
NIPS'98 Workshop : Abstraction and Hierarchy in Reinforcement Learning, Breckenridge, CO. c1998 LPR
Learning Robot Control -Using Control Policies as Abstract Actions�Manfred Huber and Roderic A. GrupenDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003Autonomous robot systems operating in an uncertain environment have to be ableto cope with new situations and task requirements. Important properties of thecontrol architecture of such systems are thus that it is reactive, allows for exibleresponses to novel situations, and that it adapts to longer lasting changes in theenvironment or the task requirements. In the extreme case, this learning has tooccur without the direct inuence of an outside teacher, making the reinforcementlearning paradigm an attractive option since it allows to learn sequences of behaviorfrom simple reinforcement signals [1, 17]. However, while these techniques havebeen applied to simple robot systems and in simulation[2, 5, 7, 10, 11, 12, 6], thecomplexity of the primitive action and state spaces of most robots leads to a needfor large amounts of experiences to learn a given task, thus rendering these methodsimpracticable for on-line learning on such systems. Furthermore, most such learningsystems do not provide a means for introducing a priori knowledge, thus permittingthe occurrence of catastrophic failures which is often not permissible in real worldsystems which have to learn new tasks in a single trial. To address these issues, thecontrol architecture presented here uses more abstract actions which allow to de�nethe system as a Discrete Event Dynamic System (DEDS) on an abstract, discretestate space, within which a policy for the given task is learned. To illustrate this,the architecture has been applied to walking tasks on a four-legged walking robot.The use of abstract actions within the reinforcement learning framework[14]promises to make it possible to address more complex tasks and platforms. Muchof this promise stems from the possibility to treat the resulting system as an eventdriven system rather than a clock driven one, reducing the set of points at whichthe learning agent has to consider a new action to the times when certain controlor sensor events happen. While this allows for optimal decision points to be missedif the corresponding sensor signals lie outside the scope of the current set of controland sensor alternatives, it also leads to a focus of attention and can dramatically� This work was supported by NSF IRI-9503687, IRI-9704530, and CDA-9703217

reduce the amount of exploratory experience required to learn a good policy. An-other strength of abstract actions is their potential to bridge hidden state, allowingcertain aspects of the state to be ignored, and thus permitting policies to be learnedin a smaller, more abstract state space.The abstract actions used in the approach presented here are stable and convergentclosed-loop control policies. This implies that they divide the underlying physicalspace into a set of stable regions within which they drive the robot system towardsan attractor. This attractor, in turn, can be characterized abstractly by means ofpredicates indicating the achievement of the functional goals of the associated ab-stract actions. If abstract actions are executed until convergence, the behavior of thesystem can largely be described by these attractors, which therefore allow to trans-form the underlying continuous space into a set of discrete system equilibria. Usingthe convergence of abstract actions as control events, the behavior of the systemcan thus be modeled approximately as a hybrid DEDS with a discrete state spacecorresponding to the convergence predicates of the abstract actions. While thisstate abstraction might produce hidden state, its action dependent choice shouldensures that the discrete space encompasses all tasks directly addressable by theunderlying abstract actions. This DEDS then forms the basic substrate for thereinforcement learning problem and, through the formal techniques available in theDEDS framework[15, 8] and local models of the behavior of the individual abstractactions, allows constraints to be imposed a priori in order to limit exploration tosafe and relevant control alternatives. Control alternatives available to the DEDSand learning systems are thereby the abstract actions, as well as the hierarchical,concurrent activation of multiple of these abstract actions using the \subject to"(\�") constraint. This constraint prioritizes the control actions such that a lowerpriority action can not counteract the progress of a higher priority one and thusensures that the stability and convergence properties of the original abstract actionsare inherited by the composite actions. Using this, the learning component learnsa control policy which optimizes the given reinforcement, as well as an improvedabstract system model in terms of the transition probabilities within the DEDSmodel. This overall architecture is shown in Figure 1.As shown in this �gure, all direct sensory input and actuator output in this approachis handled by the abstract actions in the bottom layer. Activation and convergenceof these individual or composite actions are then interpreted as discrete events inthe abstract DEDS model of possible system behavior which forms the basis for thereinforcement learning system. A priori constraints imposed on this model can beused to limit the range of possible actions to keep the system within a safe mode ofoperation, as well as to implement temporally varying \maturational" constraints toimprove learning performance. In addition to this, this structure also promises thepossibility of hierarchical action spaces since learned control policies, together withthe corresponding predicate space models, could be included as abstract actionsinto the learning process. While this leads to an increase in the size of the potentialaction space and thus implies that methods have to be found which e�ectively selectactions that are relevant for the task at hand, it could also dramatically increasethe e�ciency of the learning system for more complex tasks and would also resultin the introduction of more abstract predicates and state descriptions.To illustrate this learning and control architecture, the following shows an exampleof the overall architecture applied to a four-legged walking robot, where a turning

Learning Component

State Information Control Policy

Symbolic
Events

Control
Activation

Physical
Sensors

 Physical
Actuators

G

G

G G

G

DEDS Supervisor

 (s)φConstraints

Reinforcement

Control
Structure

 Abstract Control Actions /
 Event Generators

Figure 1: The Control Architecturegait is learned on-line in a single trial. Locomotion gaits are formed here as se-quences of concurrent activations of a set of feedback controllers and representedas nondeterministic �nite state machines. The set of feedback controllers, whichrepresents the abstract actions used at the bottom layer of the architecture, is hereformed using a control basis approach. In this approach controllers are establishedby attaching a set of input resources (sensor abstractions) and output resources(abstract actuators) to a control law which addresses a generic control objective.In the case of the locomotion tasks, three control laws are used:�0: Con�guration space motion control - a harmonic function path controlleris used to generate collision-free motion of the robot in con�guration space[4].�1: Contact con�guration control - contact controllers locally optimize thestability of the foot pattern based on the local terrain[3].�2: Kinematic conditioning control - a kinematic conditioning controller lo-cally optimizes the posture of the legs.Each of these control laws �i can be bound on-line to input resources � and outputresources � derived as subsets of the system resources (legs 0; 1; 2; 3 and positionand orientation x; y; ') of the four-legged robot illustrated in Figures 2 and 3.
Figure 2: Walking Robot

Input / Output Resources :

1
Contact Controller

2
Posture Controller

0
Path ControllerΦ −

Φ −
Φ −

Control Basis :

1

0

2

3

x

yϕFigure 3: Controller and Resource Notation

The resulting feedback controllers �i �� can be activated concurrently under the\subject to" (\�") constraint. The composite controller �2 0;1;2;3' � �1 0;1;20 , forexample, attempts to achieve a stable stance on legs 0, 1, and 2 by moving leg 0 withthe dominant controller while the subordinate controller optimizes the kinematicposture of all four legs within the \nullspace" of �1 by rotating the body. For theexample presented here, the set of possible controllers was limited in order to allowfor a concise notation for the predicate space model. The set of abstract actionsavailable to the system consists here of all instances of the contact con�gurationcontroller of the form �1 a;b;ca , where a; b; c 2 f0; 1; 2; 3g, a 6= b 6= c 6= a are three legsof the robot, and one instance of the kinematic conditioning controller, �2 0;1;2;3' .Using this set of 13 abstract actions, the \�" constraint can be used to construct atotal of 157 actions available to the DEDS and learning components. In addition,this choice of abstract actions limits the set of convergence predicates to 5 elements(p1; p2; p3; p4; p5) since multiple abstract actions have identical control objectivesand their predicates can thus be combined. The 5 predicates correspond to theconvergence of abstract actions in the following way:p1 �1 1;2;3� ; p2 �1 0;2;3� ; p3 �1 0;1;3� ; p4 �1 0;1;2� ; p5 �2 0;1;2;3� ;where � is a wildcard and indicates the independence of the predicate evaluationfrom the output resource. These predicates, together with initial, abstract modelsof the behavior of the abstract actions, form then the basis of the DEDS systemwhich represents the space of all possible system behavior. The DEDS frameworkallows then to impose a quasistatic walking constraint of the form p1 _ p2 _ p3 _ p4(at least one stance has to be stable at all times) to determine the set of admissibleactions in each of the abstract predicate states.To address new tasks, Q-learning[17] is used here to acquire a control policy fora given reinforcement signal on top of the constrained DEDS model. This schemeallows the acquisition of control policies even if their objective is not representedas a state in the underlying state space, and thus permits cyclic policies. In theexperiment presented here an immediate reinforcement proportional to the rota-tional progress, rt = 't � 't�1, is used to acquire a counterclockwise rotation gait.The safety constraint imposed in the DEDS layer allows thereby to simply start therobot in an arbitrary con�guration on a at surface and to learn the policy on-linein a single trial. A characteristic learning curve for this task is shown in Figure 4.
0 1000

0

0.1

0.2

0.3

0.4

Control Steps

ra
d/

St
ep

1200 1400 16001000

0

0.1

0.2

0.3

0.4

Control StepsFigure 4: Learning Curve for Counterclockwise Rotation Task (left) and Perfor-mance of the Learned Policy without Exploration (right)This graph, in which a control step indicates one controller activation, i.e. one tran-sition in the DEDS model, shows that the robot rapidly acquires a good policy. The

complete learning task executes on the real platform in approximately 11 minutes.At the same time that such a policy is learned, the exploration can also be usedto estimate transition probabilities between predicate states and thus to improvethe abstract model of the system behavior. Such a model can be useful for o�-linelearning[16, 13], as well as to allow the transfer of the learned control policies into thespace of abstract actions. Figure 5 shows the learned policy and the correspondingsystem model.
1 1 0 0 0

0 1 1 0 1

1 0 0 1 1

0 0 1 1 0

1 1 0 0 1

0 1 1 0 0

1 0 0 1 0

0 0 1 1 1

1 0 0 0 0 0 1 0 0 0 0 1 0 0 1

0 0 1 0 0

0 0 1 0 1

1 0 0 0 1

0 0 0 1 00 0 0 1 1

Φ1

Φ2

Φ3

Φ4

Φ = 1

1, 2, 3

1 1φ
0, 1, 2, 3

2φ ϕ
0, 1, 3

1 1φ

Φ = 2

0, 1, 2, 3

2φ ϕ
0, 1, 2

1 2φ

Φ = 3

0, 1, 2, 3

2φ ϕ
1, 2, 3

1 3φ

Φ = 4

0, 2, 3

1φ 0

1, 2, 3

1 2φ

0, 1, 2, 3

2φ ϕ

Figure 5: Learned Rotation GaitHere the numbers in the states represent the values of the 5 predicates, the controllerde�nitions on the right indicate the learned policy for the core of the turning gait,and the width of the transitions indicates the acquired transition probabilities, withbold arrows for the central gait cycle indicating probabilities greater than 98%. Theexecution of this central cycle on the real robot is also depicted in Figure 6.
00110 10010 11000 01100

3 4 1 2Φ Φ Φ ΦFigure 6: The Robot Executing the Central Gait Cycle of the Learned Policy (top)and the Corresponding Predicate State Transitions (bottom)This and other locomotion experiments performed using this control architecture[9]show that the use of abstract actions together with a DEDS layer which allows toincorporate certain types of a priori knowledge into the system and permits actiondependent state abstraction, represents a feasible approach to perform reinforce-ment learning for more complex tasks on-line on real robots.

References[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-timedynamic programming. Technical Report 93-02, University of Massachusetts,Amherst, MA, 1993.[2] A. G. Barto, R. S. Sutton, and C. Anderson. Neuronlike adaptive elements thatcan solve di�cult learning control problems. IEEE Trans. Syst. Man Cyber.,13(5):834{846, 1983.[3] J. A. Coelho Jr. and R. A. Grupen. A control basis for learning multi�ngeredgrasps. J. Robotic Sys., 14(7):545{557, October 1997.[4] C. I. Connolly and R. A. Grupen. The applications of harmonic functions torobotics. J. Robotic Sys., 10(7):931{946, October 1993.[5] R. H. Crites and A. G. Barto. Improving elevator performance using reinforce-ment learning. In NIPS 8. Morgan Kaufmann, 1995.[6] J. del R. Mill�an. Rapid, safe, and incremental learning of navigation strategies.IEEE Trans. Syst. Man Cyber., 26(3):408{420, 1996.[7] V. Gullapalli. Reinforcement Learning and its Application to Control. PhDthesis, University of Massachusetts, Amherst, MA, 1982.[8] M. Huber and R. A. Grupen. A hybrid discrete event dynamic systems ap-proach to robot control. Technical Report 96-43, CMPSCI Dept., Univ. ofMass., Amherst, October 1996.[9] M. Huber and R. A. Grupen. A control structure for learning locomotion gaits.In Seventh International Symposium on Robotic and Applications, Anchorage,AK, May 1998. TSI Press.[10] L.-J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhDthesis, Carnegie Mellon University, Pittsburgh, PA, January 1993.[11] S. Mahadevan and J. Connell. Automatic programming of behavior-basedrobots using reinforcement learning. Arti�cial Intelligence, 55:311{365, 1992.[12] M. J. Matari�c. Reinforcement learning in the multi-robot domain. AutonomousRobots, 4(1):73{83, 1997.[13] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learningwith less data and less real time. Machine Learning, 13, 1993.[14] D. Precup and R. S. Sutton. Multi-time models for temporally abstract plan-ning. In NIPS 10, pages 1050{1056, Denver, CO, December 1997. MIT Press.[15] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.Proceedings of the IEEE, 77(1):81{97, January 1989.[16] R. S. Sutton. First results with Dyna, an integrated architecture for learning,planning and reacting. In W. T. Miller III, R. S. Sutton, and P. J. Werbos,editors, Neural Networks for Control, pages 179{189. MIT Press, 1990.[17] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, CambridgeUniversity, Cambridge, England, 1989.

