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ABSTRACT

We address the problem of detecting rear-view (obstacle free)
ground surface using a vehicle production camera. This task
is considerably more challenging than general front-view road
detection, as the associated challenges widely range from low
picture quality, fisheye distortion and large objects, to the ab-
sence of useful priors such as vanishing points and road struc-
ture. Regarding the challenges, we propose a feature that can
simultaneously capture local appearance and context infor-
mation. In addition, the task suffers from strong appearance
variations such as shadows and ground markers. Therefore,
we propose a novel conditional random field (CRF) model
which includes hidden states indicating confident nodes and
propagate their confidence to neighboring nodes. We show
that our proposed feature and model can jointly achieve ro-
bustness against large objects and shadows/markers, showing
excellent detection performance under low quality inputs.

Index Terms— ground surface detection, CRF, semantic
segmentation, confidence propagation

1 Introduction
Ground surface detection refers to automatically finding ob-
stacle free ground locations in an image. It can benefit future
autonomous vehicles and many other intelligent transporta-
tion systems. In the past, considerable effort has been made
to address the dual problem: road detection [1–4, 16, 24, 25].
However, past works mostly concentrated on front-view
structured roads. Few addressed rear-view general ground
surface detection, where useful priors such as vanishing
points and road structure may not be available. Unlike front-
view, pedestrians and other vehicles show up in proximi-
ty much more frequently, appearing as large objects. The
increased object size further enhances difficulty as image
patches from which features are extracted can hardly cover
the entire object. The relatively invariant global information
therefore becomes less available and classifications are less
discriminative. Examples corresponding to these cases are
respectively shown in the left and middle columns of Fig. 1.

Another challenge is the misclassification caused by
strong shadows and ground markers (See the right column
of Fig.1). They look like objects as sharp boundaries gener-

Fig. 1. Differences between regular front-view (left) and our
rear-view scenarios (middle), and false classifications (right).
The blue curve indicates pre-defined region of interest (ROI).

ate large responses to feature extractors. One could observe
from the examples that such error often occurs at these bound-
aries. Consequently, a non-robust detection system is likely
to exhibit many false alarms in the real world environment.

Other challenges include the poor picture quality and fish-
eye distortion. Unlike systems that require high quality sen-
sor inputs (high resolution, vivid saturation and even stereo /
depth information), we want our algorithm to be practical e-
nough for the most common sensor: production camera. The
method must also be real time to retain its practical value.

The major contributions in this paper are: 1. We propose
a feature which jointly captures local appearance and larger-
scale context information. 2. We treat coupled superpixels
across strongly textured boundaries as mid-level discrimina-
tive CRF nodes. 3. We propose a novel hidden state CR-
F model that can smartly incorporate these discriminative n-
odes and propagate their label confidence to uncertain nodes.
4. We show our algorithm obtains excellent results with low
quality inputs, and can be real-time on general CPUs.

2 Related works
Many past works concentrated on parsing pixel labels with
Graphical models [4, 11–15, 26]. Yet their implementation-
s are not possible in real-time1 on a regular CPU. Some can
even be very slow. Predictions of road labels can be subop-

1by “real time” we mean around or more than 10 frames per second



timal due to over-fittings that bias towards other categories.
Both nearby large objects as well as strong shadows can also
cause problems on the detection accuracy.

CRF [29] may be one of the most widely used models
for image labeling [10, 30]. Suppose X denotes the set of
observed pixels, Y the hidden labels of CRF nodes. The joint
posterior probability of Y conditioned on X is factorized as:

P (Y|X) =
1

Z(X)

∏
i

ϕi(Yi,X)
∏
ij

ψij(Yi, Yj ,X), (1)

and the inference problem is to discriminatively find the label
configuration that maximizes the posterior probability:

y = argmax
Y

P (Y|X), (2)

where i indexes the CRF nodes corresponding to pixels / su-
perpixels and j ∈ N(i) indexes nodes neighboring to i. ϕi
and ψij are potential functions satisfying ϕi, ψij > 0. Z(X)
is the normalization term retaining a probabilistic meaning.

To handle shadows, most works try to compensate shad-
ows with color space properties [5–7] and edge detection [8]
[9]. The drawback are: 1. They often rely on ill-conditioned
modeling of physical properties of light and cameras. 2. The
post-processing can be time consuming2. 3. The illumina-
tion invariant space may lose discriminative information. We
show that with the hidden state CRF model, one can bypass
the difficult process of deliberately removing shadows.

3 Proposed Feature and Unary Classification
The algorithm is shown in Fig. 2. We first discuss the pro-
posed feature and the unary (superpixel-wise) classification.

Fig. 2. An illustration of our proposed algorithm flow.

3.1 Superpixelization

We adopt SLIC [17] and extract features from superpixels.
Compared with pixel, region provides better semantic infor-
mation [18, 19] and greatly reduces complexity [20–23].

2Take [7] for example. Although the proposed work is linear with the
number of pixels, it still requires 0.5s processing time for a 300×400 image.

3.2 Appearance Feature

We model the appearance features using filter banks consist-
ing Gaussians, derivative of Gaussians (DoG) and Laplacian
of Gaussians (LoG) at different scales3.

The appearance feature of each superpixel is then taken
as the mean of filter responses within this superpixel. Such
feature is highly suitable for modeling ground appearance be-
cause it accurately captures both the local color and granular
textures at different scales.

3.3 Shape and Contextual Feature

Filter banks alone are not able to cover all types of objects.
Due to the low picture quality, large objects often show rela-
tively smooth internal regions similar to ground surface. We
need another robust feature to complement filter banks and
reject false positives by using more context information.

We extract HOG features [31] from patches centered at
the centroid of superpixels. The patches are larger than su-
perpixels to capture more contextual information. In addi-
tion, HOG is especially robust and effective for the low qual-
ity camera. A HOG spatial pyramid feature is constructed
by concatenating the HOG features from co-located patches
with different sizes4. The final feature is a concatenation of
the HOG pyramid and the mean filter bank response.

3.4 Incremental SVM Training

We divide the superpixel features into several subsets and in-
crementally train an RBF kernel SVM on each subset. Essen-
tially, this is a process of mining hard examples.

4 CRF with Confidence Propagation
We propose a novel CRF model which includes additional
hidden states α to indicate confident unary potentials5. A
graphical representation of our model is shown in Fig. 3. Ac-
cordingly, we model the joint posterior probability as:

Fig. 3. Graphical representation of conventional CRF model
(left) and our proposed hidden state CRF model (right).

3We model the filters with different parameters (σ) generated on top of
different scales. The corresponding scales we consider are

√
2
s

where scale
s ranges from 1 to 3. Under each scale, we generate the gaussian parameters
as: σ = s ∗ 2k, k ∈ {0, 1, 2}; DoG parameters as: σ = s ∗ 2k, k ∈ {1, 2}
and LoG parameters as: σ = s ∗ 2k, k ∈ {0, 1, 2, 3}.

4A 51×51 and two 101×101 patches are considered at each superpixel
location. The first patch is divided into 2 × 2 cells while the latter two are
divided into 3× 3 and 4× 4 cells.

5αi ∈ {0, 1}, αi = 1 indicates that the state of node i is confiden-
t. Intuitively, the hidden states of mid-level discriminative superpixels are
confident. We will elaborate on how to find these superpixels in Section 4.4.



P (Y, α|X)

=
1

Z(X)

∏
i

Φi(Yi, αi,X)
∏
ij

ψij(Yi, Yj , αi,X)
(3)

where the unary potential and normalization are defined as:

Φi(Yi, αi,X) = ϕi(Yi, αi,X)δi(Yi, αi)φi(αi,X) (4)

Z(X) =
∑
Y,α

∏
i

Φi(Yi, αi,X)
∏
ij

ψij(Yi, Yj , αi,X) (5)

Conventional CRF models often fail upon shadow / mark-
er boundaries because the contrast sensitive Potts model
(pairwise potentials) is only good for modeling relatively
smooth objects and label can not be correctly propagated
across strong edges (See Fig. 1). This requires us turn to
more powerful unary classification schemes to compensate
the discrimination ability, as intuitively classification works
better than smoothness priors in textured regions. The intro-
duced hidden states serve exactly for this purpose.

4.1 Unary potential modelling

In CRF, the unary potential Φi(Yi, αi,X) can be regarded as a
measure of how likely node i will take on label Yi and hidden
state αi given the observed image X. Let f(.) denote the
function that maps an arbitrary patch to a feature vector:

f : W(X) 7→ Rd, (6)

where W(X) = {W1(X), ...,WN (X)} corresponds to su-
perpixels and co-located HOG patches. We model the com-
ponents of the unary potential Φ as follows:

ϕi(Yi, αi,X) = exp(P (Yi|f(Wi(X))))1−αi

δi(Yi, αi) = exp(−S1(Yi, αi))

φi(αi,X) = exp(−S2(αi, f
′(W ′

i (X))))

(7)

where P (Yi|f(Wi(X))) can be the output of any discrimina-
tive classifiers for superpixel-wise classification, which corre-
sponds to the score of our RBF kernel SVM. Let Yi = 1 indi-
cate that the ground label is true, S1(Yi, αi) is a step function
which heavily penalizes discrepancies between Yi and αi:

S1(Yi, αi) =

{
∞ if Yi = 0, αi = 1

0 Otherwise
(8)

S2(αi,W
′
i (X)) is also a step function depends on the hypoth-

esis output of the mid-level discriminative node detector:

S2(αi, f
′(W ′

i (X))) =

{
∞ if αi ̸= H(f ′(W ′

i (X)))

0 Otherwise
(9)

4.2 Pairwise potential modelling

Instead of using the famous contrast sensitive Potts model
[28], we propose the relative contrast sensitive Potts model
which is more adaptive to local image content:

ψij(Yi, Yj , αi,X) = exp(−γ(µij [Yi ̸= Yj ])
1−αi , (10)

where µij models the coupling strength between two nodes:

µij =
1/(||fi − fj ||2 + λ||pi − pj ||2)∑

k∈Ni
1/(||fi − fk||2 + λ||pi − pk||2)

, (11)

and pi denotes the image plane location of the superpixel cen-
troid. fi , f(Wsupi(X)) is the mean filter bank response
of suerpixel (node) i. λ is the parameter which decides the
weight of spatial information and is empirically set to 0.5.

4.3 Inference
We use iterated conditional modes (ICM) to greedily infer the
approximate label configuration which maximizes the poste-
rior probability. Taking the log of P (Y, α|X), we have:

log(P (Y, α|X)) ∝
∑
i

((1− αi)Pi − S1,i − S2,i)

+ γ
∑
i

∑
j

(1− αi)µij [Yi ̸= Yj ].
(12)

One can infer the labels with a two-step maximization. The
first step is to independently maximize with respect to αi, ∀i:

αi = argmax
αi

log(P (Y, α|X)) = argmax
αi

∑
i

−S2,i (13)

Note that we simplify the maximization action to maxi-
mizing

∑
i −S2,i because this is the only way to avoid minus

infinity. The second step is to iteratively and independently
maximize with respect to each label configuration Yi, ∀i:

Yi = 1 if αi = 1

Y
(k+1)
i = argmax

Yi

∑
i

αiPi

+ γ
∑
i

∑
j

(1− αi)µij [Yi ̸= Y
(k)
j ]

if αi = 0
(14)

4.4 Hidden state via shadow/marker edge detection

Ground shadow edges are good discriminative mid-level cues
that can generate trustable unary predictions. We can incorpo-
rate them into our hidden state CRF and improve the labeling
result significantly with limited additional computation cost.

A single superpixel can be much less discriminative than a
coupled superpixel pair across shadow edge since the latter is
relatively texture-rich. Therefore we treat the coupled ground
superpixels along a shadow edge as confident nodes in the
CRF. We find out all such couplets and simply concatenate
their filter bank features.6 We then train an RBF kernel SVM
to detect such couplets in a test image. The detection setup
for ground markers is exactly same. Here, the SVM for cou-
plet detection corresponds to the hypothesis H(f ′(W ′

i (X)))
in Eq. (9). The hidden states αi, αj of any detected couplet
(i, j) will be set as confident, based on the first step of our
inference. And because we are very confident that the fired
couplets are ground surfaces,7 the labels Yi of such couplets
will be fixed as positive in inference. (See Eq. (14).)

6There is a fixed order for couplets, i.e., always choose the shadowed
ground superpixel as the first one in feature concatenation.

7By definition both coupled superpixels in true couplets must be ground.



5 Experiment
We conduct ground surface detection experiments on self col-
lected production camera data. The Alpine HCE-C115 analog
rear-view camera is used to collect videos.

Fig. 4 gives examples of our collected dataset and the
pre-defined ROIs. We labeled over 1500 images in which 593
images are training set while the rest are generated from two
different sequences. One is mildly shadowed and the other is
more challenging with both large objects and strong shadows.

Fig. 4. Some examples of the dataset and ROIs.

Fig. 5 illustrates some of the intermediate results of de-
tected coupled shadow edge superpixels. One could see that
such method works exactly as expected.

Fig. 5. Illustration of shadow edge detection using coupled
cross-boundary superpixels.

We compare our feature extraction method with the Gabor
filter bank used in [2] on images containing nearby object-
s. We use exactly the same feature extraction scheme as [2]
except the perspective rectangular patches are replaced with
superpixels. Fig. 6 illustrates superpixel-wise classifications.

Fig. 6. Qualitative comparison between [2] (top) and the pro-
posed (bottom) method on features.

Experiment shows our method generates much better re-
sults than Gabor filters used in [2] under low quality images.
The method used in [2] gives a lot of false positives in rela-
tively smooth regions of nearby objects. Our feature on aver-
age gives 88.7% of accuracy while [2] only gives 74.4%8.

On the mildly shadowed sequence the estimated accuracy
of our complete method reaches over 90% for all ROIs. Some

8These are the results of basic unary (superpixel-wise) classification.

qualitative results are shown in Column 1 and 2 of Fig. 7 and
a complete video is available at [32]. The final labeling ac-
curacy is listed in Table 1. Intuitively, one is more interested
in the detection accuracy of nearby ground surface than the
accuracy of distant ground. In this experiment, as the region
of interest gets closer, the detection accuracy increases.

Fig. 7. Some qualitative results on the two test sequences.

Table 1. Accuracy on mildly shadowed sequence.
ROI1 ROI2 ROI3

Accuracy 93.77% 94.83% 95.26%

We finally conduct experiments on the more challenging
video sequence. We use our feature with conventional CRF
as the baseline. Fig. 7 shows the results of the CRF baseline
(Column 3 and 5) and the hidden state CRF (Column 4 and
6). Kindly refer to [33] for the complete video result. Our
method is able to overcome the shadow / marker problem and
correctly propagates ground label into shadowed regions. The
method is also very robust to large objects, by correctly dis-
tinguishing them as non clear path. In addition to baseline we
also compare to [2] and [6]. Quantitative results are listed in
Table 2, showing better performance of our method.

Table 2. Accuracy on strongly shadowed sequence.
Accuracy ROI1 ROI2 ROI3

CRF Baseline 89.03% 91.01% 91.52%
Hidden State CRF 92.92% 94.15% 94.54%

Method of [2] 84.01% 84.42% 85.30%
Method of [6] 87.17% 87.91% 89.39%

6 Conclusions
We proposed a novel hidden state CRF model and used this
model for ground surface detection. The method generates
good clear path detection results under low image quality
while being robust to large objects and strong shadows. A
real-time implementation of this work has also been done in
C++ which processes nearly 10 frames per second on an i7
3940XM CPU, showing great practical value of this method.
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