
Multi-Modal 2D and 3D Biometrics for Face Recognition

Kyong I. Chang Kevin W. Bowyer Patrick J. Flynn

Computer Science & Engineering Department
University of Notre Dame
Notre Dame, IN 46556

{kchang,kwb,flynn}@cse.nd.edu

Abstract
Results are presented for the largest experimental study to
date that investigates the comparison and combination of
2D and 3D face data for biometric recognition. To our
knowledge, this is also the only such study to incorporate
significant time lapse between gallery and probe image ac-
quisition. Recognition results are presented for gallery and
probe datasets of 166 subjects imaged in both 2D and 3D,
with six to thirteen weeks time lapse between gallery and
probe images of a given subject. Using a PCA-based ap-
proach tuned separately for 2D and for 3D, we find no sta-
tistically significant difference between the rank-one recog-
nition rates of 83.1% for 2D and 83.7% for 3D. Using a
certainty-weighted sum-of-distance approach to combining
2D and 3D, we find a multi-modal rank-one recognition rate
of 92.8%, which is statistically significantly greater than ei-
ther 2D or 3D alone.

1. Introduction
The identification of the human face in 2D has been investi-
gated by many researchers, but relatively few 3D face iden-
tification studies have been reported. Each imaging modal-
ity has its own benefits and problems in the task of human
face recognition. 2D images are generally easier and less
expensive to acquire. The perceived benefits from using 3D
relative to 2D data include less variation observed due to
factors such as makeup and less sensitivity to illumination
changes. According to a recent literature survey [1], there
are two main strategies in 2D face recognition, statistical
approach and neural network approach based on facial fea-
tures [2, 3]. One of the main motivations of 3D face recog-
nition is to overcome the problems in general 2D recogni-
tion methods resulting from the illumination changes, ex-
pression or pose variations. There are 3D face recognition
methods proposed by several studies [4, 5, 6, 7, 8].
This study deals with face recognition using multiple

sensors (CCD and range finder). Each sensor captures dif-
ferent aspects of facial features, 2D intensity representing

surface reflectance and 3D depth values representing face
shape data. Even though each imaging modality has its own
advantages and disadvantages depending on certain circum-
stances, there is often some expectation that 3D data should
yield better performance. However, no rigorous experimen-
tal study has been reported to validate this expectation. The
experiments reported in this study are aimed at (1) testing
the hypothesis that 3D face data provides better biomet-
ric performance than 2D face data, using the PCA-based
method, and (2) exploringwhether a combination of 2D and
3D face data may provide better performance than either
one individually.
One aspect of combining different biometrics is how to

combine results provided by individual sources effectively
during the decision process. Many different approaches
could be envisioned for combining multiple types of bio-
metric information. In general they can be thought of as
occurring at the image level, the metric level, or the rank
level. In this study, the combination of face data at the met-
ric level has been considered.

2. Previous Work
In this section, methods that use multiple types of facial
data for identification purposes, multi-modal biometrics,
are reviewed. The term “multi-modal biometrics” is used
here to refer to the use of different sensor types without
necessarily indicating that different parts of the body are
used. The important aspects of these multi-modal studies
are summarized in Table 1. Wang et.al. computed Gabor
filter response in 2D images and point signatures in the 3D
range data to obtain features for face recognition. A simi-
larity function and SVM were tested for the classification.
They concluded that SVM classifies better than the similar-
ity function, and that integrated features (Gabor coefficients
and point signature) perform better than a single feature
alone [9]. Face profile data obtained with 2D and 3D facial
images for automatic face verification is proposed by Beu-
mier et.al. [10]. The full facial surface is constructed based
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Table 1: Previous studies that integrated multiple types of
facial data for recognition.

Source Facial Data Methods Fusion
(Subjects)

[9] 2D frontal Gabor filter support
& 3D range response & vector
image point machine
(50) signature (SVM)

[10] 2D frontal profile weighted
& 3D profiles matching sum
(120)

[11] 2D frontal & HMM & logarithmic
2D profile eigenfaces & score
(30) profile transforma-

matching tion

on geometric features of the external contour along with the
profile-based approach. A weighted sum of the 2D and 3D
scores is used to deliver the fusion process. Combination of
both frontal and profile view of 2D face data for identifica-
tion through the combination of face classifiers is reported
in [11]. While the profile view alone provides lower per-
formance than frontal view, the profile classifier combined
with HMM or eigenfaces using the frontal view performs
better than recognition with single frontal view alone.
In addition to recognition methods based solely on the

human face, there are other recognition methods using mul-
tiple biometric sources. In conjunction with face data, gait
[12], ear [13], voice [14, 15, 16, 17], voice and lips [18], fin-
gerprints [19], hand geometry and fingerprints [20, 21], and
profile [11] have been used to improve overall recognition
reliability. One commonality of the studies described above
is that the identification rate based on multiple sensors / bio-
metrics sources provides overall performance improvement.

3. Methods and Materials
3.1. 2D and 3D Face Recognition Using PCA
Extensive work has been done on face recognition algo-
rithms based on PCA, popularly known as “eigenfaces”
[22]. A standard implementation of the PCA-based algo-
rithm [23] is used in the experiments reported here.

3.2. Normalization
The main objective of the normalization process is to min-
imize the uncontrolled variations that occur during the ac-
quisition process and to maintain the variations observed in
facial feature differences between individuals. The normal-

ized images are masked to “gray out” the background and
leave only the face region (See Figure 3). This is done to
projected 2D data (Figure 3 - (b)) and 3D data (Figure 3
- (c)) only. In our data acquired by the Minolta Vivid-900
range scanner, every data point has a depth value as well
as intensity value. While each subject is asked to gaze at
the camera during the acquisition, it is inevitable to obtain
data with some level of pose variations between acquisition
sessions.
The 2D image data is typically treated as having pose

variation only around the Z axis, the optical axis. The PCA
software uses two landmark points (the eye centers) for geo-
metric normalization to correct for rotation, scale, and posi-
tion of the face for 2D matching. However, the face is a 3D
object, and if 3D data is acquired there is the opportunity
to correct for pose variation around the X, Y, and Z axes.
Because the range sensor acquires a color texture map reg-
istered with the 3D data, it is in principle possible not only
to correct the 3D data to a standard pose, but to then also
create a projected 2D image from that same standard pose.
A transformation matrix is first computed based on the

surface normal angle difference in X (roll) and Y (pitch)
between manually selected landmark points (two eye tips
and center of lower lip) and predefined reference points of a
standard face pose and location. Pose variation around the
Z axis (yaw) is corrected by measuring the angle difference
between the line across the two eye points and a horizontal
line. At the end of the pose normalization, the nose tip of
every subject is transformed to the same point in 3D relative
to the sensor (See Figure 2). After the 3D data points are
transformed, a projected 2D intensity image is created from
the color texture map that is associated with the 3D data.
Creating a projected 2D image from the texture map

associated with the 3D data after the 3D pose correction
might, at first, seem to have only advantages. After all, it
corrects for more real pose variation than correcting the 2D
image only for pose variation around the Z axis, as is done
for applying PCA to standard 2D images. However, there
are complications that can occur in creating a projected 2D
image from sensed 3D data. As the 3D data is originally ac-
quired, there is a “complete” 2D color texture map; that is,
there is a color texture value even for some points that fail to
produce a valid 3D value. This failure to produce a valid 3D
value at some potential sample points is due to the particu-
lar method of sensing 3D, in this case, structured light using
a projected stripe. There may be missing or invalid 3D data
in regions of the face such as eyeballs or eyebrows, even
though there is a 2D color texture sample at these points.
When the original pose of the 3D data is changed, the pro-
jected 2D image that is created for the new 3D pose will
have “holes” where there is missing 3-D data. Thus the pro-
jected 2D image is more fully pose corrected than the orig-
inal 2D image can be, but it will also sometimes have some
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(a) (b)
Processing missing data points in range data

(c) (d)
Processing spike noise in range data

Figure 1: Processing the missing holes in 3D

missing data around the regions of the eyes and eyebrows.
This problem with the 3D is alleviated to some degree

by preprocessing the 3D data to fill in holes and remove
spikes (See Figure 1). This is done by median filtering fol-
lowed by linear interpolation using valid data points around
a hole. However, even though we attempt to fill in the miss-
ing holes in 3D, there are regions where filling holes is not
sufficient, such as the nostrils area after the pose correction.
Because recovering missing holes in 3D shape data is in
principle related to interpolating missing 2D intensity data,
each imaging modality uses its own mask. Also, this indi-
cates that the normalization process needs to be applied ac-
cording to the level of data quality acquired by each sensor.
The histogram equalization is performed to normalize only
the intensity 2D face images. For the missing data points
in intensity images, a mask is used that ignores the eye re-
gions, where data is severely corrupted due to the specular
surface (See Figure 3-(b)). As illustrated in the Figure 3-(c),
however, missing holes on eye area are reliably filled com-
pared to holes in nostrils area in 3D. This encourages us to
block nostrils area in 3D.

3.3. Data Collection
A gallery image is an image that is enrolled into the sys-
tem to be identified. A probe image is a test image to be
matched against the gallery images. Images were acquired
at the University of Notre Dame between January and May

(a) X-Y plane (b) Y-Z plane
Initial pose of a subject in 3D space

(a) X-Y plane (b) Y-Z plane
Corrected pose of a subject in 3D space

Figure 2: Pose normalization

2003. Two four-week sessions were conducted for data col-
lection, approximately six weeks apart. The first session is
to collect gallery images and the second session is to collect
probe images. Thus, for a given subject in our study, there
is at least six and as many as thirteen weeks time lapse be-
tween the acquisition of their gallery image and their probe
image. All subjects completed an IRB-approved consent
form prior to participating in each data acquisition session.
A total of 278 different subjects participated in one or more
data acquisition sessions. Of these 278 subjects, 166 partic-
ipated in both a gallery acquisition and a probe acquisition.
Thus, for the experiments in our study, there are 166 in-
dividuals in the probe set, the same 166 individuals in the
gallery, and 278 individuals in the training set. The 278 in
the training set are the 166 in the gallery plus the 112 for
whom good data was not acquired in both the gallery and
probe sessions.
In each acquisition session, subjects were imaged using

a Minolta Vivid 900 range scanner. Subjects stood approx-
imately 1.5 meter from the camera, against a plain gray
background, with one front-above-center spotlight lighting
their face, and were asked to have a normal facial expression
(“FA” in FERET terminology [24]) and to look directly at
the camera. The height of the Minolta Vivid scanner was
adjusted to the approximate height of the subject’s face, if
needed. The Minolta Vivid 900 uses a projected light stripe
to acquire triangulation-based range data. It also captures
a color image near-simultaneously with the range data cap-
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(a) Original 2D mask image (no blocking)

(b) Projected 2D mask image (before / after blocking)

(c) 3D mask image (before / after blocking)

Figure 3: Examples of mask images in 2D and 3D

ture. The result is a 640 by 480 sampling of range data and
a registered 640 by 480 color image. (Note that there can
be some regions of missing values in the 3D data.) These
are the 3D and 2D images used in the experiments reported
here.

3.4. Distance Metrics
2D data represents a face by intensity variation whereas 3D
data represents a face by shape variation. It is obvious that
the “face space” could be very different between modalities.
Thus, during the decision process, certain metrics might
perform better in one space than in the other. In this experi-
ment, Euclidean distance and Mahalanobis distance metrics
were explored for possible use during the decision process
for the gallery matching [25]. Mahalanobis performed best
in both cases. Eigenvector selection for the “face space”
was done separately for each modality.

3.5. Data Fusion
The pixel level provides perhaps the simplest approach to
combining the information from multiple image-based bio-
metrics. The images can simply be concatenated together
to form one larger aggregate 2D-plus-3D face image. The
metric level focuses on combining the match distances that

are found in the individual spaces. Having distance metrics
from two or more different spaces, a rule of how to com-
bine the distances across the different biometrics for each
person in the gallery can be applied. The ranks can then be
determined based on the combined distances.
One of the early tasks in data fusion is to normalize the

scores, which are the results of a metric function. Scores
from each space need to be normalized to be comparable
each other. There are several ways of transforming the
scores including linear, logarithm, exponential, logistic, etc.
[11]. The scores are normalized so that the distribution and
the range of score values are mapped to the same domain
between for both modalities.
There are many ways of combining different metrics to

achieve the best decision process, including majority vote,
sum rule, multiplication rule, median rule, min rule, average
rule and so on. Depending on the task, a certain combina-
tion rule might be better than others. It is known that sum
rule and multiplication rule provide generally plausible re-
sults [26, 11, 12].
In our study, a weight is estimated based on the distri-

bution of the top three ranks in each space. The motivation
is that a larger distance between first- and second-ranked
matches implies greater certainty that the first-ranked match
is correct. The level of the certainty can be considered as a
weight representing the certainty. The weight can be ap-
plied to each metric as the combination rules are applied.
The multi-modal decision is made as follows. First the 2D
probe is matched against the 2D gallery, and the 3D probe
against the 3D gallery. This gives a set of N distances in
the 2D face space and another set of N distances in the 3D
face space, where N is the size of the gallery. A plain sum-
of-distances rule would sum the 2D and 3D distances for
each gallery subject and select the gallery subject with the
smallest sum. We use a confidence-weighted variation of
the sum-of-distances rule. For each of 2D and 3D, a “con-
fidence” is computed using the three distances in top ranks
as (second distance - first distance) / (third distance - first
distance). If the difference between the first and second
match is large compared to the typical distance, then this
confidence value will be large. The confidence values are
used as weights in the sum of distances. A simple product-
of-distances rule produced similar combination results, and
a min-distance rule produced only slightly worse combina-
tion results. Thus it appears that any of a variety of combi-
nation rules can give good results.

4. Experiments
There are three parts to this study. The first part is to exam-
ine the performance of original 2D and projected 2D. The
second part is to evaluate the performance of 2D and 3D
independently. Data fusion is considered, in the third part,

Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG’03) 
0-7695-2010-3/03 $ 17.00 © 2003 IEEE 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Pose Correction in 2D Face (PCA)

RANK

S
C

O
R

E

2D (X, Y, Z rotation)
2D (Z rotation only)

Figure 4: 2D recognition performance in different pose cor-
rections.

to combine results at the metric level with different fusion
strategies.
The eigenvectors for each face space are tuned by drop-

ping the first M and last N eigenvectors to obtain an opti-
mum set of eigenvectors. Thus, we expected to have a dif-
ferent set of eigenvectors representing 2D face space versus
representing 3D face space. The cumulative match charac-
teristic (CMC) curve is generated to present the results. The
McNemar statistical significance test is considered based on
rank-one recognition rates.

4.1. Experimental Results: Original 2D face
versus projected 2D face

Considering the problems encountered in using the pro-
jected 2D images from the pose-corrected 3D data, we also
examined using the original 2D images. 2D recognition is
examined with a set of original intensity images that have
pose correction only around Z axis, against projected 2D
intensity data that has pose correction in X , Y and Z axes.
Figure 4 shows the CMC curves for the two types of 2D
images. It turns out that the performance of original 2D im-
ages with only the correction for 2D rotation around the Z
axis is greater than that of the projected 2D images created
using the pose-corrected 3D data. The performance using
the original 2D images is 83.1% (M = 5 and N= 9) versus
78.9% by the projected 2D images (M = 5 and N= 5). This
can be interpreted as an indication that the uncorrected pose
variation in the original 2D images is not as damaging to
recognition as is the loss of data due to the mask needed
when using the projected 2D image. Thus, we decided to
use the original 2D images rather than the projected 2D im-
ages in later experiments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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0.75
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0.85

0.9

0.95

1
2D Face vs. 3D Face (PCA)

RANK
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O
R

E

3D Eigenfaces
2D Eigenfaces

Figure 5: 2D face versus 3D face using eigenfaces.

4.2. Experimental Results: 2D face versus 3D
face in biometrics

This experiment is to investigate the performance of indi-
vidual 2D eigenface and 3D eigenface methods. The null
hypothesis is that there is no significant difference in the
recognition rate between 2D or 3D, given (1) the use of the
same PCA-based algorithm implementation, (2) the same
subject pool represented in training, gallery and probe sets,
and (3) the controlled variation in one parameter, time, of
image acquisition between the gallery and probe images.
After the eigenvectors are tuned, M = 6, and N = 7 vectors
are dropped in 3D to create the face spaces. With the given
optimal set of eigenvectors in 2D or 3D, the results show
that rank-one recognition rate is 83.1%, and 83.7% for 3D
(See Figure 5). This difference in rank-one recognition rates
is clearly not statistically significant. Thus the results of our
experiment do not provide evidence for rejecting the null
hypothesis; we do not find a statistically significant differ-
ence in accuracy between PCA-based recognition using 2D
and 3D face data.

4.3. Experimental Results: Single-modal bio-
metrics versus multi-modal biometrics

This experiment is to investigate the value of a multi-modal
biometric using 2D and 3D face images, compared against
individual biometrics. The null hypothesis for this experi-
ment is that there is no significant difference in the perfor-
mance rate between uni-biometrics (2D or 3D alone) and
multi-biometrics (both 2D and 3D together). According to
Hall [27], a fusion can be usefully done if an individual
probability of correct inference is between 50% and 95%
with one to seven classifiers. From our second experiment,
it is reasonable to fuse the two individual biometrics which
meet this fusion criteria. Figure 6 shows the CMC with the
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Figure 6: Single- versus multi-modal biometrics.

Table 2: Rank-one recognition rates achieved by different
fusion methods

(Transformation) Sum Product Minimum
Linear 92.2% 92.2% 90.1%

Logarithmic 92.2% 92.2% 90.1%
Exponential 91.0% 92.2% 90.1%
Weighted 92.8% 92.2% 90.4%

rank-one recognition rate of 92.8% for the multi-modal bio-
metric, achieved by combining modalities at the distance
metric level. Regardless of the particular fusion strategy,
the combined 2D-plus-3D performs significantly better than
either one alone (See Table 2). Figure 7 shows examples
where the multi-biometric was correct when one of the indi-
vidual biometric failed. A McNemar’s test for significance
of the difference in accuracy in the rank-onematch between
the multi-modal biometric and either the 2D face or the 3D
face alone shows that multi-modal performance is signifi-
cantly greater, at the 0.05 level.

5. Summary and Discussion
The value of multi-modal biometrics with 2D intensity and
3D shape of facial data in the context of face recognition is
examined. This is the largest experimental study (in terms
of number of subjects) that we know of to investigate the
comparison and combination of 2D and 3D data for face
recognition. In our results, each modality of facial data
has roughly similar value as an appearance-based biomet-
ric. The combination of the face data from both modali-
ties results in significant improvement over either individ-
ual biometric. In general, our results appear to support the

conclusion that the path to higher accuracy and robustness
in biometrics involves use of multiple biometrics rather than
the best possible sensor and algorithm for a single biomet-
ric. The source of a biometric needs to be carefully ex-
amined to obtain complementary sources and the number
of biometrics needs to be controlled in the context of data
(sensor) fusion. Prior to adding a new modality to exist-
ing biometrics, an individual modality needs to be validated
throughly so that it has a reasonable correct identification
rate. One of the main purposes of sensor fusion is to re-
duce the ambiguity between domain experts. Thus, without
clearly proven benefit, it cannot be expected to necessarily
better performance by a newly added dimensionality to the
decision domain.
The general quality level of the data in a 3D image col-

lected by current range scanners is perhaps not as good as
that of the 2D intensity image taken with current camera
technology still. Range scanner technology has problems
with missing and noisy data that do not occur with regular
camera (CCD) technology. It is possible that the quality of
3D sensor data will improve more rapidly in the near future
than will the relatively mature regular camera technology.
If this happens, it could improve the usefulness of 3D face
data relative to 2D face data.
There may still be some biometrics algorithm, other than

PCA, for which one of the 2D face or the 3D face offers sta-
tistically significantly better recognition performance than
the other. Also, there may be particular application scenar-
ios in which it is not practical to acquire 2D and 3D face
images that meet similar quality control conditions.
Even though data have been collected in a controlled ex-

ternal environment, such as lighting or facial expression,
there is some degree of limitation that just cannot be con-
trolled, such as slight movement around lips or eye area.
This affects the performance rate since it actually changes
the shape of face data occurring around the missing area.
These problemsmore severely affect the performance in 3D
than they do in 2D.
It is generally accepted that performance estimates for

face recognition will be higher when the gallery and probe
images are acquired in the same acquisition session, com-
pared to performance when the probe image is acquired af-
ter some passage of time [28]. As little as a week’s time
is enough to cause a substantial degradation in performance
[29]. While many performance results reported in the litera-
ture are obtained with datasets where the probe and gallery
images are acquired in the same session, most envisioned
applications for face recognition technology seem to occur
in a scenario in which the probe image would be acquired
some time after the gallery image. In this context, it is worth
noting that the dataset used here incorporates a substantial
time lapse between gallery and probe image acquisition.
The results presented in this study suggest that it is
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2D gallery 2D probe (match)

3D gallery 3D probe (miss)

2D gallery 2D probe (miss)

3D gallery 3D probe (match)

Figure 7: Two examples where multi-biometric corrects in-
dividual biometric.

worthwhile to investigate biometrics combining multiple
types of sources, such as combining 2D (appearance) and
3D (shape) with infrared imagery (thermal pattern). In fu-
ture research, other fusion schemes will also be considered
during the decision process.
The dataset used in the experiments reported here

will eventually be made available to other research
groups as a part of the Human ID databases. See
http://www.nd.edu/˜cvrl/ for more information about the
dataset and the release agreement.
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