to
the work presented here, these approaches focus on physical
topology identification, combining traceroute measurements
collected over very long time frames. A much more impor-
tant distinction between these techniques and our proposed
procedure is that the traceroute-based methods fail when
a substantial portion of the topology is comprised of layer-
2 elements (bridges and switches) or when routers do not
respond to ICMP requests.

In addition to the procedures in [14, 1, 3, 7] that rely
only on ICMP responses, there are other approaches that
use SNMP information to generate network topology maps.
Many network management tools include features that use
SNMP information to map layer-3 physical topologies, e.g.,
IBM Tivoli Netview (www.tivoli.com). Other tools such as
Cisco’s Discovery Protocol (www.cisco.com) rely on vendor-
specific extensions to SNMP MIB (Management Informa-
tion Bases) to incorporate layer-2 elements; as a result they
are applicable only in homogeneous networks (where all ele-
ments are supplied by the same vendor). Breitbart et al. [5]
and Lowekamp et al. [16] describe procedures for deter-
mining physical topologies that include layer-2 elements for
more heterogeneous networks. These procedures rely only
on universally supported SNMP MIB information.
Peregrine Systems’ Infratools Network Discovery
(www.peregrine.com) is a commercial tool that addresses
the same task. These latter tools focus primarily on phys-
ical topology, but it is possible to derive logical topologies
using them. However, all of the SNMP-based techniques re-
quire administrative access, which is typically only available
to machines on the local network. The techniques can there-
fore only generate topology information for the component
of the network where the user has administrative privileges.

2. PROBLEM STATEMENT
Two key tasks comprise the problem of identifying the

unicast logical topology of a network comprised of multi-
ple sources and multiple receivers. The first task is the
discovery of the tree topologies perceived by each source.
This is followed by the merger of the set of trees. Rather
than developing a scheme that jointly addresses both tasks,
we leverage existing techniques for identifying single-source
topologies [4, 8, 9] and focus on the merging problem.

For the sake of clarity, we distill the generalized merging
task into the following simpler problem and describe an ap-
proach to its solution throughout the remainder of the paper.
Assume that we know (or have estimated) the logical tree
topology from source C to multiple receivers. Can we de-
termine (using end-to-end measurements) where the paths
from another source A to each receiver enter the source C
tree topology? This simple problem lies at the heart of the
merging exercise; if we can accomplish this, then we can
develop a procedure that merges multiple trees.

C

3

b

a

2 74

d

A

1 6 8 9

c

ge

5

f

a

aa

a
a

Figure 2: Nine receiver example network illustrating
entry points. The solid lines and hollow circles de-
pict the tree topology from the perspective of source
C. The dashed lines and solid circles indicate where
the paths from source A to the receivers join the
topology (note that they do not depict the source A
topology).

Figure 2 provides an illustration of the desired result, de-
picting a nine receiver network. The logical tree topology
from the perspective of source C is shown by the solid lines
and hollow circles. Our task is to identify where the paths
from source A to each receiver join this tree, relative to the
hollow, labelled, nodes. These entry points are shown by
the solid circles. As examples, the path from A to receiver 1
enters at a point between nodes d and e, whereas the path to
receiver 7 enters above node a. Observe that internal node
a is the branching point for paths originating from sources
A or C and going to receivers 4 and 7. We call such a node
a shared branching point since it must be in the logical tree
topologies for both sources A and C, and thus it is shared by
both topologies. By knowing that a is a shared branching
point, we know that the paths from A to 4 and 7 join source
C’s tree topology above node a. Our algorithm seeks to
identify shared branching points. Two tree topologies can
then be merged accordingly. Note that in this figure, the

internal nodes have been labelled only to facilitate in the
problem description here and that meaningful labels do not
result from any end-to-end single-source topology identifica-
tion algorithm.

Our inference technique assumes: (1) Interior switches or
routers cannot be relied upon to respond to queries. If por-
tions of the network (for example the IP routers) do respond,
then it is straightforward to incorporate the information in
the discovery procedure. (2) The topology perceived from
each source is a tree. This requires that any load balancing
or routing changes over the measurement period do not af-
fect the logical multiple-source topology. In order to make
this assumption more reasonable, we seek to limit probing
and keep the measurement period as short as possible. (3)
The routers and switches in the topology obey a first-in first-
out policy for packets of the same class. This is necessary
to ensure that probe packets do not frequently experience
reordering when traversing the same route.

2.1 Organization
In Section 3 of the paper, we describe the measurement

methodology, commencing with a description and idealized
analysis of a simplified two-receiver scenario. The section
proceeds to conduct a more detailed analysis with more re-
alistic assumptions, and extends the framework to multiple
receiver networks. Potential extensions to the methodology
are also described. Section 4 presents results from an ex-
periment conducted on a LAN and an experiment over the
Internet, two scenarios that present very different types of
challenges. Section 5 discusses some limitations of the pro-
cedure and includes concluding remarks.

3. METHODOLOGY AND MEASUREMENT
FRAMEWORK

3.1 A Simplified Description and Analysis
In this first description of the framework, we will perform

analysis assuming no cross-traffic and clock synchronization
between the sources, in order to motivate the technique and
highlight the intuition behind it. In Section 3.3, we will relax
these assumptions and conduct a more careful analysis with
cross-traffic effects included.

We begin by exploring the simple case of a two-sender,
two-receiver network. In such a network, under the assump-
tions outlined above, there are four possible entry scenarios,
as depicted in Figure 3. Our measurement framework in this
simple case proceeds as follows (in trees with more receivers,
the framework is a straightforward extension). To make
the n-th measurement, we send two packets from source A,
spaced some small time difference ∆t apart, with the first
packet being sent at time tn. The first packet, which we
label pA,1, is destined for receiver 1; the second, pA,2, for
receiver 2. We also send two packets from source C, again
spaced by ∆t. The first packet of this pair is sent at time
tn + vn, where vn is an offset time. The first packet, pC,1, is
sent to receiver 1 and the second, pC,2, to receiver 2.

Figure 4(a) depicts this setup for the scenario in which
the branching point is common to both sources (we will call
this the shared scenario). Denote the fixed portion of the
delay (transmission and propagation) of packet pA,1 from
source A to the joining point dA,1, and that of packet pC,1

from source C by dC,1. Denote the corresponding quantities

C

1

a

2

a

A

(a)

C

1

a

2

a

A

a

(b)

C

1

a

2

a

A

a

(c)

C

1

a

2

A

aa

(d)

Figure 3: The four possible entry cases for a two-
sender, two-receiver network. The black circles in-
dicate entry points. Although depicted as lying in
the middle of links in the C-topology, these entry
points can coincide with the children nodes. For ex-
ample, in (a), the entry point can be the a node,
but it must lie below the C node. The dashed lines
are used to indicate entry paths only, so the topol-
ogy of the source A tree is not depicted except in
(a). Case (a) has a common branching point for the
two sources; in cases (b), (c) and (d), the branching
points differ.

for the second packets sent by each source by dA,2 and dC,2,
respectively. Since the joining point is the same in the shared
scenario, dA,1 = dA,2 = dA and dC,1 = dC,2 = dC . The
arrival time of packet pA,1 at the joining point is tn + dA,1,
whereas that of packet pC,1 is tn + vn + dC,1. The arrival
times of packets pA,2 and pC,2 are tn+∆t+dA,2 and tn+vn+
∆t + dC,2. If we now examine the arrival order of packets
at the two receivers, we see that pA,1 arrives before pC,1 if
vn > (dA,1 − dC,1). Similarly packet pA,2 arrives before pC,2

if vn > (dA,2 − dC,2).
We say that a measurement records a reverse-ordering

event if the order of packet arrivals (comparing the packet
from A to the packet from C) is not the same at the two
receivers. In the shared branching point scenario, since
dA,1 = dA,2 and dC,1 = dC,2, the order of arrivals at the
two receivers will be exactly the same, irrespective of the
offset vn. There will be no occurrences of reverse-ordering
events.

Now consider one of the unshared scenarios in which the
branching is not common (case (b) in Figure 3). In this
case, the joining points differ, so the fixed delays are (almost
always) not equal, i.e., dA,1 6= dA,2 and dC,1 6= dC,2 (see
Figure 4(b)). If the probes are sent at the same times as

C

1

a

2

a

Atn

tn + t

tn + vn

tn + vn + t

dA,1 = dA,2 = dA

dC = dC,1 = dC,2

C

1

a

2

a

A

a

dA,1

dA,2 dC,2

dC,1

(a) (b)

Figure 4: The measurement process. (a) Measure-
ment for a topology in which the branching point
is common. The packets next to each source are
labelled with send times. The dA and dC labels cor-
respond to the fixed delay component (transmission
and propagation) of the indicated paths. (b) In this
case the branching points are not common, the join-
ing points differ, so the fixed delay components dA,1

and dA,2 are unlikely to be equal.

above, then packet pA,1 arrives at its joining point at tn +
dA,1, and packet pC,1 arrives at time tn + vn + dC,1. Packet
pA,2 arrives at its joining point at time tn + ∆t + dA,2 and
packet pC,2 at time tn+vn+∆t+dC,2. Let d1 = (dA,1−dC,1)
and d2 = (dA,2 − dC,2). If we compare the arrival orderings
at the two receivers, we see that the orderings differ when
d1 < vn < d2 if d1 < d2, or when d2 < vn < d1 if d2 <
d1. In either case, there is an offset region of magnitude
|d1 −d2| where different orderings arise at the two receivers.
The result is the same for the entry scenarios depicted in
Figure 3(c) and 3(d).

The measurement process consists of repeating the mea-
surement described above many times for n = 1, . . . , N ,
with vn drawn from a uniform distribution over the range
[−D, D] (with D chosen to be much larger than any mea-
sured round-trip-time). In the ideal world analyzed thus far,
we observe no reverse-ordering events in the shared entry
scenario depicted in Figure 3(a)). In the unshared scenarios
of Figures 3(b)-(d), the fraction of reverse-ordering events
approaches |d1 − d2|/2D for large N . To be more precise,
the number of such events obeys a binomial distribution
Bi(N, |d1 − d2|/2D).

In practice, we implement this measurement procedure
by having one source send its (∆t-separated) packet-pairs
at a steady rate. The rate must be sufficiently slow to avoid
network flooding and probe interference. The second source
sends it pairs at the same rate, but adds a random offset
time (drawn from a uniform distribution over −D, . . . , D).
The two receivers record the orderings of packets, and send
the results back to the sources.

The motivation for the spacing ∆t between the two pack-
ets from each source is to ensure that they do not bunch
up because of a transmission delay. If this bunching occurs,
packet pA,2 experiences additional delay relative to pA,1 in
its traversal to the joining point, so that even in the shared
case dA,1 6= dA,2. Similarly, dC,1 6= dC,2. The discrepan-
cies here are determined by the bottleneck bandwidths from
the sources to the joining point; if these are not equal, then

d1 6= d2 even in the shared case, and reverse-ordering events
will occur. The value ∆t should thus be sufficiently large to
ensure that bunching does not occur in the absence of cross
traffic. We need ∆t > p/(min(BA, BC)), where p is the
probe size, and BA and BC are the bottleneck bandwidths
of the paths from the respective sources to the joining point.
As an example, for p = 40 bytes and BA = 1Mbps, we have
∆t > 320 microseconds. In practice, we set ∆t substantially
larger than this to avoid as much as possible the bunching
effects of cross-traffic.

The procedure just described enables us to distinguish
between entry scenario (a) and entry scenarios (b)-(d) (re-
ferring to Figure 3). However, we cannot determine from
these measurements exactly which of (b)-(d) is in effect. In
Section 3.5, we will see that when there are more receivers
in the network, it is often possible to combine the results of
pairwise tests to resolve the uncertainty. We establish con-
ditions for identifiability (localization to a single link) of the
entry points.

3.2 Timing issues
The two main timing tasks involve performing an approx-

imate synchronization of the sources at the beginning of the
experiment and in keeping them on track during the exper-
iment. Timing is not an issue at the receivers, because they
simply record packet orderings.

Unless some form of synchronization is performed, the
sending times of the sources will be offset from one another
as a result of clock differences [17]. There will be a con-
stant offset c1 (in addition to the random offset v1) between
the sending times of the very first probes due to the offsets
between the clocks of the two sources. In turn, the effec-
tive range of the total random offset distribution becomes
−D + c1, . . . , D + c1 rather than −D, . . . , D. If we choose
D such that this range still encompasses the much smaller
offset region where reverse-ordering events potentially oc-
cur then the results of the experiment are unaffected by the
constant offset.

If the send times are calculated naively from system clocks,
then network timing protocols can induce large, unexpected
shifts in relative offsets when recalibration occurs. Clock
skew also arises from the physical machines having differ-
ent internal system clock rates. The technique described
in [17] can eliminate these problems, but as yet our proce-
dure does not incorporate it. Over an experiment lasting
a few minutes, clock drift can mean that the n-th probes
are (approximately) separated by vn + c1 + c2n, and for the
final (N-th) probe, c2N is of the order of several hundred
microseconds. The drift means that the true offset distri-
bution is not completely uniform, but for sizeable D, it is a
sufficient approximation. In fact, the use of a uniform distri-
bution is not critical to the analysis; a distribution suffices if
it satisfies the property that the ratio of the density at any
two points in the range is sufficiently close to one.

Aside from the initial constant offset c1, and the drift
offset c2 additional (and quite substantial) offsets can be in-
curred if the operating system swaps out the source process
during an experiment. We overcome this by assigning each
probe a sequence number based on the difference between
the time when the experiment began and when the probe is
being sent. We find that the amount of time necessary to
perform some system tasks is not necessarily deterministic,
but always within a small range (on the order of microsec-

������������������
p(g1 , g2)

v - d1
g1

g2

v

v - d1

(a)
������������

p(g1 , g2)

v - d1
g1

g2

v

v - d2������
(b)

Figure 5: Cross-traffic and timing effects on ordering observations. (a) An example of how the likelihood
of an ordering offset is determined for the shared scenario according to (1). The contours depict the joint
probability distribution p(g1, g2), which are the delay differences due to cross-traffic and timing error. For
an offset v, the probability of a reverse-ordering event r(v) is determined by the fraction of the distribution
lying in the hashed regions. As v varies, the meeting point of the two subregions of integration traverses the
dashed line, which passes through the origin and has slope 1. (b) The determination of the probability of a
reverse-ordering event in the unshared case according to (3). In this case, as v varies, the meeting point of
the subregions of integration traverses a line of slope 1 offset from the origin by d2 − d1.

onds).
While discrepancies between send-times of the first pack-

ets in corresponding pairs are evaded by choosing parameter
D to be sufficiently large, it is important that the ∆t values
at the two sources are approximately the same. However,
since ∆t is only of the order of a few milliseconds, clock skew
induces a maximum discrepancy of a few microseconds.

In the analysis that follows, we absorb all errors incurred
by all timing discrepancies in noise terms that also include
cross-traffic delays. An additional factor to consider in a
more thorough analysis is the potential for reordering of
successive probes traversing the same path can, arising, for
example, as a result of multiple parallel physical connec-
tions between routers. We assume that these events are
rare, because they can only occur when the packets are very
closely spaced, a situation that is common in our measure-
ment framework for only a very small range of offsets. Such
reordering has the effect of very slightly increasing the prob-
ability of a reverse-ordering event.

3.3 A More Detailed Analysis
We now revisit the analysis of the arrival times for the

shared scenario of the two-receiver network, incorporating
cross-traffic effects. The arrival times at the joining point(s)
are:

pA,1(n) : tA,1(n) = tn + dA,1 + gA,1(n)

pC,1(n) : tC,1(n) = tn + vn + dC,1 + gC,1(n)

pA,2(n) : tA,2(n) = tn + ∆t + dA,2 + gA,2(n)

pC,2(n) : tC,2(n) = tn + ∆t + vn + dC,2 + gC,2(n)

Here gA,1(n) and gC,1(n) represent the combination of tim-
ing errors and cross-traffic delays experienced by the first
packets sent from each source, and gA,2(n) and gC,2(n) are
the corresponding quantities for the second packets. These

terms include only the delays incurred on the path(s) to the
joining point(s).

Let us first consider the shared scenario. If packet pA,1(n)
arrives before pC,1(n) then dA,1 + gA,1(n) < vn + dC,1 +
gC,1(n). Setting d1 = dA,1 − dC,1 as before, and g1(n) =
gA,1(n) − gC,1(n), we have vn > d1 + g1(n). In order for a
reverse-ordering event to occur, packet pA,2(n) must arrive
after pC,2(n). With d2 = dA,2 − dC,2 as before, and g2(n) =
gA,2(n)−gC,2(n), a reverse-ordering event occurs only when
vn < d1 + g2(n), since d1 = d2 in the shared scenario. By
reversing the inequalities, we obtain the expressions for the
requirements for a reverse-ordering event when packet pC,1

arrives first. If we consider a fixed offset v, the probability
that a reverse-ordering event occurs is:

r(v) =

Z v−d1

−∞

Z
∞

v−d1

p(g1, g2) dg1 dg2 +

Z
∞

v−d1

Z v−d1

−∞

p(g1, g2) dg1 dg2. (1)

The nature of this integration is depicted in Figure 5(a). At
each offset point v, there is a region where an (g1, g2) com-
bination causes an reverse-ordering event. The total proba-
bility of a reverse-ordering event is then:

f =
1

2D

Z D

−D

r(v)dv. (2)

Figures 6(a) and (b) display an estimation of the integral for
a common branching point in the LAN experiment described
in 4.1. The figure indicates the very small offset region (rel-
ative to D = 2 ms) where reverse-ordering can occur. The
probability of a reverse-ordering event can be estimated by
numerically approximating (2). For the depicted scenario,
the estimated probability is 0.0017. Similar values were ob-

40 60 80 100 120
0

50

100

Estimated g
1
 + d

1
 (µ s)

E
st

im
at

ed
 g

2 +
 d

1
 (

µ
s)

(a)

−2000 −1500 −1000 −500 0 500 1000 1500 2000

0.1

0.2

0.3

Offset v (µ s)

f(
v)

(b)

Figure 6: (a) In the LAN experiment described in Section 4.1, delay differences were measured at a common
joining point. Based on these delay differences, we estimate g1(n)+d1 and g2(n)+d1, and display them using a
scatter plot. Here the hashed regions are the areas where an ordering difference would occur when the offset
v = 80 + d1 microseconds. (b) We estimate f(v) as the fraction of points lying within the equivalent regions
for each v. The estimated function f(v) is displayed for D = 2 milliseconds. In this experiment, the estimated
probability of a reverse-ordering event is 0.0017.

served for all common branching points encountered during
the LAN experiment described below.

In the unshared scenarios, the arrival times at the join-
ing points remain the same as above, but we must take into
account the fact that dA,1 6= dA,2 and dC,1 6= dC,2. Pro-
ceeding as before, if packet pA,1(n) arrives before pC,1(n)
then vn > d1 + g1(n). In order for a reverse-ordering event
to occur, packet pA,2(n) must arrive after pC,2(n). This re-
quires that vn < d2 + g2(n). By reversing the inequalities,
we obtain the expressions for the requirements for reverse-
ordering event when packet pC,1 arrives first. If we consider
a fixed offset v, the probability that a reverse-ordering event
occurs is:

r(v) =

Z v−d1

−∞

Z
∞

v−d2

p(g1, g2) dg1 dg2 +

Z
∞

v−d1

Z v−d2

−∞

p(g1, g2) dg1 dg2 (3)

The nature of this integration is depicted in Figure 5(b).

Define P1(t) ≡
R t

−∞
pg1

(x) dx, where pg1
is the probability

distribution of g1, and equivalently, P2(t) ≡
R t

−∞
pg2

(x) dx.

If ∆t is sufficiently large, then g1(n) and g2(n) are approx-
imately independent. In the shared case, the probability
distributions are the same (assuming semi-stationarity), so
pg1

(x) = pg2
(x). Under the assumptions above we can write

the following expression for f in the shared branching point
scenario:

f(0) =
1

D

Z

t

P1(t)[1 − P1(t)]dt. (4)

In the unshared scenarios, defining d = d1 − d2:

f(d) =
1

2D

Z

t

[1 − P1(t)]P2(t − d) +

P1(t)[1 − P2(t − d)] dt. (5)

These expressions demonstrate that the probability of a

different ordering event is usually much larger in the un-
shared case compared to the shared case. Suppose that
g1(n) and g2(n) are zero-mean noises and are well concen-
trated (in the noise-free case they are point-mass (Dirac
delta) functions located at the origin). Then P1(t) and P2(t)
are approximately step functions, being near zero for t < 0
and close to 1 for t ≥ 0. If this is the case and the branching
point is shared, then f(0) ≈ 0, since the integrand of (4) is
zero except for a very small interval about the point t = 0.
In the unshared case, d 6= 0 and f(d) ≫ 0. To see this, note
that if 0 < t < d (or d < t < 0), then the integrand of (5) is
equal to 1 on a quite large interval (the size of the interval
depends on the difference d). Consequently the total inte-
gral f(d) is strictly greater than zero, and moreover f(d) is
a monotonically increasing function of d — the larger the
difference d, the more distinguishable are the shared and
unshared cases.

Note that the mechanism giving rise to g1(n) and g2(n)
is delay variations that occur between packets which are
closely spaced together. In general packet delays can vary
substantially (e.g. when a burst of traffic arrives at a given
queue along the path). However, for packets spaced closely
together the distribution tends to be much tighter. Thus,
in the shared scenario, variations in delay should rarely give
rise to erroneous different arrival order events.

3.4 Setting a Threshold
After N measurements have been performed, the number

of reverse-ordering events in the two receiver network test
is recorded as x1,2. Based on this value, a decision must
be made as to whether the branching point is shared or
not. This decision would be simpler to make if we knew
how many reverse-ordering events we could reasonably ex-
pect if the branching point were shared. We can obtain an
indication of this number using the following procedure. We
collect measurements in exactly the same manner as the two-
receiver measurement described above, except that all four

packets are sent to the same receiver. We are thus making
measurements across a Y -shaped topology. We perform N
measurements of this form to both receiver 1 and receiver 2
and record the number of reverse-ordering events as x1 and
x2, respectively.

If the branching point to the receivers is shared, then the
upper branches of the Y-topologies tested in these experi-
ments coincide with the paths to the common merging point.
In this case, the probability of reverse-ordering events should
be the same in all three experiments, i.e., x1, x2 and x1,2

are all drawn from the same binomial distribution. If the
branching point is not shared, then we expect x1,2 to be
drawn from a different binomial distribution than either x1

or x2, and moreover, the proportion parameter of the former
distribution should be significantly larger than for either of
the latter distributions.

The decision as to whether a branching point is shared or
unshared can now be formulated as a hypothesis test. Let
xa = max(x1, x2). Denote the proportion parameter of the
binomial from which this measurement was drawn pa, and
the proportion parameter of the binomial from which x1,2

was drawn p1,2. We want to test whether these parame-
ters are equivalent (the distributions are the same), so the
hypothesis test becomes:

H0 : p1,2 = pa

H1 : p1,2 > pa (6)

(7)

For reasonably large N , we can perform this test as a Z-test,
with:

Z =
dp1,2 − bpap

2bp(1 − bp)/N
. (8)

where dp1,2 = x1,2/N , bpa = xa/N and bp = (x1,2 + xa)/2N .
For reasonably large N, distributions can be approximated
as normal, and we can set a threshold for Z such that the
probability of declaring a branching point unshared when
it is in fact shared is equal to a specified level α. In our
experiments, we set α = 0.05.

3.5 Multiple Receiver Networks
Thus far, we have concentrated on describing the measure-

ment framework for a two-receiver network. In the two re-
ceiver network, each measurement consists of a pair of pack-
ets sent from each source. The first packet from each source
is destined for receiver 1, and the second for receiver 2, and
there is a spacing between them of ∆t. The framework for
an r-receiver network is the natural extension of this. For
each measurement, the two sources send a stream of r pack-
ets, with a spacing of ∆t between successive packets. The
i-th packet in this stream is destined for the i-th receiver.
Each such measurement provides

`
r

2

´
pairwise measurements

of the form described above, and counts of reverse-ordering
events are collected for each pair of receivers.

We perform the test described above for each pair of re-
ceivers to determine if there is only one branching point
for both sources. Let s(i, j) be a binary value, indicating
whether receivers i and j share a common branching point
from the two sources (0 indicating no, 1 indicating yes).
In the simple two-receiver network, if we determined that
the branching point was not shared, then it was impossible
to distinguish between the three unshared entry scenarios
of Figure 3(b)-(d). However, when we have multiple pair-

wise test results, an unshared test result can be useful infor-
mation when used in conjunction with another shared test
result. We apply the following simple logic algorithm to
combine the results of the multiple pairwise tests.

Merging Algorithm

Step 1 The s(i, j) = 1 results are used to place initial
bounds on the deepest points (points as close as pos-
sible to the receivers) at which the paths from A to i
and j can join with the paths from C.

Step 2 Cycle through the unshared cases, s(i, j) = 0, and
check whether or not the bounds determined in Step
1 imply more restrictive bounds on the depths for the
unshared joining points. Repeat this cycle until the
bounds do not change from one cycle to the next and
declare convergence.

The convergence of the algorithm is guaranteed, provided
that the test results do not provide conflicting evidence; see
below for a discussion on how such contradictions are re-
solved. The proof of convergence is very simple—bounds
can only be tightened, so no oscillation is possible. How-
ever, convergence of the algorithm does not mean that join-
ing points will be localized to a single logical link. In general,
the points at which the paths from source A join those of
source C may only be localized to within a certain sequence
of consecutive logical links in the source C tree topology.

We say that the two-source network is identifiable from
the measurements if each point at which a path from source
A joins a path from source C can be localized to a certain
logical link in the source C tree topology. Conditions for
identifiability are stated in the theorem below. The theo-
rem is rather technical and slightly difficult to state, but
the key point is that it demonstrates that there are many
situations (conditions on the s(i, j) indicator variables) in
which networks are identifiable. In fact, in our experimental
work described in detail in Section 4.1, the LAN we worked
with was identifiable. The conditions of the theorem do not
need to be checked explicitly in practice; one only needs to
apply the merging algorithm above, and if the network is
identifiable, then the algorithm will converge to the correct
network topology.

Before stating the theorem, we introduce some necessary
notation. Let R be the set of receivers, and let D(k) be the
descendant receivers of node k; R/D(k) is then the set of
receivers not including D(k). Let C be the label of the source
for which the (tree) topology is known. Let p(k) be the
parent of node k in this tree, and let P(i, j) be the path from
a node i to one of its descendants j in this tree. Let b(i, j)
denote the branching node of the paths from C to receivers i
and j. Finally, denote by bi the first encountered branching
point on P(C, i) for which there is a receiver j ∈ R with
b(i, j) = bi and s(i, j) = 1. If s(i, j) = 0 for all j ∈ R/{i},
then set bi = i.

Theorem 1. A two-source network is identifiable if and
only if for each receiver i ∈ R one of the two conditions
holds:

(i) p(bi) = C

(ii) there is a receiver j such that p(bi) = b(i, j) and bj ∈
P(C, p(bi)).

These conditions imply the requirement that there is at least
one bi with p(bi) = C.

Proof. Necessity: Suppose neither condition holds for
some receiver i. Specifically, there is a receiver i such that
p(bi) 6= C and that for all receivers j with b(i, j) = p(bi),
bj 6∈ P(C, p(bi)). This implies that s(i, j) = 0 for all such
receivers j. We are now left with two possibilities for the
entry point of the path to i. Either it can enter at or above
p(bi), in which case the paths to each receiver j must enter
below p(bi) and at or above bj , which is possible because bj 6∈
P(C, p(bi)). Alternatively, it can enter between p(bi) and
bi, in which case the path to receiver j can enter anywhere
above bj .

Sufficiency: If condition (i) holds, p(bi) = C, then the
path to i enters above the first branching point in the logical
tree so it is localized to a single link. If not, then condition
(ii) implies that there is a receiver j with b(i, j) = p(bi)
whose path enters at or above p(bi). Furthermore, s(i, j) is
false (since bi is below b(i, j)). This implies that the path to
i cannot enter above p(bi) (otherwise s(i, j) would be equal
to 1). Therefore, the path enters on the link from p(bi) to
bi. In this way, each entry from source A can be localized
to a single link in the tree of source C, and the network is
identifiable in the sense defined above.

A contradiction in test results will result in the algorithm
attempting to make the upper bound of one of the joining
points lower than the lower bound. We resolve these dif-
ferences firstly by a ‘majority vote’ to eliminate anomalous
test results. If there are equal numbers of conflicting results,
then the test results are ranked by confidence (determined
by Z statistics).

3.6 Extensions
The methodology and analysis presented in this paper

focused on the two-source topology identification problem.
Extensions to multiple source scenarios are straightforward.
Beginning with a single-source tree, a second source’s topo-
logical relationships are incorporated as described above.
The topologies of subsequent sources can be joined to this
topology, one source at a time. For each new source, the
probing and merging algorithms operate in a similar man-
ner as before, but in this case probing can be performed from
the new source and any one (or all) of the other sources in
the current topology. The sharedness indicators s(i, j) take
a non-zero value if the new source shares the i, j branch-
ing point with any one of the other sources, in which case
a value indicating which source shares the branch can be
assigned. The merging algorithm uses the sharedness indi-
cators as well as their non-zero values and employs a similar
cycling procedure to localize (as much as possible) the join-
ing points for the new source.

Theorem 1 gives conditions under which the acquired mea-
surements provide full identifiability. If these conditions are
not met, then certain joining points will only be localized
to within a sequence of two or more consecutive links. It
may be possible to employ a more informative probing of
the portion of the network in question that can help to fur-
ther resolve such cases. Additional information, reflective
of link bandwidths, can be gleaned by performing the pro-
cedure used to set the thresholds (Y -topology probing) but
making the second packet from source C consistently much

larger. When all the packets are the same size, the number of
reverse-ordering events can be used to estimate f(0). When
one packet is much larger, however, the number of reverse-
ordering events can be used to form an estimate of a metric
of the path from C to the joining point. This path metric is
the same as the path metric generated by the measurement
procedure used in the identification of single source topolo-
gies in [9] (it is reflective of the bandwidths of the links
on the path). The measurement framework in [9] can be
used to determine the path metric from the source C to any
branching point in the source C topology. By simply com-
paring the metrics of paths to branching and joining points,
the relative position of all entry points can be determined.
However, forming accurate estimates of the metrics can re-
quire intensive probing. For this reason, we envision that
these extended measurements could form a potential sec-
ondary step, utilized only after the application of the simple
and undemanding probing mechanism we have presented.

4. EXPERIMENTAL RESULTS
Our msprobe multiple-sender probing program implements

the techniques discussed above. There are two source com-
ponents and a receiver component. Source 1 sends UDP
packet probes to the receivers at a regular period. Source 2
controls the experiment and sends at the same period but
adds a uniform random offset to each sending time. The
receiver component simply tracks the order in which probes
arrive, and then sends the results back to source 2 when
the experiment has reached completion. Because the only
important metric is packet arrival order, no special timing
infrastructure is required. After the probes have been sent
the results are collected and processed at source 2. This
source also keeps track of the offset used for each trial. This
information can later be used, along with the outcome for
each trial, to adjust the bounds of the distribution from
which the offsets are chosen.

To explore the efficacy of our technique we have run ex-
periments in two very different networking environments.
The first is a departmental LAN. The second consists of
hosts located at academic and research institutions through-
out the United States and Europe. Each scenario presents
its own set of difficulties. In the LAN, the fixed delay dif-
ferences can be very small and RTTs are of the order of
hundreds of microseconds, so timing issues are important
and the decision-making component of the algorithm must
perform well. Cross-traffic in the LAN does not produce
such extreme delay variations as we observe in the Internet-
wide experiment. In the Internet experiment, fixed delay
differences are much larger, and RTTs of the order of tens
or hundreds of milliseconds, so timing and thresholds are
not so important. However, the delay variations are much
larger, inducing a larger noise effect due to cross-traffic.

4.1 LAN Experiment
The first set of experiments were run over a US Univer-

sity departmental LAN. For this experiment there were 16
receivers with IP addresses from two different subnets. Both
subnets reside over the same physical network, which con-
sists of a single layer-3 router and multiple layer-2 ethernet
switches. Figure 7 depicts the logical network connectiv-
ity of the LAN. The router is a Cisco model 6509MSFC2
and switches are 3Com SuperStack models 3300 and 1000.
Note that some of the switches that interconnect hosts are

store-and-forward switches and others are cut-through. Our
technique resolves shared paths regardless of the switching
technology implemented at joining or branching points.

C A

4 9321 5 6 87 10 11 12 13 161514

Figure 7: The true (and also discovered) logical
topology of the LAN network. The hollow inte-
rior circles represent switches or routers where the
paths from source C to different receivers branch
apart. The filled circles indicate the nodes (the join-
ing points) where the paths to a given receiver from
sources A and C merge. In this figure, they are
depicted as separate nodes, but our algorithm only
resolves the location of these nodes to a single logi-
cal link of the source-C topology. If a filled node is
positioned on a link in the source-C topology, then
the node must lie below the parent node of that link
but can either coincide with or lie above the child
node.

Each probe is 68 bytes, including payload, UDP, and IP
headers. We conservatively set spacing parameter ∆t to be
600 microseconds based on the assumption that the mini-
mum link bandwidth is 1Mbps. Using 600 microseconds for
the random offset bound D is sufficient to encompass the
range of possible delays for the short paths of the LAN.

In our experiments on this topology, all of the decisions
(shared or unshared branching points) were correct in the
sense that they agreed with the known logical connectivity.
The decisions were made using the methodology for setting
thresholds described in Section 3.4. Figure 8 graphically
depicts the results of one experiment. We correctly identify
the set of shared paths. In this case, the results are sufficient
to completely resolve (to the logical link level) where the
paths from source A to the receivers join those from source
C.

4.2 Internet Experiment
In order to explore algorithm performance in an environ-

ment very different from the LAN, we performed another
set of experiments using Internet hosts located in North
America and Europe. For these experiments there were 9 re-
ceiving hosts located at 5 different academic establishments.
The two sources were both situated in North America. Fig-
ure 9 shows the logical connectivity between sources and
receivers, identified using the traceroute program.

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Receiver 2 Index

R
ec

ei
ve

r
1

In
de

x

s s s

s s

s

s s s s s s s

s s s s s s

s s s s s

s s s s

s s s

s s

s

s

s
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

Figure 8: Results of the LAN experiment. The x-
and y-axes correspond to receivers as labelled in Fig-
ure 7. The shade of gray of the square at position
(i, j) indicates the observed ratio of different order-
ing events to total measurements for the receiver
pair (i, j). If the square at (i, j) is labelled with an
“s”, then the paths from the two sources to receivers
i and j share a common branching point in the true
topology. When the detection threshold is set to
1.00, the value determined by the procedure outlined
in Section 3.4, then all test decisions are correct.

The major network properties that affect parameter se-
lection for our technique are minimum link bandwidth and
maximum end-to-end delay. Because these properties differ
greatly between the LAN and Internet scenarios, software
parameters need to be adjusted accordingly. The same 68
byte UDP probes are used in either case. To account for a
potentially lower minimum link bandwidth we increase the
packet spacing parameter ∆t from 600 microseconds to 1
millisecond. Likewise, to adjust for the much larger range of
possible end-to-end delays the random offset is drawn from
a uniform distribution spanning 90 milliseconds.

In this experiment we are able to correctly identify pairs
of receivers with shared paths from the two sources, but not
completely resolve entry points. Figure 10 shows the results.
In the Internet experiments, the set of results is insufficient
to resolve the entry points of the paths from source A to a
single link. More receivers are required to produce a more
complete picture.

5. DISCUSSION AND CONCLUSIONS
We have presented a technique for identifying shared paths

from multiple senders to a receiver using only end-to-end
measurements. This information can then be used to merge
two single-source tree topologies. The framework we pro-
pose revolves around a randomized probing scheme, with
receivers only recording packet arrival order. Without the
need for precise timing measurements, our scheme is very
practical to implement. Through Internet and LAN experi-
ments we have demonstrated the versatility and robustness
of the technique.

The experiments we report involve a relatively small num-

A

987654321

C

Figure 9: True logical topology of the Internet ex-
periment testbed. Shared branching points only oc-
curred when both receivers were physically located
on the same campus, i.e. receiver pairs (1,2), (3,4),
(5,6) and (8,9). In this case the network topology
is not identifiable in the sense we defined above. In
this experiment, we cannot completely resolve the
entry points of the paths from A, but we do correctly
identify shared branching points.

ber of receiver hosts. Admittedly, techniques using only end-
to-end measurements do not scale well to large numbers of
receivers. For a network consisting of M sources and N re-
ceivers, traceroute-based techniques require O(MN) mea-
surements to be made (one for each source-receiver pair).
Using end-to-end multicast measurements, our technique

requires O

„„
M
2

«
N

«
measurements. Thus, there is a

tradeoff between relying on special purpose responses from
internal network elements and using end-to-end techniques
which require more measurements. However, in situations
where the network does not facilitate the use of traceroute-
based techniques, an algorithm using end-to-end measure-
ments to infer the logical topology may be better than noth-
ing at all. Additionally, while it may not be practical to
only make measurements to pairs of receivers at a time
for large numbers of receivers, we believe this work offers
an important incite as to how algorithms based on end-to-
end measurements, such as our multiple source algorithm,
can potentially be used to fill in where other measurement
methodologies leave off.

In future work, we will explore the development of mul-
tiple source probing methods aimed at characterizing net-
work topology and performance. We also plan to investi-
gate the extent to which measurements made from multiple
sources can be used to infer topology without knowledge of
any single-source tree topologies.

6. REFERENCES
[1] Skitter.

http://www.caida.org/tools/measurement/skitter.

[2] traceroute. http://www.traceroute.org.

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Receiver 2 Index

R
ec

ei
ve

r
1

In
de

x

s

s

s

s

2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

Figure 10: Results of an Internet experiment. Note
that in comparison to the LAN experiment, the ratio
reverse-orderings spans a much greater range. This
can be attributed to two factors: (1) the fixed delay
differences d1 and d2 are much larger in the Internet
and (2) the range of end-to-end delays experienced
by packets on the Internet is much larger than in a
LAN.

[3] P. Barford, A. Bestavros, J. Byers, and M. Crovella.
On the marginal utility of network topology
measurements. In Proc. IEEE/ACM SIGCOMM
Internet Measurement Workshop, San Francisco, CA,
Nov. 2001.

[4] A. Bestavros, J. Byers, and K. Harfoush. Inference
and labeling of metric-induced network topologies.
Technical Report BUCS-2001-010, Computer Science
Department, Boston University, June 2001.

[5] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi,
S. Seshadri, and A. Silberschatz. Topology discovery
in heterogeneous ip networks. In Proc. IEEE
INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.

[6] T. Bu, N. Duffield, F. L. Presti, and D. Towsley.
Network tomography on general topologies. In Proc.
ACM Sigmetrics, Marina Del Rey, CA, Jun. 2002.

[7] H. Burch and B. Cheswick. Mapping the Internet.
IEEE Computer, 32(4):97–98, 1999.

[8] R. Castro, M. Coates, and R. Nowak. Maximum
likelihood identification of network topology from
end-to-end measurements. In DIMACS Workshop on
Internet and WWW Measurement, Mapping and
Modeling, Piscataway, NJ, Feb. 2002. Extended
version available as Rice University ECE Tech. Rep.
TR-0109, www.spin.rice.edu/publications.html.

[9] M. Coates, R. Castro, M. Gadhiok, R. King,
Y. Tsang, and R. Nowak. Maximum likelihood
network topology identification from edge-based
unicast measurements. In Proc. ACM Sigmetrics,
Marina Del Rey, CA, Jun. 2002.

[10] N. Duffield, J. Horowitz, and F. L. Presti. Adaptive
multicast topology inference. In Proceedings of IEEE
INFOCOM 2001, Anchorage, Alaska, April 2001.

[11] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley.
Multicast topology inference from end-to-end
measurements. In ITC Seminar on IP Traffic,
Measurement and Modelling, Monterey, CA, Sep. 2000.

[12] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley.
Multicast topology inference from measured
end-to-end loss. IEEE Trans. Info. Theory,
48(1):26–45, January 2002.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM, 1999.

[14] R. Govindan and H. Tangmunarunkit. Heuristics for
Internet map discovery. In Proc. IEEE INFOCOM
2000, Tel Aviv, Israel, Mar. 2000.

[15] A. Lakhina, J. Byers, M. Crovella, and P. Xie.
Sampling bases in ip topology measurements. In
Proceedings of IEEE Infocom 2003, San Francisco,
CA, April 2003.

[16] B. Lowekamp, D. O’Hallaron, and T. Gross. Topology
discovery for large ethernet networks. In Proc. ACM
SIGCOMM 2001, San Diego, CA, Aug. 2001.

[17] A. Pásztor and D. Veitch. A precision infrastructure
for active probing. In Proc. Workshop on Passive and
Active Newtorking, Amsterdam, Apr. 2001.

[18] S. Ratnasamy and S. McCanne. Inference of multicast
routing trees and bottleneck bandwidths using
end-to-end measurements. In Proceedings of IEEE
INFOCOM 1999, New York, NY, March 1999.

[19] N. Spring, R. Mahajan, and D. Wetherall. Measuring
isp topologies with rocketfuel. In Proceedings of
ACM/SIGCOMM ’02, Aug. 2002.

