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a b s t r a c t

As long as virtualization has been introduced in data centers, it has been opening new chances for resource
management. Nowadays, it is not just used as a tool for consolidating underused nodes and save power; it
also allows new solutions to well-known challenges, such as heterogeneity management. Virtualization
helps to encapsulate Web-based applications or HPC jobs in virtual machines (VMs) and see them as a
single entity which can be managed in an easier and more efficient way.

We propose a new scheduling policy that models and manages a virtualized data center. It focuses
on the allocation of VMs in data center nodes according to multiple facets to optimize the provider’s
profit. In particular, it considers energy efficiency, virtualization overheads, and SLA violation penalties,
and supports the outsourcing to external providers.

The proposed approach is compared to other common scheduling policies, demonstrating that a
provider can improve its benefit by 30% and save powerwhile handling other challenges, such as resource
outsourcing, in a better and more intuitive way than other typical approaches do.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In utility computing, users run their applications or services
in remote data centers and pay only for what they use, as with
other utilities such as water or electricity. The terms of the Quality
of Service (QoS) to be provided and the economic conditions are
established in a Service Level Agreement (SLA). This is the basis
of the Infrastructure as a Service (IaaS) paradigm, which relies on
virtualized data centers.

Data centers have undergone a metamorphosis during the
last years because of virtualization. This technology was initially
used to consolidate heterogeneous tasks, such as HPC jobs and
Web-based applications, in the same node to increase power
efficiency [1,2]. As a result of this encapsulation inVirtualMachines
(VMs), multiple tasks are seen as a single entity which is easier
to handle. However, virtualization also brings another abstraction
layer that prevents conventional energy management techniques
fromperforming efficiently or correctly. Moreover, this technology
brings new capabilities, such asmigration, which openmany paths
in IT resource management but also require new management
logic. Therefore, virtualized data centers cannot be managed like
traditional ones as they are now confronted to a set of new
challenges.
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First, they must be able to deal efficiently with the new
virtualization capabilities [3]. Second, they are receiving economic
and social pressure to reduce their energy consumption [4,5]. And
third, they must offer high availability [6] and performance to
their users, bound to terms agreed in the SLAs. Summarizing, all
these challenges result in the fact that these providers require new
management policies to make them economically profitable.

1.1. Contributions

In this paper, we propose a new approach for managing
virtualized data centers which considers multiple facets when
placing VMs in data center nodes and maximizes the provider’s
profit. This approach extends our previous work [7,8], where we
proposed a basic scheduling policy aware of virtualization and we
first introduced several facets to be considered synergistically to
manage data centers.

In our approach, the final profit for the provider is taken into
account to take all the placement decisions. This final profit is
derived from the revenue obtained by executing a HPC job or
hosting a Web-based application and the (economic) costs related
to the operation of the VM. We derive these costs by considering
the following facets (note that some of them have been brought to
a new dimension due to the appearance of both Cloud computing
paradigm [9] and virtualization technology).
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Power consumption. Data centers aim to reduce its power
consumption. However, this is no longer limited to
statically consolidate VMs at deployment time andpower
off unused nodes [10]. Additionally, thanks to live VM
migration, we can dynamically move running VMs from
underused nodes to others mostly full (and turn off the
idle nodes) to reduce power consumption at operation
time [4].

Service level agreements. Violating the QoS guarantees agreed
by the customer and the provider in the SLA has an
economic impact for the provider. According to this, we
estimate the potential fulfillment of the SLA terms during
VM execution and consider the violation penalty when
performing an operation or allocating an specific amount
of resources to a VM.

Outsourcing capabilities. A data center in the Cloud is not limited
to its local resources. When a peak load occurs and it
cannot be attendedwith the in-house resources’ capacity,
we consider the possibility to outsource resources (i.e.,
VMs) to third-party IaaS providers.

Virtualization overhead management. Virtualization enables new
approaches to well-knownmanagement problems, but it
also incurs some overheads, such as VM creation and in-
stantiation (which can take minutes), migration, or the
extra overhead added by the virtualization hypervisor.
We consider them when making decisions, not only as
overheads for that specific VM but also as potential SLA
penalties for the other VMs running in the same node.

Heterogeneity management. Data centers can be composed by
hosts with different capabilities and speeds. This influ-
ences applications SLA fulfillment and thus, we carefully
consider resource heterogeneity when placing VMs.

Economic modeling. We model and manage all the facets and
overheads in a unified way by modeling them as costs
or revenues, depending on their nature. Based on this
model, our policy finds the best VM allocation focusing
on the maximization of the provider’s benefit.

Keeping in mind all these features and problems, in this work
we propose a holistic VM scheduling policy toward nodes of a
data center, including the possibility of outsourcing resources to
external providers.

1.2. Use case

Our proposal maximizes a provider’s profit by considering
all the facets related to its operation. In particular, we consider
an infrastructure provider that uses virtualization to manage its
resources and offers VMs to their customers, similarly to IaaS
paradigm. In addition, this provider can outsource VMs to third-
party IaaS providers when needed. However, in contrast to current
IaaS providers, we do not only offer raw VMs at a fixed price per
hour with a fixed amount of resources and some availability. We
offer customized VMs with pre-installed software (namely batch
HPC jobs and Web-based services) that customers can execute on
demand. In addition, we support more complex SLAs by providing
high-level QoS guarantees to the execution of these applications.
According to this, the virtualized infrastructure provider acts also
as an application provider.

When a user wants to rent a VM to run a given application,
he specifies the desired QoS terms, the hardware and software
requirements of the VM, and the duration of the application to be
executed at a pricing specified by the provider (Section 3.4). This
information is stored in the SLA between the user and the provider.
For example, if a user wants to run a batch simulation, he will
negotiate a deadline-based SLA (DL), specifying a runtime for the
simulation in a reference system (Section 3.5), and a deadline for
the job to complete. If the user wants to run a web server, he will
negotiate a performance-based SLA (P), specifying a response time
goal in a reference system, and how long the server will run (this
value could be undefined).

The provider performs an scheduling round periodically or
when any event arises (a new VM enters the system, a possible
SLA violation is detected, etc.). The provider schedules this VM
and all the others already running in the system taking into
account the revenues and all the facets related to the operation
of the VMs (Section 4). To do so, the provider uses a cost-
benefit model (Section 5) which merges all the facets, specifies
them as economic costs, and applies an scheduling policy. This
policy implements an optimization process which chooses the VM
placement that maximizes the final provider’s profit (Section 6).
Once the placement of the VMs is decided, the provider performs
the required actions, which can include creating and migrating
VMs, outsourcing them to external providers, and turn off unused
nodes to save energy (Section 7).

When the task the user wanted to execute has finished, the
provider accounts how much the user has to pay. In particular, it
calculates the revenue based in the prefixed price per hour and
accounts the penalties for violating the SLAbased on the fulfillment
percentage (Section 8.5).

The remainder of the paper is organized as follows: Section 2
discusses some related work; Section 3 is centered on concepts
and theoretical assumptions to build our model of a virtualized
data center; Section 4 introduces the facets considered in the
model; Section 5 describes how these facets are measured and/or
calculated (cost-benefit model); Section 6 presents a scheduling
policy which uses these facets to schedule VMs in a data center;
Section 7 describes the required management procedures in such
data center; Section 8 describes the experimental environment;
Section 9 evaluates our proposal; and finally, Section 10 presents
conclusions and future work.

2. Related work

Energy efficiency. As shown in Bianchini and Rajaniony [11],
power management in server systems has been widely studied in
the past. There are several works proposing energy management
for servers, which focus on applying energy optimization tech-
niques in multiprocessor environments, such as Chen et al. [12]. In
particular, Chen’s work states that new power saving policies, such
as Dynamic Voltage/Frequency Scaling (DVFS) or turning off idle
servers, can increase both hardware problems and the probabil-
ity of violating SLAs in reduced environments. The latter is solved
by adding smarter scheduling policies to dynamically turn off idle
machines to reduce the overall consumption. This technique is
also applied by Kamitsos et al. [13], which sets unused hosts in a
low consumption state to save energy. This trade-off between per-
formance and power has also been tackled in local hosts where
Chun et al. [14] propose a hybrid architecture for data centers
which combines the selective usage of lowpower systems and high
performance ones. This approach can be used to apply local en-
ergy saving policies only when performance allows it. Following
this idea, our approach is able to take profit of this type of environ-
ment.

Lately, interest in energy management has experienced a
hype [15] because of public Clouds. In other words, large data
centers are now being offered to the public who asks for a ‘‘green’’
environment. For example, Da Costa et al. [16] propose a logging
infrastructure to provide energy-related information to the users.
Retaking this trend, multiple works propose techniques to reduce
energy consumption [17] in these infrastructures while fulfilling
QoS [18,19].
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Virtualization management. Maximizing providers’ benefit has
become a hot research topic thanks to virtualization. During
the last years, some works like Vogels [20] have studied the
consolidation advantages using virtualization while other works,
e.g., Nathuji et al. [1], have widely explored its advantages from
the power efficiency point of view. Petrucci’s work [2] presents
the use of virtualization for consolidation, proposing a dynamic
configuration approach for power optimization in virtualized
server clusters and outlines an algorithm to dynamically manage
them. This approach also focuses on a power efficiency strategy
taking into account the cost of turning on or off servers.
Nevertheless, it can lead to a too slow decision process as it is
focused to a very static environment andHPC jobs. In this sense, our
proposal is suitable for an on-line scheduler and is able to manage
both HPC jobs and Web-based services. Besides, Kumar et al. [21]
propose a solution to loosely couple and facilitate coordination of
power and virtualization management. The approach presented
provides a better VM placement and runtime management to
achieve power savings (10%), as well as a significantly improved
fulfillment of SLAs (i.e., 71% less violations).

To enhance VM placement, Liu et al. [4] aim to reduce
virtualized data center power consumption by supporting VM
migration and VM placement optimization while reducing the
human intervention. Following the same idea, we propose the
use of VMs to run heterogeneous applications and we consider
virtualization overheads. However, in addition of consolidating,
virtualization makes the overall system more complicated and
requires well-designed policies which take VM management
problem into account. Until today, virtualization management
overheads have been only considered individually whenmanaging
virtual resources [22,23].

Economic approaches are also used for managing shared server
resources. For example, Garg et al. [24] try to optimize the
trade-off between cost and time when managing parallel appli-
cations on utility environments. With regard to energy efficiency,
Chase et al. [25] present a greedy resource allocation algorithm
that allows distributing a web workload among different servers
assigned to each service. This technique reduces the server energy
usage by 29% or more for a typical Web workload. Moreover, Chen
et al. [26] propose an integrated management of applications per-
formance, dynamic workload migration and consolidation, as well
as power and cooling in data centers. They present a prototype
and demonstrate their integrated solution can reduce energy con-
sumption of servers by 35% and cooling by 15%.

Resource outsourcing. Distributing load of a particular provider
among different data centers is considered by Le et al. [27].
The authors propose using multiple data centers according to
their geographical distribution and power consumption. Besides,
Ranjan et al. [28] propose a mechanism which allows transparent
use of resources from the federation of several distributed clusters
when local resources are insufficient to meet users’ requirements.
They demonstrate through simulation that overall users’ QoS
demands across the federation are better met. In addition, in our
previous work [29] we present an approach which characterizes
a federation of Clouds to enhance the providers profit, focusing
in the resources outsourcing technique. These works consider
basically economic factors over power elements, looking for the
improvement of the infrastructure owner’s economic profit and
revenue.

Summarizing, we note that previous works only take into
account individual factors in terms of managing a data center,
while our contribution in this work is an integrated and complete
solution for managing virtualized data centers. In fact, we address
all the emerging challenges in this kind of environments, such as
virtualization overheads, the outsourcing of resources to third-
party IaaS providers, and an accurate economic model which
concerns of the operation and execution of a data center.
3. Modeling a virtualized data center

We use a model to calculate all the costs and revenues for
a given schedule. Thus, we can decide whether placing a VM in
an execution platform will provide benefit or not. This platform
is usually a local host of the data center which can run VMs,
but it can also refer to assets of an external provider (i.e.,
hosts of other providers when outsourcing) or any other kind of
resources. However, the model sees all the execution platforms
as hosts with particular features depending on their nature (local,
outsourced. . . ), which are translated into different costs.

Next subsections discuss how our model handles some
important particularities of a virtualized provider, such as: how to
unify the units of all the costs and revenues, what time reference
must be taken, what heterogeneity factorsmight affect the system,
what to do with running and not running VMs, and how SLA terms
compute revenues and penalties.

3.1. Unifying units

Our model uses the associated cost to each factor including
execution incomes, operational costs, and power consumption.
However, each of them has different units, measures, or meanings.
For instance, operational costs can be measured in time, while
power consumption is measured in watts per hour. For this
reason, there is a need to unify all those different parameters
in a common way. This is achieved by defining everything as
economic revenues or costs, depending on their nature. Following
the previous example, operational costs and power consumption
can be related to ‘‘price of CPU time unit’’ or ‘‘bill for watt/hour’’,
respectively. Unifying units of the different factors allows merging
them and getting a final score which makes optimization problem
easier to be defined and solved.

3.2. Time references

To model a virtualized data center for scheduling, we need to
know the execution point of each VM. However, user running time
estimations are not very accurate [30]. In our work, we only use
them as a reference to estimate the execution progress and deal
with queue times, virtualization overheads, low performance, and
SLA penalties incurred by these overheads. For this purpose, we
consider the execution time for a task in a dedicated reference host
(Td(vm)). Notice that this value is only meaningful for HPC jobs.
For Web-based services, which can have an undefined duration,
Td(vm) is fixed to the scheduling horizon.

We use these estimations to calculate: the elapsed time on
the execution (t(vm)), the extra time added due to virtualization
overheads (Textra(vm)), the estimation of the remaining time
(Trem(vm)), and the estimation of the remaining time including
the extra time due to virtualization overheads (Tr(vm)). All these
values are used to estimate future costs for a VM.
Td(vm) = vm execution time in a dedicated machine
Textra(vm) = extra time added to vm
t(vm) = time elapsed on vm execution
Trem(vm) = vm remaining time

= Td(vm) − t(vm)

Tr(vm) = vm remaining time including
virtualization overheads

= Trem(vm) + Textra(vm).

We use Td(vm) and t(vm) to calculate the final revenue
(according to the SLA when the task finishes). Finally, the user
will pay for the execution. The extra time used by the provider to
accomplish the VM execution will be only considered if it has an
impact on the SLA terms (i.e., causing penalties due to SLA terms
violation).
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(a) Deadline (DL). (b) Performance (P).

Fig. 1. SLA fulfillment types.
3.3. Dealing with non-running VMs

Our approach has a queue holding those VMs which are not
running in any host, including those that have not been yet
executed or previous failed execution. For this purpose, we use a
virtual host with special features. This host acts as a queue that
holds the description of those VMs not allocated in any physical
machine.

As the provider wants to run as many VMs as possible in the
shortest time, the queuing time of VMs in the virtual host has to
be minimized. We do so by assigning the maximum cost possible
to the allocation of a VM in the queue, which corresponds to
no revenue and maximum SLA penalty. This makes any other
allocation (into a physical machine) better than not running the
VM. Hence, in a scheduling round, the operations with maximum
benefit will be those involving VMs in this queue.

However, this approach also considers that not executing or
waiting to execute a VM can be a desirable solution in some
situations. In this case, when the scheduling moves a VM from a
running status to the queue again, it means that it is not profitable
and thus, the VM will be destroyed.

3.4. SLA terms

Each application has its own SLA, described in XML using
both WS-Agreement and WSLA specifications. The SLA includes
the following terms, which regulate the customer–provider
interaction:

Pricing. To calculate how much the customer has to pay to the
provider, it uses a price per unit of time Prhour(vm) for
successfully executing a task (see Section 8.5).

Service level objectives (SLO). Terms to assess the QoS that the
customer receives from the provider.

Definition of QoS metrics. The agreed QoS between
the customer and the provider is specified using a set
of service-level metrics (e.g., deadline, response time,
availability, etc.). Our approach considers heterogeneous
workloads composed by two application types: HPC jobs
and Web-based services and applications. The provider
offers different QoS terms for each one. HPC jobs define
an execution deadline and Web-based services use a
minimum performance (i.e., response time).

Fulfillment of QoS metrics. The fulfillment degree of
these QoS terms is used to calculate the penalties the
providermust pay due to SLA violations. On the one hand,
the SLA fulfillment outcome of anHPC job depends on the
deadline. If the job takes longer than Td(vm), it will start
violating and if it takes longer than 2·Td(vm), it will reach
the maximum penalty (Fig. 1(a)).

On the other hand, the response time of a Web-based
service will depend on the amount of assigned resources
and the number of requests it receives. A service with
not enough resources to satisfy all the requests will start
increasing its response time and it will violate its SLA. In
fact, the SLA specifies a threshold response time and it
will be violated if the instantaneous response time goes
beyond this threshold. In our experiments, this threshold
is 8 s, which is the limit a user can wait for a web page as
stated in [31]. The SLA fulfillment outcome depends on
the percentage of time that the service has been fulfilling
the SLA (Fig. 1(b)). For example, if a one-hour service
provides a high response time during 15 min, its SLA
fulfillment is 75%.

Section 8.5 presents in detail how SLA penalties are
derived from the SLA fulfillment percentage.

Task information. Additional information that is needed to exe-
cute the task in the provider. This includes hardware and
software requirements Req(vm) and its execution time in
a dedicated reference host (Td(vm)).

3.5. Dealing with heterogeneity

Usually providers own data centers with hosts with different
capabilities and speeds. Thus, resource management policies must
be aware of this fact and try to take profit of this resource
heterogeneity. The performance and the speed of applications are
highly variable depending on the speed of the nodes and this
influences the SLA fulfillment.

Our model currently focuses on CPU speed as the provider
targets HPC applications, which directly depend on CPU, andWeb-
based applications, which bottleneck is also, in part, the CPU.
However, it can be easily extended if the applications would be
memory or I/O intensive.

As commented before, the model uses some data (e.g., Td(vm))
that it is calculated in a dedicated reference host (Href ). We define
the speed of this machine as Speed(Href ). Of course, a given VM can
be executed in a host with different speed regarding the reference
host. To consider this situation, we define a performance factor
Per f (h, vm) for a VM running in a host h:

Per f (h, vm) =
Speed(Href (vm))

Speed(h)
.

This performance factor allows us to extrapolate the time
estimation from the reference host to any other host. For example,
given an HPC task with an execution time Td(vm) in the reference
host, the model can estimate how long it would take in another
host h as Td(vm, h) = Td(vm) · Per f (h, vm).

4. Facets considered in the model

The placement of virtual machines in a data center involves
a set of factors that must be considered to get a good schedule.
Allocating a VM in a host unable to bring the required resources
would imply the non-accomplishment of the VMexecution (and so
the non-payment of the service), or running a VM in a host whose
CPU speed is not enough to assure the task deadline would imply
a penalization cost for the extra spent time. In this section, we
introduce the factors related to the operation and profitability of
a virtualized provider, which we consider in our model.
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4.1. Task requirements

Each task has its own hardware and software requirements.
The scheduler must check the capability of the different hosts for
holding a given VM (according to these requirements) to decide
about its potential placement. These requirements (Req(vm))
include the required system architecture, the type and number of
CPUs, the libraries needed to execute an application, the hypervisor
(e.g., Xen or KVM), etc.

Although the user provides an initial estimation of the CPU
requirements of the application (CPUreq(vm)), these requirements
may change over time. For example, applications can have time-
varying demand or virtualization operations can be added (e.g.,
VM creation and migration). As described in [32], we envision a
local resource monitor in each host which figures out the resource
requirements of the VMs running on that host at every moment.

4.2. Outsourced external resources

Traditionally, enterprises that widely rely on IT systems had to
make great investments at their first steps to build the needed
IT infrastructure, which are considered as capital expenditures
(CapEx). This initial investment was often a significant problem,
especially for small and medium sized businesses. Nowadays,
this fact has changed thanks to the well-established Cloud
billing model (i.e., pay-as-you-go). Actually, investments on Cloud
infrastructures are smoothed over time versus a large lump sum,
thus converting the aforementioned capital expenditures into
operating expenses (OpEx) [33]. Outsourcing can suppose an extra
solution for an overloaded data center, as some resources can be
externalized paying the cost of acquiring temporarily resources
(i.e., VMs) from other providers (Crent(hp, vm)).

4.3. Estimated SLA penalties

In general, the fulfillment of the SLA terms and the penalties
incurred are evaluated when the task finishes. However, we must
consider the potential fulfillment of these terms during task
execution. Thus, we can consider the possibility of violating an
SLA term when performing any operation or applying a specific
allocation to a VM. For instance, the scheduler must evaluate how
the overhead impact of operations, such as creating or migrating
a VM or the performance impact of overloading a host, affects SLA
fulfillment.

When a host has an amount of resources lower than the sum
of resources demanded by the VMs allocated in that host, the
resources have to be shared and this may imply a reduction
of the performance of its VMs. We use a health parameter to
measure this impact. It refers to the capability of a host to attend
the resource demands of the VMs it hosts. We define He(h) as
an heuristic function that relates the amount of available and
demanded resources with the performance. This function can be
used to preview the availability of resources in a host and evaluate
the effects that overloadingwould cause on the SLA fulfillment.We
combine this with the performance factor (Per f (h, vm)) to adjust
it to non-dedicated machines.

4.4. Power consumption

One of the costs that vary with the utilization of the system
is the power consumption. To predict the power consumption
associated with the execution of each VM, we use a model that
relates resource utilization and power consumption. We derive
this power model by measuring the power consumption of a
physical machine under multiple loads. Using this information, we
generate a curve that provides the power consumption of a host at
a given occupation (Power(h, o)).
This model can be derived for different hosts and applications.
Taking into account the profile of our target applications, we
use CPU utilizations of VMs. In particular, we use HPC jobs from
Grid5000 [34] and TPC-W [35] for the Web-based services. The
details of our power consumption model, as well as its validation,
can be found in our previous work [36].

4.5. Virtualization management overhead

As stated before, one of the strengths of our proposal is our
ability to deal with virtualizationmanagement issues. One of these
is the VMcreation overhead (Tc(h, vm)), which is the time required
to create and start a new VM before it is ready to run tasks. The
other one is the VM migration overhead (Tm(h, vm)), which is the
time required to move a running VM from the current node to
another. When a new VM needs to be started in the system, we
consider the time to create and boot up it in each host. In the same
way, when migrating a VM to another host, we consider the time
required to migrate it.

Furthermore, virtualization can produce other operational
problems in its runtime. For example, when migrating a VM, this
cost must take into account the remaining execution of a VM, since
it is not worth to move a VM which will finish shortly. Another
situation to consider is performing multiple actions to VM at the
same time which can lead to undesired situation. For example,
we cannot migrate a VM which is not fully created or we cannot
destroy a VM while is being migrated.

Another issue to be considered is performing more than one
action at the same time in the same host, which will be referred
as concurrency. This situation can generate a race for the resources
(e.g., disk or CPU) between the different VMs, which will add extra
overhead. For this purpose, the model considers the actions that
are already being performed in a given host.

5. Cost-benefit modeling for the facets

In this section, we present the functions to calculate the cost-
benefit of each one of the facets considered in our model. All these
factors are treated as costs of an allocation, and these costs are
subtracted from the revenue, resulting into the final benefit for a
VM. Note that some of them do not represent economic units and
thus, they are transformed into penalties.

5.1. Cost of task requirements

The scheduling must check the capability of a host for holding
a given VM. In case the host cannot execute a VM, the cost of
placing this VM into that host can be considered as the maximum
penalty for that task as specified in the SLA and the allocations
in that host will not be performed. If the maximum penalty is
not available, the cost would be infinity. Hence, it will act as a
conditional statement which will avoid the execution of that VM
into that host. The unfeasible situations are discarded considering
it as a Boolean function: if there are available resources, cost is
zero and if the resources in the tentative hosts are nonexistent
or unavailable, cost is maximum penalty. From this description,
Creq(h, vm) is derived.

Creq(h, vm) =


∞ if h cannot fulfill Req(vm)
0.0 otherwise.

5.2. Cost of outsourced external resources

Our model supports the usage of rented resources from other
providers (this outsourcing approach is detailed in Section 7.3).
To model this, we introduce a renting which is expressed as
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Crent(hp, vm), where hp is the external provider. This cost typically
depends on the time that the VMwill be executed and its features.
For example, Amazon EC2 in the US sets a cost of 0.08 e/h for small
instances, which corresponds to a VM with 1.7 GB of memory,
1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit),
160 GB of local instance storage, and 32-bit platform [37].

Crent(hp, vm) = Prhour(hp, Type(vm)) · (Td(vm) + Textra(vm)).

Usually these external resources are only used when their cost is
cheaper than the penalizations of holding a VM in the local data
center. This cost is also expressed in economic units.

5.3. Cost of estimated SLA penalties

As explained in previous section, one of the most important
costs comes with the penalties incurred by violating SLA terms.
Overcrowding a host can degrade the performance of the VMs
running on it, so we have defined a health heuristic to estimate
how the impact of overloading can result. In particular, He(h)
function, which depends on the total CPU capacity in a host h
(CPUavail(h)) and the CPU demand of each VM running on that host
(CPUreq(vmi)), can be defined as follows:

He(h) = min

1,
CPUavail(h)

h
vmi

CPUreq(vmi)

 .

This function follows a behavior already observed in previous
works like [36], where the performance is directly related to
the ratio of CPU offer/demand and its sharing consequences.
This health function represents how much the host is able to
handle its entire load. In case of overwhelming, it predicts how
much Per f (h, vm) is degraded, so it can be used as heuristic for
estimating the execution delays and thus, the SLA penalties.

Regarding deadline-based SLAs, we consider the extra time
added until then due to operations and host performance. The
former considers that the estimated SLA penalty for a vm running
at host h at a given time depends on the extra time added until
then due to operations or virtualization overheads (Textra(vm)).
This is accumulated during the execution to know how much the
base execution time is exceeded. The latter considers the estimated
extra time thatwill be added during the remaining execution of the
VM in a host. It is derived from Trem(vm) and adjusted according to
the host health (He(h)) and its performance factor (Per f (h, vm)).
Notice that we are trying to figure out howmuch time this VMwill
be delayed beyond its deadline. The complete calculation for this
penalty is as follows:

PenDL(h, vm) = max


0,

Prhour(vm)

3600
·


Textra(vm)

+
Trem(vm) · Per f (h, vm)

He(h)
− Trem(vm)


.

On the other side, for the performance-based SLAs, managing
violations of Web applications, which depend on response time
and thus on the amount of CPU given at each time, is a matter of
considering the extra CPU load each operation incurs. During those
periods, the response time will be increased and depending on the
amount of resources assigned, it might violate the SLA. According
to this, we can estimate the penalty for aWeb application trying to
figure out the amount of time it will receive less CPU than required
during its remaining execution time (Trem(vm)), which basically
depends on the host health (He(h)) and its performance factor
(Per f (h, vm)).

PenPer f (h, vm) = max

0,

Prhour(vm)

3600

·


Trem(vm) · Per f (h, vm)

He(h)
− Trem(vm)


.

Both penalty estimation formulas are conceptually different,
but we can generalize a single formula for both SLA types using
Textra(vm) = 0 for Web applications. According to this, the cost
associated to SLA penalties is:

Cpen(h, vm) = PenDL(h, vm).

Estimated SLA penalties are not only used to calculate the
current penalties. We extend this idea to assess estimated
penalties of potential situations. For instance, we estimate the
SLA penalty of a VM (vm1) in a host (h) when adding a new VM
(vm2): ˆPen(h, vm1, vm2). This is used to calculate the cost of a
new operation (see next subsection for details on how we use this
estimation to calculate the cost of virtualization operations). This
estimation uses the tentative health, Ĥe(h, vm2), which evaluates
the status of the host when adding vm2. The general penalty
formula which takes into account a tentative allocation is:

ˆPen(h, vm1, vm2) = max

0,

Prhour(vm1)

3600

·


Trem(vm1) · Per f (h, vm1)

Ĥe(h, vm2)
− Trem(vm1)


.

Finally, notice that all those estimations are forcing all penalties
to be positive, since there is no reward if the task finishes earlier
or theWeb service gets a better performance by running in a faster
machine. Notice also that scaling these penalties by the price per
VM per hour, the model is obtaining economic units for every risk
of delay.

5.4. Cost of power consumption

Using the power consumption model of each application and
the status of the host, we calculate the power consumption of a
host Power(h, o). This can be easily converted to economic units
using the electricity pricing and the estimated execution time.
Using this information, the model estimates the cost caused by the
power consumption of each VM, Cpwr(h, vm).

Power(h, o) = power consumption of h at occupation o
O(h, vm) = occupation of hwhere vm going to run

Cpwr(h, vm) =
CPUreq(vm)

h
vmi

CPUreq(vmi)

· Power(h,O(h, vm)) · PrKWh · Tr(vm).

The power cost is expressed in economic units by calculating the
cost of the energy consumed by the VM.

5.5. Cost of virtualization management overhead

Basic virtualization operations. In our approach, virtualization
overheads such as VM creation and VM migration affect as an
operation time, and these operations can have an estimated or
defined time:

Host(vm) = host where vm is allocated
Tc(h, vm) = time of creating vm in h
Tm(h, vm) = time of migrating vm from Host(vm) to h.
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The cost to migrate a VM must consider the remaining
execution since it is not worth to move a VM which will finish
shortly. For this purpose, a migration penalty considering the
remaining execution time is used:

Pm(h, vm) =


2 · Tm(h, vm) Tr(vm) < Tm(h, vm)

Tm(h, vm)2

Tr(vm)
Tr(vm) ≥ Tm(h, vm).

Concurrent virtualization operations on the same VM. When an
action is being performed in a VM, starting another action on
that VM can put the system under not desired situations like
migrating VMs when they are not ready yet, or trying to destroy
a VM which is being migrated. For this reason, while the VM is
being operated (created, migrated. . . ) operating on this VM is not
recommended. So a penalization is derived including the previous
migration penalties and creation times:

Pvirt(h, vm) =


0.0 if Host(vm) = h
∞ if action performed in vm
Tc(h, vm) if Host(vm) = ∅

Pm(h, vm) if Host(vm) ≠ h.
Concurrent virtualization operations on the same host. As explained
before, concurrency (performing more than one action at the same
time in the same host) must be considered when operating over
VMs. For this purpose, themodel firstly calculates the concurrency
for a given host according to the VM operations it is already
performing. This cost is applied to those VMswhich can be created
or moved to that node. Finally, aggregating all these penalties, the
model can calculate an estimation of the time incurred (Top(h, vm))
by an operation to allocate vm in h.

Pstate(h, vm) =

Tc(h, vm) if h is creating vm
Tm(h, vm) if h is migrating vm
0.0 otherwise

Pconc(h, vm) =


0.0 if Host(vm) = h
h

vm

Pstate(h, vm) if Host(vm) ≠ h

Top(h, vm) = Pvirt(h, vm) + Pconc(h, vm).

Converting operation time to cost. Notice that all the virtualization
penalties described in this section are represented in time units.
Now we describe how this extra time is converted into cost units.

The overheads of operating with VMs cause extra time (Top)
to be added to the execution time of the VM. These need to be
transformed to costs and expressed in economic currency (time
is gold). A VM in operation time implies different costs. First, the
power used by the host machine during this process. Second, the
amortizing cost of the host while it is not running any VM. And
third, it must consider the cost incurred by the possible violation
of the SLAs running in that node.

The estimation of SLA penalty, which was introduced in
Section 5.3, is used to simplify this approach. In addition, the cost
for creating, migrating, or performing any action in a VM includes
the estimation of the penalties added by this operation to all the
VM in that host ( ˆPen(h, vmi, vm)).

All these factors are used to convert time (Top(h, vm)) into
economic units (Cop(h, vm)) using this conversion function:

Cop(h, vm) =


PrKWh + Prhour(vm)

3600


· Top(h, vm)

+

h
vmi

ˆPen(h, vmi, vm).

6. Scheduling policy in virtualized data center

The key to optimize the provider’s benefit is finding the best
VMplacement at eachmoment considering the revenues and costs.
We achieve this by assigning an economic score to each possible
VM allocation in every host based on the model presented in
Section 3. Thus, we define the system as a matrix #Hosts × #VMs
where each cell represents the score to place each VM VMi in each
host Hj.

Using the model, the scheduling policy firstly calculates the
expected revenue (R(vm) = Td(vm) · Prhour(vm)) and then, it
subtracts the individual costs. Those that check the requirements
(Creq(h, vm)); those associated with the VM execution, such as
outsourcing (Crent(h, vm)), or power (Cpwr(h, vm)); those that
stand for the virtualization overheads (Cvirt(h, vm)); and finally,
the estimated SLA penalties (Cpen(h, vm)). Finally, the final score
for each cell is ⟨host,VM⟩:

B(h, vm) = R(vm) −


Ci(h, vm).

6.1. Considering SLA penalties on the scheduling

When deciding the placement of a VM in the provider, we
consider estimated SLA penalties in two ways. On one side, Cpen
includes the extra time added to the evaluated VM including
both past and future. Past includes previous operations and
virtualization overheads (if the VM was already running in the
provider). Future estimates the extra that will be added during
the remaining execution because of the health of the host. On the
other side, Cop takes into account the potential violations that a
placement operation (creation or migration) will incur in other
VMs already running in that host.

We illustrate this with an example. Host HA has 2 CPUs at
3.00 GHz and takes 30 s to create a VM. HA runs two VMs with
a requirement of 1 CPU: VM1 and VM2. VM1 runs an HPC task
whose deadline is due in one hour and it has already 60 s of extra
time added by previous virtualization operations. VM2 runs a Web
service that will finish in one hour. Note that these time references
are based on the performance in a reference host. However, for
simplicity, HA has the same capabilities as the reference host, and
thus Per f (HA) = 1. In such scenario, He(HA) = 1 and thus, the
current SLA penalties estimations for these two VMs are:

Cpen(HA, VM1)

= max

0,

Prhour(VM1)

3600
·


60 +


3600 · 1

1
− 3600


=

Prhour(VM1)

3600
· 60

Cpen(HA, VM2)

= max

0,

Prhour(VM2)

3600
·


3600 · 1

1
− 3600


= 0.

Then, the provider has to schedule VM3 in the system. This VM
will host an HPC job with a deadline of 2 h and 1 CPU requirement.
To check the profitability of placing this new VM in HA, the model
calculates the cost for this creation operation. The estimated SLA
penalty for the new VM is (notice that the host health after adding
this VM would be 2

3 = 0.6̂):

Cpen(HA, VM3)

= max

0,

Prhour(VM3)

3600
·


30 +


7200 · 1

0.6̂
− 7200


.

In addition to the virtualization cost for creating that VM
(i.e., an extra time of 30 s), it has to estimate the SLA penalties
incurred in the other VMs already running in that host after
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adding VM3:

Cop(HA, VM3) =


Prhour(vm) + PrKWh

3600


· 30

+

HA
vmi

ˆPen (HA, vmi, VM3)

HA
vmi

ˆPen(HA, vmi, VM3)

= ˆPen(HA, VM1, VM3) + ˆPen(HA, VM2, VM3)

ˆPen(HA, VM1, VM3)

= max

0,

Prhour(VM1)

3600
·


0 +


3600

0.6̂
− 3600


=

Prhour(VM1)

2
ˆPen(HA, VM2, VM3)

= max

0,

Prhour(VM2)

3600
·


0 +


3600

0.6̂
− 3600


=

Prhour(VM2)

2
HA
vmi

ˆPen(HA, vmi, VM3) =
Prhour(VM1) + Prhour(VM2)

2

Cop(HA, VM3) =


Prhour(vm) + PrKWh

3600


· 30

+
Prhour(VM1) + Prhour(VM2)

2
.

6.2. Solving scheduling

Once the scoring matrix has been filled with the expected
cost for each possible allocation, the algorithm tries to find those
combinations that maximize the overall system benefit. However,
before taking decisions, the algorithm must prepare this matrix
to compare values in a suitable way. First of all, values for each
VM must be centered to the value of the current VM situation.
From each cell, ⟨Hj, VMi⟩, the current benefit of keeping VMi in the
current host is subtracted (i.e., this is the value of cell ⟨Hcur , VMi⟩ if
VMi is running inHcur ). From now on, each cell represents the score
of moving a VM from the current host to the host corresponding to
this cell. Positive scores mean improvement and negative scores
mean degradation.

When the matrix has been already preprocessed, the optimiza-
tion process can start. This process selects on each iteration the
highest value of the matrix, which represents the best movement
to be performed in the system. Aftermoving the corresponding VM
to the new host, the matrix is refreshed with new scores. The main
idea is to iterate until the cost matrix has no positive values, or
the algorithm considers it has performed enough iterations for the
current round. However, there is always a chance of not converg-
ing and entering in a periodic movement cycle, so a limit number
of movements per scheduling round is applied.

When the matrix reaches a stable state where all changes
are negative or zero (no more improvements can be done), or
the number of movements has reached a given limit, we have
found a (sub)optimal solution for the current system configuration.
Algorithm 1 shows the matrix optimization algorithm.

Note that this algorithm is based on Hill Climbing which
is greedy. However, in this situation it finds a suboptimal
solution much faster and cheaper than evaluating all possible
M := Matrix [hosts][VMs];
- Fill M:

- Add revenues for each VM;
- Substract task requirements to each Host,VM;
- Substract infrastructure cost to each Host;

While M has positive values do:
- Update M:

- Substract power costs for each Host,VM;
- Substract SLA penalties costs for each Host,VM;
- Substract renting costs for each Host;
- Substract operation costs for each Host,VM;

<h,v> := highest position on M;
o := current host for v;

- Re-schedule VM v from Host o to Host h;

If (iterations limit reached) then:
break;

End If
End While

Algorithm 1: Algorithm for allocation matrix optimization

configurations. Each step brings to a more optimal configuration
until there are no better configurations or an iteration limit is
reached. The algorithm complexity has an upper boundary of
O(#Hosts · #VMs) · C since it iterates over the ⟨host,VM⟩ matrix
C times. In addition, some of the constraints help to reduce the
search space, i.e., the resource requirement constraint discards a
great amount of combinations at the beginning of the algorithm.

7. Management procedures in a virtualized data center

Once the placement of the VMs has been decided, we need
to perform the actions the scheduler has selected. These include
simple operations like creation of new VMs or migration of VMs
between two nodes, but also more complex actuators that will be
detailed in next subsections.

7.1. SLA evaluation

The evaluation of SLAs in our approach is two-fold. On one side,
there is a SLA fulfillment entity that evaluates the SLAs and checks
whether the SLA terms agreed between the customer and the
provider have been fulfilled or not. Then, it calculates the penalties
the provider will have to pay to the users. Section 8.5 explains in
detail how we calculate these penalties.

On the other side, the virtualized data center has an internal SLA
enforcementmechanism,whosemain goal is to detect ongoing SLA
violations. Then, it initiates resource management actions to solve
such violations (for instance, allocating more resources to a VM).
This SLA enforcement mechanism is transparent to the users.

Notice that we do not consider a complete SLA enforcement
system in this paper (we have presented one in our previous
work [32]). We just enable the scheduler to initiate some
enforcement actionswhen it infers that a SLA violation can happen.
For example, it cannot reach the deadline or the agreed quality of
service. The scheduler infers SLAs status indirectly from the host
health and the estimated SLA penalties.

As stated before, resource requirements of VMs (CPUreq(vm))
can vary along time and these fluctuations have an effect on
the host health (He(h)). In particular, when a VM requires more
resources (CPUreq(vm) = CPUreq(vm) + δ), the health of the host
where this VM runs becomes worse. This can result into a SLA
violation as some VMs running on that host could receive fewer
resources than required.

According to this, the scheduler periodically assesses the host
health. When it detects that a host health becomes worse (i.e.,
some VMs in that host could violate their SLAs), it initiates a
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rescheduling round to maximize the profitability according to the
new scenario. This is accomplished using the scheduling policy
described before.

7.2. Power efficiency

Power efficiency in our approach is based on the consolidation
of VMs to reduce the number of running nodes. Idle nodes can
be turned off to save its idle power consumption [38]. When they
are needed to run VMs and try to fulfill the tasks SLAs, we turn
them on again as done in our previous work [36]. The scheduling
policy enables this consolidation by including the energy costs in
the global cost-benefit analysis.

For this purpose, one of the key decisions is determining
the minimum number of operative nodes needed to execute the
workload. In this work, when to turn on or off a node is decided
using a simple approach where a given amount of idle machines is
always maintained. For example, if the provider is using 10 nodes
and the number of idle nodes has been fixed in 2 nodes, it would
require 12 nodes to be up and runningwhile only 10 are used.More
complex approaches likeworkloadprediction could be also applied
to make a more accurate policy.

Once the number of required nodes is known, the model is
also used to select which nodes needs to be turned on or off. In
this situation, our approach tries to schedule a fake VM to the
system and calculates the costs this process would cost to the
provider. Depending on the current target, i.e., turning on or off a
node, the algorithm selects the one with highest or lowest benefit,
respectively.

7.3. Outsourcing

We also consider the option of outsourcing any VM to a third-
party IaaS provider. If the local costs are too high compared with
the profit (e.g., there is not enough local capacity to execute a VM
in the local provider), the scheduler can decide to start a VM in an
external provider.

To support this scenario, we add a special host (hp) which
represents an external provider. We add as many special hosts as
external providers for outsourcing are available. Themodel for this
kind of a host is considerably simplified. First, there are no SLA
penalties when running in external providers, as they perform a
static resource allocation that fulfills the SLA. In addition, there
are no power consumption costs (Cpwr(hp, vm) = 0) as the other
provider already includes them in the renting cost Crent(hp, vm).

Finally, there are special cases for virtualization penalties.
Firstly, possible migrations of a vm from and to those special hosts
are avoided (Tm(h, vm) = ∞; Tm(hp, vm) = ∞). Secondly,
we do not consider concurrency penalty in an external provider
(Cconc(hp, vm) = 0). Therefore, Cvirt(hp, vm) is equal to the cost of
creating a VM in the external host, Tc(hp, vm).

8. Experimental environment

To evaluate our proposal, we use a simulated data center
which supports different scheduling policies and is able to run
multiple workloads. Next subsections present our experimental
environment.

8.1. Simulator

Avirtualized data center is a variable environmentwhichmakes
difficult to test multiple policies. In addition, results are difficult to
get and reproduce again because of the variability of the system.
To solve this problem, we simulate its behavior based on actual
systemmonitoring, including power consumption measured from
real machines using power meters. Among other factors, the
simulation includes virtualization overheads (including creation,
migration, checkpoint), the ability to turn nodes on and off, and
the ability to simulate node crashes.

The simulator, which is based on OMNet++, uses different
scheduling policies and provides several metrics like power
consumption, node usage, performance, and benefit. An early stage
of this simulator is presented in [36] and it is validated and
described in detail in [39]. It was also used to test initial versions
of the current scheduling policy [7].

8.2. Scheduling policies

To evaluate our proposal, we implement the policy presented
in this paper as ‘‘Cost-driven Scheduling Policy’’ (CDSP). It also
supports multiple variations by adjusting some parameters. For
example, we can take into account the virtualization overhead, add
outsourcing capabilities, etc.

As low boundaries in terms of SLA fulfillment and power
consumption, we use Random and Round-Robin policies. The first
one decides the placement without taking into account any factor.
The other one always places the VMs in the host with the lowest
usage and achieves the lowest consolidation.

We also use a more plausible approach, which is consolidation-
aware like backfilling (BF).We use a variation of the classical EASY-
Backfilling policy for job scheduling [40]. This variation follows the
same idea that regular backfilling but with VMs instead of jobs.
Thus, it fills nodes having idle resourceswith small VMs to increase
consolidation. In addition, we use an extension of this approach
that supports migration (BF + M), which increases global system
consolidation by migrating VMs from mostly unused machines to
those close to be full.

Notice that the CDSP policy follows the backfilling scheme, but
it also takes into account the virtualizationmanagement overhead.
In addition, it is driven by the proposed economic model and thus,
it can deal with the trade-off between SLA penalties and energy
consumption.

We also compare with our previous policy based in Scores
which does not consider economic factors [7]. As it does not
support the economicmodel, it cannot automatically deal with the
trade-off between performance and energy and depends on the
administrator setup.

Finally, we give an upper boundary in terms of SLA fulfilling
with the Perfect policy. This policy gives the minimum energy
consumption possible to execute the workload while fulfilling the
100% of the SLA. This is an analytical policy which implementation
is NP complete and thus, it is not feasible for an online model.

8.3. Provider’s configuration

The experiments consist of the simulation of awhole virtualized
data center with a different amount of local nodes having different
features like architecture, speed, and size. The simulated data
center is also able to outsource to other providers.

The provider behaves as a Cloud provider similar to Amazon
EC2 where users can rent VMs to run their tasks. In particular,
we use the EC2 pricing for medium instances with high CPU load,
which have a cost of 0.17e/h (EC2 pricing in Europe). However, the
accounting is performed in a more accurate way and the user pays
per each second and not each hour.

We use the electricity pricing from Spain which is 0.09 e/ KWh
[41]. Furthermore, to calculate the cost of the nodes, we also
take into account the amortization of the servers (in 4 years) and
the space (in 10 years) required to deploy them using a price of
2000 e /m2. As external providers, two Amazon EC2 data centers
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Table 1
Node features according to its type.

Power (W)
Arch CPU (num@Hz) Mem (GB) Min Max Price (e) m2/node

A Xeon 4@3000 16 230.0 317.9 1000.0 0.1
B Xeon 4@2660 16 228.6 316.1 1000.0 0.1
C Xeon 2@2392 2 228.1 315.3 1000.0 0.1
D Atom 2@1600 4 37.2 39.8 500.0 0.05
are considered: US and Europe. Both have an average creation time
of 300 s and a cost of 0.19 and 0.17 e/h respectively.

Regarding the in-house resources, the provider has local nodes
with different speeds and features according to the experiment
and its goal. These nodes can have two different architectures
of Xeon or Atom. Table 1 presents the features of the different
nodes including: architecture, CPU features, memory, power
consumption (obtained using a power meter), a reference pricing,
and the space taking into account they are racked.

The first two Xeon-based configurations have good perfor-
mance and high power consumption, while the C one corresponds
to oldmachineswithmediumperformance and high consumption.
Atom-based configuration is cheaper and has poor performance
but very low power consumption.

8.4. Data center workload

Our approach is able to deal with heterogeneous workloads
composed by batch HPC jobs and Web-based services having a
similar amount VMs of both types running at the same time. For
testing purposes, the HPC workload is a Grid workload obtained
from Grid5000 [34] on the week that starts on Monday first
of October of 2007. The Web workload was obtained from an
anonymous European ISP and was collected during 2009. It results
from the aggregation of several services and the used profile is of a
whole week, thus representing different classical increases of load
of each weekday and the decreases of load of weekends.

The applicationswhich compose theworkload aremodeled and
introduced into the simulation framework. As shown in Table 2,
which shows the details of the heterogeneous workload, there are
a total of 1973 HPC tasks that are CPU intensive (with several CPU
consumptions) and behave in a linear way depending on the speed
of the node. In addition, the tasks have different durations: short
(less than 600 s), medium, and long (more than 20,000 s); they are
distributed among time with a mean of 35 and a maximum of 204
tasks are running concurrently.

On the other hand,Web-based applications simulate customers
who want to run their services on top of the provider. The
behavior of these applications deployed corresponds with the
SPECweb2009 e-Commerce application [42]. Their model has been
obtained by stressing this application (deployed on a Tomcat v5.5)
with different resource allocation under different input loads. In
particular, this modeling has focused on response time. In this
sense, we create a performance pattern that relates this metric
with both incoming users’ load and CPU usage of the server (note
that the application used is CPU-bounded in this environment).
We divide the aforesaid pattern in three phases according to
the server’s performance: an stationary response time where the
incoming load causes a CPU utilization less than 60%; slightly
increased where CPU utilization is between 60% and 80%; and
polynomialwhere the server is overloaded (i.e., higher than 80%).

Finally, the number of VMs concurrently running in the
provider and the features of the local nodes are the key issue
to dimension the provider. We use data centers with different
features depending on the experiment.
Table 2
Workload details.

Type SLA type #VMs Description Mean duration

HPC Deadline 12 1 CPU 66213’’
HPC Deadline 18 1 CPU 57913’’
HPC Deadline 27 2 CPU 296’’
HPC Deadline 29 3 CPU 15380’’
HPC Deadline 49 2 CPU 594’’
HPC Deadline 82 2 CPU 18485’’
HPC Deadline 88 4 CPU 19911’’
HPC Deadline 89 1 CPU 8456’’
HPC Deadline 725 2 CPU 101’’
HPC Deadline 854 1 CPU 5346’’
Web Performance 6 Monday 86400’’
Web Performance 6 Tuesday 86400’’
Web Performance 6 Wednesday 86400’’
Web Performance 6 Thursday 86400’’
Web Performance 6 Friday 86400’’
Web Performance 5 Saturday 86400’’
Web Performance 5 Sunday 86400’’
Web Performance 20 One week 604800’’

Total HPC 1973 10979339’’
Total Web 65 15552000’’

8.5. SLA revenue and penalties

A SLA fulfillment entity monitors and accounts the execution
of the tasks in the provider and calculates the percentage of time
in which each SLA has been violated (σ(Appi)). This violation
ratio is used as the input for determining SLA penalty (Pen(Appi)).
This is the final penalty the provider must pay to the customer
for non-accomplishing the agreed SLA. Pen(Appi) is calculated
as a percentage of the revenue acquired when fulfilling the
corresponding SLA (Rev(Appi)) by using a Gompertz function
(Gom(σ (Appi))). This is a kind of sigmoid function where growth
is slowest at the start and end of a time period and thus, it reduces
the penalties for low SLA violations, as shown in Fig. 2.

Pen(Appi) = Rev(Appi) ·
Gom(σ (Appi))

100
.

The revenue (Rev(Appi)) results from the amount that the
customer must pay for executing a VM during an amount of time
(T ) at an agreed pricing (Prhour(Appi)), in a similar way Amazon
EC2 [37] does. The revenue for HPC jobs is calculated assuming that
T = Td(Appi). Forweb-based services,we assume that T = t(Appi).

Rev(Appi) = T · Prhour(Appi).

The final income for the provider for executing a task is:

Inc(Appi) = Rev(Appi) − Pen(Appi).

Note that we use a strict approach to calculate SLA penalties.
This allows appreciating the impact of scheduling policies on SLA
penalties in a easier way. However, real providers can use a more
relaxed approach.



728 Í. Goiri et al. / Future Generation Computer Systems 28 (2012) 718–731
Fig. 2. SLA penalty function.

Fig. 3. Algorithm scalability according the number of hosts and VMs.

9. Evaluation

9.1. Scheduling algorithm scalability

We first evaluate the scalability of our scheduling algorithm. For
this purpose, a new VM is submitted every 100 s. Every VM fits in
every host and no restrictions are applied. This is the worst case
and provides an upper boundary of the algorithm efficiency.

Fig. 3 shows the number of operations required depending on
the number of VMs in a data center with a given number of nodes.
The algorithm powers on new hosts as soon as it needs them
(policy presented in Section 7.2). Until this point the algorithm fills
those nodes and once all of them are full, the model decides there
is no more room for VMs and starts keeping the new requests in
the queue. These results show the algorithm has a linear cost, as
theoretically announced in previous sections. In addition, it takes
less than 2 s to schedule a VM in a data center of 1000 nodes which
is already executing more than 4000 VMs. Moreover, the overhead
to schedule our workload during one week is lower than 0.05%.

The upper boundary of the scheduler’s complexity has demon-
strated to be linear as it follows O(#Host · #VM) · C . In addition,
this reasoning can be easily distributed defining a hierarchical ar-
chitecture, where each scheduler controls a set of hosts.

9.2. Scheduling policy performance

To evaluate our scheduling policy, we compare its behavior
against other policies described in Section 8.2. In particular, we
analyzemetrics like power consumption and system performance,
but keeping in mind the final goal: provider’s benefit. We submit
the workload to a provider with different schedulers and compare
their results. This data center is composed by 65 nodes (the
maximum number of nodes needed in the workload peak).

Table 3 shows the obtained results for the different policies.
Perfect consumes 1229.6 kWh and obtains a 100% SLA fulfillment,
which implies a benefit of 1391e. This is an ideal policy which
fulfills all the SLAs and uses the minimum optimal number of
resources to fulfill all the SLAs. This approach gives us a reference
of what is the best value we can get with this testbed and this
Table 3
Scheduling results of policies.

Work/ON Energy (kWh) DL (%) P (%) B (e)

Perfect 22.5/22.5 1229.5 100.0 100.0 1391.021
RD 22.0/23.9 1328.9 9.7 69.3 654.4
RR 28.1/30.1 1556.3 45.4 82.5 1030.5
BF 25.1/27.1 1495.7 59.8 84.2 948.3
BF+M 24.2/26.2 1420.0 61.5 84.3 967.8
Score 24.7/26.7 1464.6 66.9 84.4 1053.2
CDSP no SLA 24.0/26.0 1413.8 59.8 84.2 965.8
CDSP no mig 13.9/16.0 831.4 77.5 82.1 1401.7
CDSP 13.3/15.3 838.0 79.5 81.9 1412.3

Fig. 4. Power consumption comparative.

workload. Notice that this policy is not realistic as it has a NP
complexity, but it gives a theoretical upper boundary.

As expected, Random (RD) performs very badly in terms of SLA,
as seen in the fulfillment of Deadline (DL) and Performance (P).
Round Robin (RR) gets a very bad consolidation level requiring
a mean of 28 nodes working and 30 nodes on (Work/ON). These
simple policies, which neither take care of consolidation issues nor
performance, establish a lower boundary.

Backfilling (BF), which is consolidation-aware, fills nodes with
unassigned resources with small VMs to increase consolidation. BF
and the dynamic extension of this policy (BF+M), which supports
migration of VMs to improve consolidation, cannot consider the
overheads of managing virtualization and thus, they get a medium
SLA fulfillment level.

Score, which is based in scores but does not consider economic
factors, is able to improve SLA fulfillment. However, it must
manually tuned to deal with the tradeoff between performance
and consolidation, which makes increasing the benefit (B) harder.

Our scheduling policy presents multiple variants. The first one,
which does not consider SLA (CDSP no SLA), gets results similar
to the score-based policy. Adding SLA costs (CDSP no mig), it
increases provider’s consolidation and gets better SLA fulfillment.
Finally, our policy including migration support (CDSP) gets better
consolidation and higher benefit.

These results demonstrate our model is able to handle
virtualization overheads and thanks to this, improve the provider’s
benefit. In particular, it gets a 30% more benefit than simple
policies like backfilling and its variants. It is also better than
Perfect as it sacrifices some SLAs to dramatically reduce the energy
consumption. The low energy consumption shown in Fig. 4 is
mainly because of a higher consolidation.

In addition, our policy increases the SLA fulfillment regarding
the BF+M policy, thus reducing the SLA penalties. Fig. 5
demonstrates our approach gets high SLA fulfillment for most
of the tasks while Dynamic backfilling provides less than 0.5
fulfillment to more than 50% of the tasks.

9.3. Resource heterogeneity

To evaluate the ability of our policy to take advantage of
host heterogeneity, we run the scheduling policy on data centers
with the same amount of resources (260 CPUs) but different
architectures:
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(a) Backfilling + Migration. (b) CDSP.

Fig. 5. Frequency histogram of SLA fulfillment.
Fig. 6. Power consumption using different data centers.

Xeon 65 Xeon hosts (Table 1. Used in the previous experiment).
Atom 130 Atom-based hosts (130 × 2 CPUs).
Heterogeneous 45 Xeon hosts and 40 Atom-based (45×4+40×2

CPUs).
Atom hosts require less space and reduce the capital costs, as

two of them fit in the same space of one Xeon-based host and cost
the half. Xeon hosts are able to run 4 HPC tasks of 1 CPU in 1 h
while Atom hosts can only run 2 in 5 h. Therefore, the execution
of 4 tasks in Xeon will take 1 h and will consume 318 W while the
other one would take 10 h and would consume 398 W. Hence, it
is more energy-efficient to run the HPC tasks in a Xeon host and
power it off.

Table 4 shows the performance of the different scheduling
policies and Fig. 6 shows the power consumption of our scheduling
policy for the three data center setups.

These results show higher saving for the heterogeneous
approach. This is because it reduces the power consumption using
the Atom power-efficiency and gets reasonable SLA fulfillment
thanks to the Xeon nodes.

On the one hand, our proposal runsmost of the HPC tasks in the
Xeon nodes because they get better performance. Moreover, these
tasks have deadlines which cannot be achieved by Atom hosts.

On the other hand, in the case of applications with lower
performance requirements such as Web applications or tasks with
more relaxed SLAs, it is better to make use of Atom nodes, which
consume less energy. For example, the SLA fulfillment of Web
applications (P) is very similar for Atom and Xeon-based data
centers. However, the Atom-based data center violates all the
deadlines (DL).

This experiment demonstrates that our proposal automatically
balances workload among nodes according to power consumption
and performance. Thus, we can conclude that our model is able
to handle resources heterogeneity and get a higher benefit for the
provider.

9.4. Outsourcing

Previous results have high fixed costs (more than e350) to
maintain 65 nodes during a week, while not all of them are used
all the time. To tackle this high cost, our policy takes advantage
of outsourcing technique to withstand periods of high load. This
experiment reduces the number of nodes to 20 and adds the
capability to outsource to two external providers.

Table 5 shows that when there are enough resources for the
peak (65 nodes), the difference between using outsourcing or not is
not very high. In this case, it only outsources 50 VMs (outsourcing
cost is e26.5), the energy savings are lower less than 1%, and SLA
fulfillment does not improve much.

When the provider has only 20 nodes to execute the workload,
it reduces fixed costs and power consumption while SLA penalties
are higher. However, it gets higher benefit thanks to outsourcing as
it can rent resources from external providers during peak loads. In
particular, having only 20 nodes implies a cost of e89.4 for renting
992 VMs. Thus, reducing the amount of local resources and renting
makes the provider getting higher benefit.

Note that outsourcing cost depends on VM duration and this
is why 50 VMs cost e26.5 and 992 VMs only e89.4. Performance
in an external provider is better since we assume the provider
gives the required amount of resources. However, creation time is
longer (e.g., 300 s in EC2), which implies a high overhead for short-
deadline tasks.

Finally, it might seem that reducing the amount of local
resources will always provide better economical performance.
Nevertheless, the option of having a provider with no local
resources gets a poor benefit. This is because outsourcing costs are
higher than power savings.

10. Conclusions

Towardmaking providersmore profitable, energy consumption
is a critical issue for large-scale data centers that host thousands
of machines and cooling equipment. Virtualization is making
providers more profitable every day as it provides consolidation
and dynamism.Nevertheless, it requires newpolicies formanaging
the new virtualization capabilities.

This paper creates a model to describe a virtualized data center
and solves the management problem from an economic point
of view. This model merges several factors, such as hardware
and software requirements, SLA penalties, virtualization overhead,
and power efficiency. Using this model, we perform a simple
optimization process tomaximize the provider’s profit. Finally, VM
placement is decided based on the optimization result.

We use a power-aware simulator which allows us to compare
our proposal with other solutions. We evaluate our proposal with
an heterogeneous workload using several metrics such as power
consumption and SLA fulfillment. Experiments demonstrate our
model is able to increase the provider’s benefit by a 30% and can
deal with problems like resource heterogeneity. Ultimately, we
also show that the most energy-efficient approach for this kind of
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Table 4
Scheduling results of policies with heterogeneity.

Nodes Work/ON Energy (kWh) DL (%) P (%) B (e)

BF Xeon 25.1/27.1 1495.7 59.8 84.2 948.3
BF Atom 52.7/54.7 784.5 0.0 83.6 745.4
BF Heterogeneous 38.1/40.1 1037.7 52.2 83.7 819.6
CDSP Xeon 13.3/15.3 838.0 79.5 81.9 1412.3
CDSP Atom 57.5/59.7 805.7 0.0 88.9 731.1
CDSP Heterogeneous 13.3/15.3 647.2 72.2 82.2 1486.8
Table 5
Scheduling results of policies introducing outsourcing.

Nodes Out/e Work/ON Power (kW) DL (%) P (%) B (e)

65 0 0.0 13.3/15.3 838.0 79.5 81.9 1412.3
65 50 26.5 13.1/15.0 817.3 82.9 83.9 1391.2
20 0 0.0 14.2/15.5 850.9 30.1 83.7 1527.9
20 992 89.4 13.2/14.9 800.3 59.8 86.3 1566.1
0 2038 1345.7 0.0/0.0 0.0 49.1 99.7 506.6
environment is running jobs very fast and powering the system off
afterward.

Our future work will focus on extending current policies
to support other applications with other SLAs. In addition, the
presented approach can benefit fromworkload characterization to
predict the number of required nodes and improve the turn on/off
policy. This policy can be also integrated in the cost-benefit model,
which would reduce the number of required nodes and thus, the
energy consumption.
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