Reflections on Remote Reflection

Michael Richmond
Macquarie University
mar@ics.mq.edu.au

Abstract

The Java programming language provides both reflec-
tion and remote method invocation: reflection allows a pro-
gram to inspect itself and its runtime environment, remote
method invocation allows methods to be invoked transpar-
ently across a network. Unfortunately, the standard Java
implementations of reflection and remote method invoca-
tion are incompatible: programmers cannot reflect on a re-
mote application.

We describe how Java systems can be extended to sup-
port Remote Reflection transparently by extending the
standard Java API. Remote reflection can support remote
debuggers, performance monitors, programming environ-
ments, application component servers such as Enterprise
JavaBeans, and any other Java system that can be distrib-
uted across a network.

1. Introduction

Programming and networking have been converging
steadily since the explosion of the Internet in the middle of
the 1990’s. The Java programming language [5] is the most
visible expression of this convergence. Java is designed so
that programs can be transported across networks and exe-
cuted in a Virtual Machine, unlike many other languages,
regardless of the actual architecture and operating system of
the machines on which it runs.

Java specifically supports distributed programming
through the Remote Method Invocation (RMI) facility [18].
This allows a program on one machine to use objects and
programs on remote machines. For example, in a system
used to sell tickets to arts performances and sporting events
aJava Applet running in a web browser could take users’ or-
ders, then use RMI to send ticket details to a central trans-
action server across the Internet.

As modern programming language, Java also includes
support for Reflection [2, 4, 10]. Normal programs (or base-
level programs) manipulate objects and values that refer to
an external domain in the real world. In contrast, reflective

James Noble
Victoria University of Wellington
kix@mcs.vuw.ac.nz

programs (meta-level programs) manipulate objects and
values from base-level programs [8, 10, 14]. For example, a
base-level program to process ticket sales would have ob-
jects that represented tickets, events for which tickets can be
issued, and patrons who purchase tickets. A meta-level pro-
gram would have objects that represented the classes, meth-
ods, fields, and interfaces of the base-level program.

Reflection is often used to support programming tools
such as debuggers and performance monitors. Such a tool,
using reflection, can gather all the information it needs
about the classes, class attributes, and objects making up the
program being debugged or monitored. Reflection is also
used in component-based systems, such as JavaBeans [16]
or Enterprise JavaBeans [15], so that component containers
can adapt themselves to the details of the components they
will host.

In theory, reflection and remote method invocation
should be orthogonal — a program should be able to use re-
flection and RMI separately or together without any nega-
tive interaction between the two facilities. Unfortunately, in
Java, remote method invocation and reflection cannot be
used together. The meta-level of a Java program can only
reflect on local objects, that is, objects within the same Java
virtual machine. The failure to support remote reflection has
several consequences in practice:

* Debuggers cannot directly debug programs run-

ning in remote JVMs,

* Program visualisation systems cannot visualise re-

mote programs,

« Component servers (such as Enterprise JavaBeans)

cannot be managed or debugged remotely.

This paper addresses this problem by describing how
Java can be extended to support remote reflection. The pa-
per is organised as follows: the next section introduces the
Java mechanisms for reflection and remote method invoca-
tion, providing a brief overview of the application program-
mer interface of each. Section 3 then describes the problems
with Remote Reflection in Java and presents our design for
a solution. Section 4 then discusses issues and recommends
Java API changes to support transparent Remote Reflection.

Account anAccount = new Account(...);

Class acClass

= java.lang.Class.forName(“Account”);

Method deposit = acClass.getMethod(“deposit”,[Class.forName(“int”)]1);

deposit.invoke(anAccount, [250]);

Field

balField = acClass.getDeclaredField(“balance”);

Figure 1. Java Reflection code fragment.

Section 5 places this work in context of related work, and
Section 6 concludes the paper.

2. Background

2.1. Java Reflection

The Java Reflection application programmer interface
(API) allows a running program to retrieve information
about itself and the runtime system (virtual machine) in
which it executes [17]. Using reflection, a program may ob-
tain information about its structure and the runtime environ-
ment. With this information the program can instantiate
arbitrary classes, invoke methods, or alter data fields — by-
passing any scoping rules or protection boundaries. This
makes reflection a powerful but potentially dangerous lan-
guage mechanism. The ability to circumvent call stack
scoping and protection boundaries does, however, allow
certain types of applications to be implemented orthogonal-
ly to the remainder of the program logic. This is particularly
useful when developing applications like debuggers, moni-
tors, and persistence mechanisms.

Reflection is supported in Java as part of the standard
Java API. This API provides classes that represent array,
class, method, field, constructor, and object instances in an
executing Java Virtual Machine (JVM). Because these
classes are about the program itself they are known as meta-
classes, and their instances known as meta-objects [8].

A fragment of code, that uses Java reflection, is shown in
Figure 1. In this example a new Account object is first cre-
ated and a reference to the C1ass object corresponding to
the Account class is obtained. This C1ass object is then
used to locate the Method object fora deposit () method,
which takes an integer as its argument, in the Account
class.

A deposit is then performed on the Account object by
invoking the deposit() method using an instance of the
Method meta-class. Finally, the code obtains the reflection
class representing the private field balance in the Ac-
count class.

Since reflection is inherently dangerous it is obvious to
question the inclusion of it in a language: an unscrupulous

programmer can use reflection to destroy the integrity of the
base-level program. To avoid these problems, the Reflec-
tion API supports a property, ReflectPermission, in the
JVM environment which disables reflection within that vir-
tual machine. This is enforced by the java.lang.re-
flect.AccessibleObject super meta-class in concert
with any existing security manager.

2.2. Remote Method Invocation

The Java Remote Method Invocation API is the basis for
distribution support in Java. RMI provides location trans-
parent object references, and automatic argument and return
value marshalling to provide method invocation seamlessly
across network and JVM boundaries.

When developing distributed applications, operations
over the network should appear to behave identically to op-
erations on local objects. In practice this is not completely
possible, as operations over the network have more failure
cases than local operations. These differences are unavoid-
able due to the nature of network communications. The goal
of network transparency however, is to minimise these dif-
ferences as much as possible.

RMI provides network transparent method invocation
for objects that are declared as implementers of the
java.rmi.Remote interface. This interface defines no
method signatures, rather, it is used to mark the object as be-
ing remotable. It also provides type equivalence between
the implementation of the remote object class, and the stub
classes generated to act as local proxies for the remote ob-
ject.

Objects are type equivalent if it is type-safe to use an ob-
ject of one type in place of an object of another type. In the
case of RMI both the implementation of the remote object
and the generated stub object implement the same interface:
i.e., the interface defined for the remote object. In the Java
type system, this means the client of a remote object can de-
fine a variable to hold a reference to an object whose type is
the remote interface of the remote object. As long as the ob-
ject is accessed through this variable the client will only see
an object of the remote interface type.

Remote operations via RMI are constrained to those that
may be performed on a standard Java interface, that is, the

4 Client JVM h

—— —

4 Server JVM)

D
>

—_—
« 7~ Account

(S J

— — logical reference

N J

actual reference (and call path)

Figure 2. Overview of Java Remote Method Invocation model.

RMI API does not support client access to fields of remote
objects, nor does it support access to static fields or methods
in the remote class.

A functional overview of the RMI call path is shown in
Figure 2. In this example, the Account object is providing
a service which is accessed by the Transaction object.
Each of these objects are located in different JVMs, poten-
tially on separate hosts. In the case of both objects residing
in a single JVM the RMI sub-system is able to invoke the
method directly, thus bypassing the marshal/unmarshal
process.

RMI allows the developer to act as though the client
holds a reference directly to the server object. This logical
reference can be treated like any other local reference. In
our example, the Transaction object logically holds a ref-
erence directly to the Account object.

In reality, the reference held by the client refers to a stub
object in the local JVM. The implementation of this stub is
generated at compile time by rmic — the Java RMI stub
compiler. This stub object performs the marshalling of in-
vocation arguments, that is, it collects the Java objects and
encodes them so that they can be transmitted across the net-
work. The stub then communicates with the server, unmar-
shalling any return value. Importantly, the stub also
implements the remote interface of the remote object, there-
by ensuring the stub’s type is equivalent to the remote ob-
ject’s type. (In this case, the Account Stub will effectively
have the same type as the Account object since the stub im-
plements the Account class’s remote interface).

The stub object communicates with a matching skeleton
object in the server’s JVM. This skeleton is generated by
rmic at the same time as the stub class. Starting with ver-
sion 1.2 of the Java SDK, these skeleton classes are gener-
ated at run-time by the server JVM if they cannot be found
by the server. The skeleton object is responsible for unmar-
shalling any invocation arguments, performing the local
method invocation on the server object, and marshalling
any return value.

Under RMI all invocation arguments are passed by copy
to the server JVM. After the method call has completed only
the explicitly declared return value is returned to the client.
As a result, the server developer must be careful to ensure
that they do not rely on side effects in the server object.

When passing structural objects such as arrays, vectors
and trees it is important to remember that only the root ob-
ject is passed by RMI. The developer must ensure that the
elements contained within these structures are remotable
objects, otherwise, fatal exceptions will be raised on the cli-
ent during unmarshalling.

Figures 3 and 4 show an example of the code required to
make a Java object accessible using RMI. The programmer
must create an interface for the object to act as the remote
interface for the object. This interface must extend the
java.rmi.Remote interface and declare all methods to
throw java.rmi.RemoteException. If an error occurs
during the remote method invocation an exception will be
returned to the client that is a sub-class of java.rmi.Re-
moteException.

The implementation of the remote object must be de-
clared to as implementing the previously defined remote in-
terface. Each public method in the remote interface must be
implemented in this class and declared as throwing
Jjava.rmi.RemoteException.

3. Remote Reflection

The ability for a program to examine itself via reflection
can be extremely useful when developing certain types of
applications. When using a monitor or debugger to observe
a program it is desirable to minimise the impact that the ob-
server has on its subject. The introduction of any additional
process into a system will potentially alter the behaviour of
the program being observed. With multi-threaded and syn-
chronous programs this is particularly evident, with addi-
tional processes altering the scheduling behaviour of the
system.

import Jjava.rmi.*;
import java.net.URL;

public interface Account extends java.rmi.Remote {

pubTic void deposit(int amount) throws RemoteException;

public int getBalance() throws RemoteException;

}

Figure 3. Java RMI interface code fragment for Account.class.

import java.rmi.*;

import java.rmi.server.RMIClassloader;

public class AccountImpl implements Account {

private int balance;

[‘)l‘Jt‘)-HC void deposit(int amount) throws RemoteException {

balance += amount;
}

Figure 4. Java RMI object implementation code fragment for AccountImpl.class.

For distributed systems, it is preferable use a single de-
bugger or monitor to observe the entire system from one
place rather than being tied to the location of each compo-
nent in the system. To achieve this the debugger must know
how to observe over a network, in addition to observing lo-
cal components. In RMI we have a mechanism which al-
lows remote operations to be performed as if they were local
operations. Rather than re-implement a remote operation
mechanism, it makes sense to use RMI to access the remote
components in the system.

When implementing such a debugger, the programmer
must avoid reliance on language features not supported by
the RMI model. Specifically this means that all objects must
define interfaces, no static methods are used, and object
fields are accessed via get and set methods rather than di-
rectly.

As long as these constraints are observed, the conversion
of a local debugger or monitor into one which can act re-
motely should be trivial. Unfortunately, the Java reflection
API restricts reflection to the local JVM.

3.1. The Problem

The current implementation of the Java Reflection API
(SDK 1.3) restricts reflection to the local JVM state. In spite
of the RMI model making the question of locality orthogo-
nal to the class implementation in most cases. This inability,
to use reflection to act upon remote objects, breaks the RMI
goal of providing network transparency to developers of
distributed systems, thus, preventing developers from using

reflection to develop remote and distributed monitors, de-
buggers, and visualisation tools.

There are a two main reasons for this restriction. The first
is that the reflection API relies on the static methods
Class.forName() to provide instances of reflection ob-
jects. If we are to provide remote reflection, then some way
of remotely calling these static methods must be provided.

The second, and most important reason, is that the core
reflection classes are defined as final in the standard Java
API, thus preventing the programmer from sub-classing to
extend functionality.

3.2. Final Classes

With most Java classes it is a trivial to use sub-classing
to make them remotable. The Java keyword final, how-
ever, prevents programmers from sub-classing a particular
class. There are three possible reasons for this decision.

First, there is the need to prevent programmers from sub-
classing the reflection classes to expose their constructor
methods. In a fully reflexive language, it is possible to alter
the language semantics by over-riding parts of the reflection
classes, for instance, over-riding Method.invoke() to
change the semantics of method invocation. In Java, the re-
flection classes are representations of the underlying virtual
machine state rather than the actual JVM state. It is there-
fore not possible to use reflection in Java to alter the lan-
guage behaviour. Furthermore, it is necessary to ensure that
only the JVM is capable of creating reflection objects. Oth-

(Debugger VM)

ClassProxy
Stub
J

N

(Glssbron)

Ve C/IassPrB(y\
~ Skel
—_— .

Server JVM)

Class
"Account"
Account
instance

/

Figure 5. Proxy model of remote reflection.

Class MethodProxyImpl implements ClassProxy {

Method method;

public ClassProxy getDeclaringClass() throws RemoteException ({
return (ClassProxy) new ClassProxyImpl(method.getDeclaringClass());

}

Figure 6. Remote Reflection proxy code fragment.

erwise, the integrity of the Java Reflection mechanism
would be undermined.

The second reason is that reflection classes typically ac-
cess the JVM data structures directly through native meth-
ods. The result is a tight coupling between meta-objects and
base-objects, binding the reflection implementation to a
specific JVM. This constrains meta-objects to exist in the
same JVM as the base-objects they reflect upon.

Finally, there is the view that reflection allows you to in-
spect, reason and act at the meta-level of a program. With
the presumption that access to this meta-level will only be
required from within the program being reflected upon.

3.3. Solution

To bypass these problems, we have written a set of proxy
[3] classes which mirror the method signatures of the Java
reflection classes. These proxies reside in the same JVM as
the standard reflection meta-objects, i.e., in the same JVM
as the base-level objects being reflected upon. Unlike the
standard meta-objects, these proxies are remotable (they
implement the java.rmi.Remote interface) and so can be
referenced remotely. (See figure 5.)

Our proxy classes do not fully solve the problem of pro-
viding Remote Reflection in Java. They do, however, pro-
vide an effective practical solution, while helping us
identify necessary changes to the Java API. These changes
are presented in the section 4.1 of this paper.

3.4. Implementation

The implementation of these proxy classes is quite sim-
ple. One proxy class exists for each Java reflection meta-
class. At run time, each proxy object holds a reference to the
meta-object that it proxies. The proxy class implements
every method in its corresponding meta-class, by calling the
appropriate method of the meta-object it represents (as
shown in Figure 6). For the methods where the reflection
class returns an array of reflection objects, the proxy is re-
sponsible for generating a matching array of proxy objects
to be returned to the reflection client.

The reflection API is fairly self contained, with reflec-
tion objects being used mainly by the reflection API. This
means our proxy classes need not be type equivalent with
the classes they represent, rather, they form a parallel proxy
API. In any event, type equivalence is prevented by the dec-
laration of the reflection classes as final. The drawback is
that remote reflection references cannot be used within the
reflected JVM after being passed there via some channel.

It’s important to note that this implementation is solely
within the Java language, and does not require any modifi-
cations to the Java Virtual Machine. This has several advan-
tages. Most importantly, the remote reflection mechanism
will operate on any JVM that implements the standard RMI
and reflection interfaces. The remote reflection mechanism
can be loaded into any running JVM, without requiring the
JVM to be restarted, reloaded, or re-compiled. Java lan-

guage-level programming is also much simpler than modi-
fying a JVM.

The drawback is that our implementation is not com-
pletely transparent. Our proxy objects can be used only in
calls to other proxy objects. That is, we cannot use these
proxy classes in calls to the standard Java reflection API.
Additionally, some well known home for the Class.for-
Name () methods is required in the remote JVM to act as an
object factory [3] for the ClassProxy instances. This is a
result of RMI not supporting static methods in remote class-
es.

In our project we were sure that proxy references and re-
flection API references would not be combined in a method
invocation. In general use, however, the programmer must
ensure that any proxy references transferred to the remote
JVM are not used in calls to the reflection API. This will be
caught by the type checker during compilation, but ideally
a remote reference to a reflection object could be used in
any call to the reflection API. The changes to the Java Re-
flection API we suggest in section 4.1 remove this distinc-
tion between remote and local reflection references.

Additionally, programmers must not expect object
equality based on identity between reflection references and
reflection proxy references. Rather, the equality of these
references should be based on object value. For example, it
is reasonable to test if the local Class object for
Java.lang.String is equal to the remote CTass object
for java.lang.String. This will fail, however, when us-
ing our proxies to access the remote C1ass object, since the
programmer is comparinga C1ass objecttoaClassProxy
object.

4. Discussion

The use of proxies to make Java reflection accessible
from a remote machine has been successful. They have al-
lowed us to use an existing object visualisation tool to in-
spect, and act on, a remote Enterprise JavaBeans server. For
general use, however, some limitations remain. Namely:

« the reflection proxies are not type equivalent to the
reflection classes they represent, so cannot be in-
terchanged in method calls,

* some object is required, on the remote host, to act
as an object factory [3] for C1assProxy instances,

* extra overhead is introduced by the proxy objects,

* object equivalence between reflection proxies and
reflection classes is not provided.

All but the last of these limitations can be solved by al-

tering the Java Reflection API to support RMI. In effect col-
lapsing the proxies into the reflection objects themselves.

This changes the last limitation into one of class equiva-
lence. Class equivalence is considered in section 4.3 of this

paper.
4.1. Changes to the Java API

The first problem with the Reflection API is that none of
the classes it defines are remotable. One solution is to not
define the API classes as final. Thus allowing program-
mers to use the RMI metaphor of sub-classing to implement
the empty java.rmi.Remote interface to make the class
remotable. Unfortunately, this would allow programmers to
sub-class to expose the constructors of the reflection API.

4.2. Reflection API Changes

A better solution is to change the reflection API so the
constructors are declared as final, allowing API exten-
sions without exposing the object constructors. The Java
language however, does not allow constructors to be de-
clared final [5].

Our preferred solution is to make the API classes imple-
ment the java.rmi.Remote interface. Every Java reflec-
tion class, with the exception of java.lang.Class,
already inherits from java.lang.reflect.Accessi-
bleObject. As Class and AccessibleObject do not
explicitly inherit from any other class, this would not dis-
rupt the existing class hierarchy. Additionally, Accessi -
bleObject will need to implement the empty
Java.io.Serializable interface to comply with RMI
API requirements.

These changes will allow remote access to the Java Re-
flection objects, ensuring type equivalence between remote
and local references. They will also prevent programmers
from implicitly reflecting on the RMI stub objects, effec-
tively by-passing them during RMI method invocation. If it
is necessary to reflect on the stub and skeleton objects the
programmer can still use instance0f () and appropriate
type casting to explicitly reflect upon these classes.

A second issue with these API changes is that RMI does
not support static methods on remote objects. In the Reflec-
tion API, every reflection class is effectively instantiated
viaa Class object. These C1ass objects are instantiated by
calling either java.lang.object.getClass() or the
static java.lang.Class.forName() methods.

To support remote instantiation of C1ass objects it is
therefore necessary to modify the C1ass class and the JVM
to allow the programmer to specify whether a call to
java.lang.Class.forName() is fulfilled in the local
JVM or in a specified remote JVM.

4.3. Class Equivalence Problem

With these changes to the Java Reflection API, it will be
possible to use reflection to inspect and act upon a remote
JVM, achieving our original goal of allowing programmers
to use Java Reflection remotely.

As previously noted, however, the problem of class
equivalence remains. These API changes will make it pos-
sible for a programmer to instantiate a C1ass meta-object
for the class java.lang.String inaremote JVM, and a
second C1ass meta-object for java.lang.String in the
local JVM. This is a problem: we will have two potentially
unequal instances of the C1ass object in the distributed sys-
tem. We refer to this as the class equivalence problem.

As discussed by Liang and Bracha it is possible for two
instances of a user-defined class to exist within a single
JVM. This may occur when a class is loaded by two sepa-
rate class loaders. In this case the classes are not considered
to be of the same type in Java since a class type is uniquely
identified by the combination of class name and class load-
er [9].

In the local case, the loading of system classes is delegat-
ed to the Java system class loader which ensures only one
meta-object for each class exists in the JVM. This is
achieved by having class loaders delegate the loading of
Java system classes to the system class loader [9], guaran-
teeing that all system meta-objects are unique. Within a sin-
gle JVM all references to the java.lang.String meta-
object will be equal on the basis of object identity. Without
this guarantee the type safety of the system would be violat-
ed [9].

With remote reflection, however, each JVM has its own
version of each class so there can be multiple instances of
meta-objects, even for standard systems classes. In practice,
however, only one of these meta-objects is the “real” meta-
object for that JVM: because the remote meta-objects can
only reflect upon base-objects from their own JVM, they
cannot affect the integrity of any other systems.

5. Related Work

Neither reflection nor distribution are novel features of
programming languages, whether or not they are object-ori-
ented. Lisp, Smalltalk, Self, and Java are just a few of the
reflective languages in common use today [2, 4, 5, 19].
Some of these reflective languages are very powerful in-
deed, for example, the CLOS object system is effectively
implemented by a set of meta-objects that can be altered or
replaced to change CLOS's behaviour [7, 8]. Emerald, Mod-
ula-3, Smalltalk, and Java once again are just a few of the
languages with in-built in support for distribution, and thus
remote invocation [1, 6, 13, 15, 18].

Furthermore, many languages combine reflection and
distribution, often, as in CodA or ABCL/R relying on re-
flection to implement distribution [11, 12]. In particular,
distributed versions of Smalltalk, one of the oldest object-
oriented languages, have to solve many of the problems we
encountered to support remote reflection [2, 13]. Due to the
orthogonal nature of Smalltalk’s design, this can be done
much more easily that we have in Java. Indeed, our work
can be understood as applying techniques developed for
Smalltalk to Java, and understanding where they break
down, as in the case of final and static methods, which are
part of Java but are not part of Smalltalk.

6. Conclusion

Java Reflection and Remote Method Invocation should
be orthogonal. A program should be able to reflect upon any
object, local or remote. Any object, base-level or meta-lev-
el, should be able to be made remotable. In standard Java
this is not the case: meta-objects from the reflection API
cannot be accessed remotely. We have described how Re-
mote Reflection can be implemented within the standard
Java environment, without modifying the underlying virtual
machine.

We have also recommended changes to the standard Java
API which will allow Java Reflection to be used remotely
while avoiding the limitations encountered when using a
purely Java solution.

7. Acknowledgements

The authors wish to thank to thank Randy Smith for his
assistance during the implementation of this work. We are
grateful to SunLabs, California for their making this re-
search possible through their student intern program.

Java, JavaBeans, and Enterprise JavaBeans are trade-
marks of Sun Microsystems.

8. References

[1] Birrel, A., Nelson, G., Owicki, S., & Wobber, E. Network
Objects. SOSP Proceedings, 1993.

[2] Foote, B. & Johnson, R. E. “Reflective Facilities in Small-

talk-80”, OOPSLA 89 Proceedings, ACM Press, October
1989.

[3] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. “Design
Patterns: Elements of Reusable Object-Oriented Sofi-
ware”, Addison-Wesley, 1995.

[4] Goldberg, A. & Robson, D. “Smalltalk-80: The Language
and its Implementation”, Addion-Wesley, 1983.

[5] Gosling, J., Joy, B. & Steele, G. “The Java Language
Specification”, Addison-Wesley, 1996.

[6] Jul, E., Levy, H., Hutchinson, N., & Black, A. Fine-
grained mobility in the Emerald system. ACM TOCS, V6
N1, 1988.

[7]1 Keene S. E. “Object-Oriented Programming in Common
Lisp: A Programmer’s Introduction to CLOS”, Addison-
Wesley 1989.

[8] Kiczales, G., des Rivieres, J. & Bobrow, D. G. “The Art of
the MetaObject Protocol”, MIT Press, 1991.

[9] Liang, S. & Bracha, G. “Dynamic Class Loading in the
Java Virtual Machine”, OOPSLA ‘98 Proceedings, ACM
Press, October 1998.

[10]Maes, P. “Concepts and Experiments in Computational
Reflection”, OOPSLA ‘87 Proceedings, ACM Press, Oc-
tober 1987.

[11]Matsuoka, S., Watanabe, T., Yonezawa, A. Object-orient-
ed concurrent reflective languages can be implemented ef-
ficiently. OOPSLA’ 92 Proceedings, 1992.

[12]McAffer, J. Meta-level programming with CodA. In
ECOOP Proceedings, 1995.

[13]McCullough, P. L. “Transparent Forwarding: First Steps”,
OOPSLA ‘87 Proceedings, ACM Press, October 1987.

[14] Smith, B. C. “Reflection and Semantics in Lisp”, Proceed-
ings of the Principles of Programming Languages Confer-
ence, ACM Press, 1984.

[15] Sun Microsystems, “Enterprise JavaBeans Specification
version 1.1, Sun Microsystems, Palo Alto California, De-
cember 1999.

[16] Sun Microsystems, “JavaBeans Specification version
1.01”, Sun Microsystems, Palo Alto California, December
1998.

[17] Sun Microsystems, “Java Core Reflection Specification
version 1.3”, Sun Microsystems, Palo Alto California, De-
cember 1999.

[18]Sun Microsystems, “Java Remote Method Invocation
Specification version 1.3”, Sun Microsystems, Palo Alto
California, December 1999.

[19] Ungar, D. & Smith, R. B. “Self: The Power of Simplicity”,
OOPSLA ‘87 Proceedings, ACM Press, October 1987.

	Abstract
	1. Introduction
	2. Background
	2.1. Java Reflection
	Figure 1. Java Reflection code fragment.

	2.2. Remote Method Invocation
	Figure 2. Overview of Java Remote Method Invocation model.

	3. Remote Reflection
	Figure 3. Java RMI interface code fragment for Account.class.
	Figure 4. Java RMI object implementation code fragment for AccountImpl.class.
	3.1. The Problem
	3.2. Final Classes
	3.3. Solution
	Figure 5. Proxy model of remote reflection.

	3.4. Implementation
	Figure 6. Remote Reflection proxy code fragment.

	4. Discussion
	4.1. Changes to the Java API
	4.2. Reflection API Changes
	4.3. Class Equivalence Problem

	5. Related Work
	6. Conclusion
	7. Acknowledgements
	8. References

