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Abstract:

In most extensions of the Standard Model, heavy charged Higgs bosons at the LHC
are dominantly produced in association with heavy quarks. An up-to-date determina-
tion of the next-to-leading order total cross section in a type-II two-Higgs-doublet model
is presented, including a thorough estimate of the theoretical uncertainties due to miss-
ing higher-order corrections, parton distribution functions and physical input parameters.
Predictions in the four- and five-flavour schemes are compared and reconciled through
a recently proposed scale-setting prescription. A four- and five-flavour scheme matched
prediction is provided for the interpretation of current and future experimental searches
for heavy charged Higgs bosons at the LHC.
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1 Introduction

Many extensions of the Standard Model (SM), in particular supersymmetric theories,
require two Higgs doublets, leading to five physical scalar Higgs bosons, including two
(mass-degenerate) charged particles H±. Imposing natural flavour conservation, there are
four different ways to couple the SM fermions to two Higgs doublets. Each of these four
ways of assigning the couplings gives rise to a different phenomenology for the charged
Higgs boson. Here the focus is on a type-II two-Higgs-doublet model (2HDM), in which
one doublet generates the masses of the up-type quarks and the other of down-type quarks
and charged leptons.

Searches at LEP have set a limit mH± > 80 GeV on the mass of a charged Higgs boson
for this model [1]. For a branching ratio BR(H± → τν) = 1, corresponding to the limit
of large tanβ, the lower limit is 94 GeV [1]. The Tevatron experiments place upper limits
on BR(t → bH+) in the (15 − 20)% range for mH+ < mt [2, 3] which have recently been
superseded by results of the LHC experiments: preliminary ATLAS results [4] for a type-II
2HDM exclude BR(t → bH+) larger than (0.24 − 2.1)% for 90 GeV < mH± < 160 GeV
and for the first time also provide cross-section limits on tH± production in the mass
range 180 GeV < mH± < 600 GeV, both with the assumption that BR(H± → τν) = 1.
Based on the same assumptions, CMS results [5] exclude BR(t → bH+) above (2 − 4)%
for charged Higgs boson masses between 80 and 160 GeV. The search for a charged Higgs
boson is a central part of the physics program at the Large Hadron Collider (LHC), and a
discovery would provide unambiguous evidence for an extended Higgs sector beyond the
SM.

In this paper the focus is on heavy charged Higgs bosons, mH± > mt. Their main pro-
duction mechanism at the LHC in most extensions of the SM proceeds through associated
production with a top quark,

pp → tH±(b) +X. (1)

In a two-Higgs doublet model of type II, like the minimal supersymmetric extension of
the SM, the Yukawa coupling of the charged Higgs boson H− to a top quark and bottom
antiquark is given by

gtb̄H− =
√

2
(mt

v
PR cotβ +

mb

v
PL tanβ

)
, (2)

where v =
√
v2

1 + v2
2 = (

√
2GF )−

1
2 is the Higgs vacuum expectation value in the SM,

with the Fermi constant GF = 1.16637 × 10−5 GeV−2 [6]. The parameter tanβ = v2/v1

is the ratio of the vacuum expectation values v1 and v2 of the two Higgs doublets, and
PR/L = (1± γ5)/2 are the chirality projectors.

There exist two ways of calculating the associated production of charged Higgs bosons
with a top quark and an untagged bottom quark. One option, which is straightforward
from the conceptual point of view, is to consider the bottom quark mass to be of the
same order of magnitude as the other hard scales involved in the process. Then, the
bottom quark does not contribute to the proton wave function and can only be generated
as a massive final state. In practice, the theory which is used in such a calculation is
an effective theory with four light quarks, where the bottom quarks are decoupled and
do not enter the computation of the running coupling constant and the evolution of the
parton distribution functions (PDFs). According to this approach, named four-flavour
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(4F) scheme, the lowest-order QCD production processes are gluon-gluon fusion and quark-
antiquark annihilation, gg → tbH± and qq̄ → tbH±, respectively. The former is dominant
at the LHC due to the large gluon-gluon luminosity. In the 4F scheme, computations are
more involved due to the higher final-state multiplicity and because the additional final
state particle is massive. However, the kinematics of the heavy quark is correctly taken
into account already at the leading order, and the interface with parton shower codes is
straightforward. The drawback is that potentially large logarithms of the ratio of the hard
scale of the process and the mass of the bottom quark, which arise from the splitting of
incoming gluons into nearly collinear bb̄ pairs, are not summed to all orders in perturbation
theory.

Such a summation is achieved in the so-called five-flavour (5F) scheme, in which the
bottom quark mass is considered to be much smaller than the other scales involved in the
process and consequently is ignored. The bottom quarks are treated as massless partons
which are constituents of the proton and may thus appear in the initial state. Using
bottom quark PDFs requires the approximation that, at leading order, the outgoing b
quark has small transverse momentum and is massless, and that the virtual b quark is
quasi on-shell. In this scheme, the logarithms associated to the initial state collinear
splitting are resummed to all orders in perturbation theory by means of the DGLAP
evolution of the bottom parton densities [7, 8]. The leading-order (LO) process for the
inclusive tH± cross section is gluon-bottom fusion, gb→ tH±. The next-to-leading order
(NLO) cross section in the 5F scheme comprises O(αs) corrections to gb→ tH±, including
the LO contributions of the 4F calculation, gg → tbH± and q̄q → tbH±. The mb = 0
approximation in the 5F scheme can be systematically improved by introducing mb 6= 0
in higher-order contributions corresponding to diagrams where the b quark only appears
in the final state (see for example Reference [9] and references therein).

To all orders in perturbation theory the improved 5F scheme and the 4F scheme
are identical, but the way of ordering the perturbative expansion is different and at a
finite order the results do not match exactly. For some processes the difference between
calculations performed in the two schemes was found to be very significant at leading
order. One of the most striking examples is the discrepancy which was initially observed
in inclusive neutral Higgs boson production initiated by b quarks, see Reference [10]. In the
leading-order analysis, setting the renormalisation and factorisation scales to µf = mH ,
the 5F scheme prediction exceeds the 4F scheme prediction by more than a factor of
five. This has led to several thorough studies aiming to shed light on the origin of this
difference [8,11–14]. It has been shown that a choice such as µf = mH/4 leads to a reduced
scale dependence in both approaches and that the discrepancy between the schemes was
reduced [15, 16], thus suggesting that the scale at which the gluon splits is softer than
the scale of the hard process where the Higgs boson is produced. With this scale choice,
the four- and five-flavour scheme calculations numerically agree within their respective
uncertainties once higher-order QCD corrections are taken into account.

A recent analysis presented in Reference [17] investigates the dynamical origin of such
a scale choice for generic processes involving bottom quarks in the initial state at the
LHC. It is shown, contrary to näıve expectations, that unless the mass of the produced
particles is very large, the effect of initial-state collinear logarithms involving the effective
scale Q and the bottom quark mass, log(Q2/m2

b), is always modest. Even though total
cross sections computed in the 5F scheme exhibit a smaller scale uncertainty, such initial
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state collinear logarithms do not spoil the convergence of perturbation theory in 4F scheme
calculations. One of the reasons of this perturbative behaviour is that the effective scale Q
which enters the initial-state collinear logarithms is significantly smaller than the hardest
scale in the process. The effective scale is modified by universal phase-space factors that
tend to reduce the size of the logarithms for processes taking place at hadron colliders. This
provides a simple rule to choose the factorisation scale at which to perform comparisons
between calculations in the 4F and 5F schemes. The scale turns out to be similar to the
previous choice of µf = mH±/4 for the bottom quark PDF in the 5F scheme, based on
considerations on the transverse momentum of the bottom quark [18].

If the charged Higgs boson is discovered at a high mass, mH± � mt, then it will be
instructive to assess the impact of the resummation of the collinear logs (mH±/mt) into
top-quark PDFs and comparing the 5F to the 6F scheme in one of the possible scenarios
of a future 100 TeV collider, see e.g. Reference [19].

Next-to-leading order predictions for heavy charged Higgs boson production at the
LHC in a type-II two-Higgs-doublet model have been made in the past in both 5F [18,20–
24] and 4F schemes [12, 25], including also electroweak corrections [26, 27]. In the work
presented here, the NLO-QCD predictions are updated and improved by adopting the
new scale setting procedure [17] mentioned above. A thorough account of all sources of
theoretical uncertainties is given, state-of-the-art PDF sets are used and uncertainties are
consistently combined. A matched prediction [28] for the four- and five-flavour scheme
calculations is provided. Furthermore, results for a large range of tanβ are presented
which allows the comparison between theory and experiment for a wide class of beyond-
the-SM scenarios. This work has been performed within the LHC Higgs Cross Section
Working Group [29], and first preliminary results have been presented in Reference [30].

2 Theoretical Settings

In Sections 3 and 4, the total cross sections for associated top quark and charged Higgs
boson production are calculated using the five- and the four-flavour schemes, respectively.
In this section the generic settings of the two calculations are specified, and the method
of estimating the theoretical uncertainty is presented.

All cross sections are computed for a type-II 2HDM, for which the coupling between
a charged Higgs boson, a bottom antiquark and a top quark is given in Equation (2).1

The only parameters that enter the calculation are thus the particle masses and tanβ,
so that the results are rather generic. However, for supersymmetric models, additional
higher-order contributions through the virtual exchange of supersymmetric particles need
to be included. Of particular relevance are corrections that modify the tree-level relation
between the bottom quark mass and its Yukawa coupling. These corrections are enhanced
at large tanβ and can be summed to all orders through a modification of the Yukawa
coupling, see References [12, 31–39]. The remaining SUSY-QCD effects are marginal at
large tanβ, but can reach up to O(10%) at small tanβ. Specifically, for the benchmark
point SPS1b [40] the SUSY-QCD effects beyond those contained in the Yukawa coupling
amount to −(6/8/5/0.1)% for tanβ = 3/5/10/30, respectively.

1Charged Higgs boson production in a type-I 2HDM is discussed in Section 6.
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Note that throughout this paper results are given for the tH− final state. The charge
conjugate final state t̄H+ can be included by multiplying the results presented here by a
factor of two.

There are two different sources of theoretical uncertainties that need to be taken into
account: scale uncertainties which should reflect the error due to the omission of cor-
rections beyond NLO, and parametric uncertainties induced by the error on the input
parameters.

The scales that enter the calculation of heavy charged Higgs boson production comprise
the renormalisation scale µr which determines the running of αs, the factorisation scale
µf which determines the evolution of the parton distribution functions, and the scale µb
which determines the running bottom quark mass in the Yukawa coupling. To estimate
the overall scale uncertainty, all three scales are independently varied by a factor of two
about their central value, as specified in Sections 3 and 4 for the 5F and 4F schemes,
respectively. To avoid spurious large logarithms, scale choices where the ratio of any of
the three scales exceeds a factor of two are not taken into account. The envelope of the
predictions is used to determine the overall scale uncertainty.

The input parameters relevant for heavy charged Higgs boson production are the par-
ton distributions functions, the strong coupling αs and the bottom quark mass mb. The
impact of the top-quark mass uncertainty on the results is negligible and thus not consid-
ered. These uncertainties are correlated as the PDF fits are performed for specific values
of αs and mb, so care has to be taken to estimate the input parameter uncertainties in a
consistent way. The computer codes employed to calculate the next-to-leading order total
cross section in the two schemes have been interfaced to the LHAPDF library [41]. This
made it possible to use state-of-the-art PDF sets and consistent αs(MZ) values in the
PDFs and in the matrix element computation. In this analysis the charged Higgs boson
cross sections are determined by using three of the most recent PDF sets, determined from
global analyses of DIS and hadron collider data, namely CT10 [42], MSTW2008 [43] and
NNPDF2.3 [44]. The latter set already includes the constraints coming from the early LHC
data. The default General-Mass Variable Flavour Number (GM-VFN) sets are used for
the computation of the 5F scheme cross section2, while the Fixed Flavour Number (FFN)
sets with nf = 4 are used in the computation of the 4F cross sections. In the GM-VFN
scheme a parton distribution function is associated to all partons, including the bottom
quarks, above production threshold. The mass of the heavy quarks is taken into account in
the DIS partonic cross sections. The GM-VFN scheme is designed to interpolate between
the FFN scheme, which gives a correct description of the threshold region, and the resum-
mation of the large collinear logarithms at large Q2. Each PDF set adopts a variant of the
GM-VFN scheme, which differs by higher-order terms associated to the matching condi-
tion. In particular, CT10 adopts a variant of the ACOT scheme [45] called ACOT-χ [9].
The Thorne-Roberts [46] VFN scheme or TR’ [47] in its latest version, which emphasizes
the correct threshold behaviour and includes certain higher-order terms, is adopted in
the MSTW2008 PDF determination. The FONLL approach, introduced in Reference [48]
in the context of hadro-production of heavy quarks and more recently applied to deep-

2Both CT10 and MSTW2005 evolve αs with nf = 5 at all scales, while NNPDF2.3 evolves αs with
nf = 6 above the top threshold. For this computation it has been checked that freezing nf = 5 above the
top threshold in the predictions obtained with NNPDF2.3 does not affect the result.
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inelastic structure functions [49], considers both massless and massive scheme calculations
as power expansions in the strong coupling constant, and replaces the coefficient of the
expansion in the former with their exact massive counterparts. The FONLL approach is
adopted in the NNPDF fits.

In addition to the default GM-VFNS PDF sets, each collaboration provides a FFN
scheme set with nf = 4 [50, 51], which allows for a theoretically consistent cross-section
prediction in a 4F scheme calculation. Other PDF fitting collaborations [52] provide as
default FFNS parton sets with nf = 3, 4, 5.

When the corresponding PDF set is available, a common value of αs is chosen for
the predictions according to the recent PDG average [6]: αs(MZ) = 0.1183 ± 0.0012.
The PDF+αs uncertainty is estimated by using the sets determined at different values of
αs(MZ) provided by each collaboration, and by combining the PDF and the αs uncer-
tainties according to the standard prescription, as illustrated for example in Section 3.2
of Reference [53].

The pole mass of the top and bottom quarks are set to mt = 172.5 GeV and mb

= 4.75 GeV, respectively. The choice of the bottom quark mass and the corresponding
uncertainty deserve careful consideration. The calculation of hadronic cross sections always
involves PDFs which have an intrinsic dependence on the mass of the bottom quark. The
central value for the bottom pole mass adopted here is consistent with most PDF fits, and
corresponds to a MS mass of mb(mb) = 4.21 GeV, using the two-loop QCD relation [54].
This value is close but not identical to the current PDG value, mb(mb) = 4.18 GeV [6], and
to the recommendation from the LHC-HXSWG, mb(mb) = 4.16 GeV. The uncertainty due
to mb, in particular the dependence of the PDFs on the bottom quark mass, is investigated
by using input sets of PDFs with mb varied by 60 MeV about its central pole mass value.
As shown in Reference [50] and in the recent study of bottom quark-initiated neutral
Higgs boson production [55], the bottom quark PDF exhibits a strong dependence on
the bottom quark mass adopted in the PDF fit. Thus a significant dependence of the
5F scheme predictions on mb through the bottom-quark PDF is expected. In addition,
the cross section for charged Higgs boson production depends on the bottom quark mass
through the bottom quark Yukawa coupling and, for the 4F scheme calculation, through
the explicit mb-dependence in the matrix element. All these uncertainties have been
included in this calculation. Note that the bottom quark mass dependence of the 4F
PDFs is small as mb enters only indirectly through the DIS cross section in the global
fit. However, the matrix element in the 4F scheme calculation contains a mb-dependent
collinear logarithm, which corresponds to the bottom quark PDF in the 5F scheme.

In summary, the total theoretical uncertainty quoted here includes: the PDF uncer-
tainty δPDF, the αs and mb uncertainties (δαs and δmb), and the uncertainty due to
missing higher orders in the partonic cross section, ∆±

µ , estimated according to the usual
procedure by varying the three different scales µr, µf and µb by a factor of two about
their central values, as described above.

To combine the various sources of theoretical uncertainty the prescription of the LHC-
HXSWG is used. The combined PDF+αs +mb uncertainty for each different PDF input
set is computed first.3 For each PDF set i the three sources of uncertainty are combined

3Unfortunately, not all PDF sets allow to vary αs or mb, as specified in the following sections. Therefore
the total PDF uncertainty may be slightly underestimated.
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in quadrature [53]:

δiPDF+αs+mb
=
√

(δiPDF)2 + (δiαs)2 + (δimb)2. (3)

At this point, the envelope of the three predictions is used to give an estimate of the
combined PDF and parametrical uncertainty δPDF+αs+mb

. Following Reference [53] the
central prediction is defined as the midpoint of the envelope, such that the PDF+αs +
mb uncertainty is symmetric by construction. The scale uncertainty, estimated for the
central choice of input parameters, is then added linearly to the combined PDF+αs +mb

uncertainty [56]:
∆±

tot = ±δPDF+αs+mb
±∆±

µ . (4)

Note that the scale uncertainty does not significantly depend on the choice of PDFs, and
is computed by using the central CT10 set.

Cross sections are calculated for Higgs boson masses mH± in the range from 200 GeV
to 600 GeV in steps of 20 GeV. Detailed results for mH± = 200, 400 and 600 GeV are
collected in Tables 2–4. The value of tanβ is set to 30, in correspondence to the region
favoured by recent MSSM fits [57]. In Section 6 the cross section as a function of tanβ is
presented.

3 Five-flavour scheme results

In the 5F scheme, bottom quarks are treated as massless partons which appear in the
initial state. The leading-order (LO) process for the inclusive tH± cross section is gluon-
bottom fusion, gb → tH±. The next-to-leading order (NLO) QCD cross section in the
5F scheme has been calculated in References [18, 20–24]. All numbers presented here
have been computed by interfacing the public code Prospino [58, 59] with the LHAPDF
library [41].

The renormalisation scale is set to the average final state mass µr = (mH± + mt)/2.
As previously discussed, the factorisation scale is set according to the method proposed in
Reference [17]. There, a simple analytic formula is provided which enables a quantitative
assessment of the size of the collinear logarithms resummed in a 5F computation. Hence,
a factorisation scale can be chosen to optimally perform comparisons between calculations
in the 4F and 5F schemes. For processes at the LHC this scale is typically smaller than
the hard scale, since the effective scale entering the initial state collinear logarithms is
damped by a kinematic factor which depends on the final state phase space. For charged
Higgs boson production, the scale associated to the gluon splitting into bottom quarks is

Q2
tHb = M2 (1− z)2

z with z = M2

ŝ
, (5)

where M2 = (mH± + mt)
2 and ŝ is the partonic centre-of-mass energy. By weighting

this event-by-event logarithmic factor with the hard matrix element and the luminosity, a
constant scale µ̃f can be estimated which only depends on mH± , mt and on the collider
centre-of-mass energy

√
s. At this scale, the 5F scheme prediction can be meaningfully

compared to the one in the 4F scheme [17]. The factorisation scale µ̃f is presented in
Table 1 for the full range of Higgs boson masses considered, for centre-of-mass energies of√
s = 8 and 14 TeV.
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8 TeV 14 TeV

mH± (GeV) µ̃f (GeV) (mH± +mt)/µ̃f µ̃f (GeV) (mH± +mt)/µ̃f

200 68.9 5.5 76.3 4.9

220 70.7 5.6 79.6 4.9

240 73.4 5.6 82.7 5.0

260 75.9 5.7 85.9 5.0

280 78.5 5.8 89.0 5.1

300 81.0 5.8 92.0 5.1

320 83.5 5.9 95.0 5.2

340 85.9 6.0 97.9 5.2

360 88.3 6.0 100.9 5.3

380 90.7 6.1 103.8 5.3

400 93.0 6.2 106.6 5.4

420 95.3 6.2 109.4 5.4

440 97.5 6.3 112.2 5.5

460 99.7 6.3 115.0 5.5

480 101.9 6.4 117.7 5.5

500 104.0 6.5 120.4 5.6

520 106.2 6.5 123.1 5.6

540 108.2 6.6 125.7 5.7

560 110.3 6.6 128.3 5.7

580 112.3 6.7 130.9 5.7

600 114.3 6.7 133.4 5.8

Table 1: Dynamical factorisation scale µ̃f for pp → tH± + X for the LHC at
√
s = 8

and 14 TeV. The 4-flavour CT10nlo 4f PDF set has been used as input to evaluate µ̃f
according to Equation (5.13) of Reference [17].
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Figure 1: The dependence of the 4F and 5F scheme pp→ tH− +X total cross sections on
the factorisation and renormalisation scales, for m±

H = 200 (top) and 600 GeV (bottom)
and
√
s = 8 TeV (left) and 14 TeV (right). Both scales are varied simultaneously between

µ/10 and 2µ about (mH± +mt).

The dependence of the total cross section on the renormalisation and factorisation
scales is illustrated in Figure 1, for the largest and smallest mH± values considered in
this analysis. For the sake of illustration, the same value is used for both scales. This
comparison, analogously to the one shown in References [17,60], is meant to illustrate the
overall dependence of the total cross section on the scales that enter the computation. It
is not meant to provide an exact estimate of the scale uncertainty. Both renormalisation
and factorisation scales are varied between µ/10 and 2µ around (mH± +mt), which is the
natural hard scale of the process. For comparison, in Figure 1 the NLO scale dependence
of the 4F calculation described in Section 4 is shown. The scale dependence of the 5F
scheme calculation is milder than that of the 4F scheme calculation. The two calculations
approach each other for scales smaller than (mH± +mt). Note that the choice of scale µ̃f
is not motivated by the argument illustrated in Figure 1, but the latter rather confirms
the findings of the kinematical study that led to identify µf with µ̃f .

In the 5F scheme computation the three GM-VFNS PDF sets mentioned in Sec-
tion 2 are used: the CT10nlo set [42] and the corresponding set with αs variation, the
MSTW2008nlo68cl set [43] and the corresponding sets with αs and mb variations, the
NNPDF23 nlo as 0118 set [44] and the corresponding sets needed to compute the αs and
mb variations. To illustrate the PDF uncertainty expected in the 5F scheme, the bottom-
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Figure 2: Gluon-bottom parton luminosities at the LHC for
√
s = 8 TeV (left) and 14 TeV

(right) for the default GM-VFN scheme NLO PDF sets CT10, MSTW2008 and NNPDF23,
with αs(MZ) = 0.118 and mb = 4.75 GeV. Uncertainties correspond to 68% C.L.

gluon luminosities for the three PDF sets, computed with αs(MZ) = 0.118 and the default
bottom quark mass mb = 4.75 GeV, are compared in Figure 2 for the LHC at

√
s = 8 TeV

and 14 TeV. At a scale MX = mH± = 200 GeV the 1σ error bands of the NNPDF2.3 and
CT10 luminosities do not overlap, due to the harder gluon fitted by the NNPDF collabora-
tion in the medium-to-large x region. At larger values of mH± they tend to overlap, while
at the same time the uncertainties become larger, driven by a larger gluon uncertainty at
large values of x.

For each PDF set αs(MZ) is varied by 0.0012 around its central value [6]. The uncer-
tainty due to the variation of αs(MZ) turns out to be negligible, its size being about a
order of magnitude smaller than the PDF uncertainty. This is expected since the gluon
and the bottom quark have opposite-sign correlation with the value of αs in the region of
x which is relevant for this process. Therefore a partial cancellation of the αs dependence
is expected.

The uncertainty associated to the value of the bottom quark pole mass used in the PDF
fits is estimated by varying mb in the range mb = 4.75 ± 0.06 GeV.4 In contrast to the αs
uncertainty, the mb uncertainty induced by the PDFs is quite significant, corresponding
to about 30-50% of the PDF uncertainty at fixed mb. A significant dependence of the
predicted cross section on the bottom quark mass has already been observed in several
studies of processes initiated by bottom quarks [50,55,61] and has to be taken into account
for a realistic estimate of the theoretical uncertainty.

Results are summarized in Table 2. The predictions obtained with CT10 have the
largest associated PDF uncertainty, as can be inferred from the luminosity plots in Fig-
ure 2. Furthermore, the size of the PDF uncertainty increases with the mass of the
produced particles, the large-x region being the one in which the gluon and the bottom
quark PDFs are least constrained by data. Compared to the PDF uncertainty, the relative
mb uncertainty is more significant for light charged Higgs boson masses (mH± = 200 GeV),

4Note that CT10 provides sets to compute the PDF+αs uncertainty, but does not provide sets associated
to the mb variation. Therefore, in contrast to MSTW2008 and NNPDF23, the CT10 uncertainty is
underestimated.
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√
s [TeV], PDF set mH± [GeV] σNLO [pb] δPDF [%] δαs [%] δmb [%]

8 200 0.189 +6.7
−6.0

+0.6
−0.6 n.a.

CT10 400 0.0289 +10.3
− 8.9

+1.2
−1.2 n.a.

600 0.00618 +14.7
−11.7

+1.9
−1.6 n.a.

8 200 0.195 +4.7
−5.0

+0.5
−0.4

+2.8
−2.6

MSTW2008 400 0.0292 +5.8
−7.9

+0.7
−0.8

+2.8
−2.7

600 0.00609 +8.3
−9.4

+1.3
−1.2

+2.9
−2.7

8 200 0.195 ±4.4 ±0.7 ±1.2

NNPDF2.3 400 0.0288 ±6.6 ±0.6 ±2.8

600 0.00586 ±8.9 ±0.7 ±1.5

14 200 0.870 +3.9
−3.5

+0.0
−0.0 n.a.

CT10 400 0.171 +5.7
−5.2

+0.0
−0.0 n.a.

600 0.0458 +7.6
−6.9

+0.5
−0.5 n.a.

14 200 0.902 +2.7
−3.6

+0.1
−0.0

+2.9
−2.7

MSTW2008 400 0.176 +4.0
−3.9

+0.0
−0.0

+2.9
−2.6

600 0.0468 +4.7
−6.1

+0.0
−0.2

+2.9
−2.7

14 200 0.913 ±2.7 ±0.8 ±1.5

NNPDF2.3 400 0.179 ±3.9 ±0.6 ±1.2

600 0.0471 ±5.1 ±0.5 ±1.2

Table 2: Central value and PDF, αs, mb uncertainty for the next-to-leading order total
t̄H− production cross section in the 5F scheme, computed with different input PDF sets.
Central values are computed with αs(MZ) = 0.118, αs variation by varying αs(MZ) by
±0.0012 about its central value, mb variation by varying the mb pole mass in the input
PDFs by ±60 MeV. The n.a. in the boxes means that there is no available PDF set to
compute the corresponding variation.
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Figure 3: 5F scheme cross section and PDF+αs+mb uncertainty for pp→ tH± +X at the
LHC with

√
s = 8 TeV (left) and 14 TeV (right), calculated with CT10 (blue), MSTW2008

(green) and NNPDF23 (red) at NLO in a type-II 2HDM. The yellow band corresponds to
the envelope of the three predictions.

with larger values of mb corresponding to smaller cross sections. Note that there is a par-
tial cancellation between the bottom quark mass dependence of the PDF and the Yukawa
coupling which can be understood as follows: increasing the bottom quark mass in PDF
fits reduces the phase space available for the splitting of gluons into bottom quarks and
thus reduces the bottom PDF (a similar suppression is induced by the explicit logarithms
of the bottom quark mass which appear in the 4F scheme calculation). Increasing the
bottom quark mass in the Yukawa coupling, on the other hand, increases the Yukawa
coupling and thus the cross-section normalization. For the overall bottom quark mass
uncertainty, δmb, reported in Table 2, the mb dependence due to the PDF and due to the
Yukawa coupling therefore partially cancel.

In Figure 3, the predictions for the total cross section are presented for each of the three
PDF sets. The error band corresponds to the total PDF+αs+mb uncertainty, computed
from the uncertainties shown in Table 2 according to Equation (3). Moreover the combined
prediction is presented, i.e. the envelope of the total PDF+αs+mb uncertainty of each
prediction, according to the PDF4LHC recommendation [62], and as described in Section 2.
Taking the envelope significantly increases the size of the PDF uncertainty as obtained
with each of the PDF sets individually, as it can also be inferred from Figure 2.

Finally the scale uncertainty due to missing higher orders, ∆±
µ , obtained according to

the prescription described in Section 2, is linearly added to upper and lower bounds of the
envelope, according to Equation (4). The variation of the renormalisation scale and the
scale in the Yukawa coupling contribute approximately equally to ∆±

µ , while the impact
of the factorisation scale dependence is smaller by about a factor of two. All individual
sources of uncertainty, scale variation and total PDF uncertainty (including αs and mb

variation) are listed in Table 3.
Figure 4 displays the combined cross section, with its total theoretical uncertainty

split up into PDF+αs+mb uncertainty and scale variation. For the charged Higgs boson
mass range considered, the size of the two uncertainties is comparable, with the total PDF
uncertainty being larger for higher mH± masses.
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√
s [TeV] mH± [GeV] σNLO [pb] ∆±

µ [%] δ±PDF+αs+mb
[%] ∆±

tot [%]

8 200 0.192 +9.4
−9.4 ±7.3 +16.7

−16.7

400 0.0291 +9.3
−8.6 ±9.6 +18.9

−18.2

600 0.00617 +9.4
−8.9 ±14.9 +24.3

−23.8

14 200 0.895 +9.8
−9.7 ±6.3 +16.1

−16.0

400 0.175 +8.6
−8.6 ±7.3 +15.9

−15.9

600 0.0463 +8.4
−8.4 ±8.0 +16.4

−16.4

Table 3: Central prediction, scale uncertainty, PDF+αs+mb uncertainty, and total theo-
retical uncertainty for the next-to-leading order tH− production cross section in the 5F
scheme.
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Figure 4: 5F cross section and uncertainties for pp→ tH±+X for the LHC at
√
s = 8 TeV

(left) and 14 TeV (right). Shown is the combined central value and the total uncertainty,
split up into PDF+αs+mb and scale uncertainties.
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Figure 5: Gluon-gluon parton luminosities at the LHC at
√
s = 8 TeV (left) and 14 TeV

(right) for the 4F Fixed-Flavour-Number NLO PDF sets provided by CT10, MSTW2008
and NNPDF23, with the default α4F

s and mb values provided by each collaboration. Un-
certainties are at 68% C.L.

4 Four-flavour scheme results

In the 4F scheme, bottom quarks are created perturbatively in the hard part of the process,
and the bottom quark mass is included exactly at all orders. At leading order the partonic
processes are given by

qq̄, gg −→ tH−b̄,

while next-to-leading order QCD corrections consists of virtual one-loop diagrams, gluon
radiation and gluon (anti-)quark scattering [12]. The total theoretical uncertainty of the
4F prediction is estimated according to Equation (4). The dependence of the NLO cross
section on the factorisation and renormalisation scales is illustrated in Figure 1. The scale
uncertainty estimate is obtained by varying µr, µf and µb by a factor two about their
central values µ = (mH± +mt +mb) /3, as described in Section 2.

In the 4F scheme cross-section calculation the fixed-flavour-number PDF sets with nf =
4 provided by the global PDF fitting collaborations are used. The corresponding gluon-
gluon luminosities are shown in Figure 5. Here, it is not possible to evaluate the PDFs at
a common value of αs since only the NNPDF collaboration provides FFN sets computed
at various values of α4F

s (Mz), while the MSTW and the CT collaborations only provide
4F PDF sets at their default αs values, α4F

s (Mz) = 0.1149 for MSTW2008nlo68cl nf4 and
α4F
s (Mz) = 0.1127 for CT10nlo nf4. Moreover CT10 do not provide an estimate of the

PDF uncertainty for their nf = 4 set. This leads to a slight underestimate in the total
PDF uncertainty based on the envelope of the three predictions. In the charged Higgs
boson mass range considered in this analysis the NNPDF2.3 and the MSTW2008 gluon-
gluon luminosities barely overlap within their 1σ error bar and the CT10 central curve
lies at the bottom of the MSTW curve. This behaviour reflects the features observed in
Figure 2, as a consequence of the correlation between the bottom and the gluon PDFs.

Since the MSTW200868cl nf4 sets are provided at several values of mb it is possible
to estimate the PDF+mb uncertainty for the 4F predictions by varying mb in the input
PDF sets and in the hard matrix element. The variation of the pole mb mass in a 4F
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Figure 6: 4F scheme cross section and PDF+αs+mb uncertainty for pp → tH± + X at
the LHC with

√
s = 8 and 14 TeV , calculated with CT10 (blue), MSTW2008 (green) and

NNPDF23 (red) at NLO in a type-II 2HDM. The yellow band corresponds to the envelope
of the three predictions.

scheme PDF set is expected to have little influence, as mb only enters the partonic DIS
cross section fitted in the global fit of PDFs. The major dependence on mb comes from
the variation of mb in the hard matrix element through the collinear logarithm.

On the other hand, the NNPDF2.3 FFN sets are given at several values of αs and this
allows to estimate the PDF+αs uncertainty of the 4F prediction. It turns out that the αs
uncertainty contributes very little to the total uncertainty while the mb variation induces
an additional uncertainty in the theoretical predictions which is small but not negligible
compared to the PDF error band.

Results are collected in Table 4, in which the relative uncertainty for each contribution
is reported. The central value for the next-to-leading order cross section computed in
the 4F scheme predicted by using the CT10 set is always smaller with respect to the
predictions obtained with MSTW or NNPDF2.3, partially because the α4F

s of the CT10
fit is smaller than that of the other PDFs. Furthermore, the PDF uncertainty increases
as the mass of the produced Higgs boson increases, a consequence of the rise in the gluon
uncertainty at large x. A comparison of the predicted cross section for the full range of
charged Higgs boson masses considered is shown in Figure 6. The large uncertainty of the
MSTW2008 gluon at large x is at the origin of the large PDF uncertainty at large mH±

masses at
√
s = 8 TeV. At larger hadronic centre-of-mass energies, the gluon distributions

peak at a smaller value of x where the PDF uncertainty is less pronounced. Note that for
large Higgs boson masses the average parton momentum fraction x, and thus the PDF
uncertainty, is larger in the 4FS than in the 5FS.

Finally the uncertainty due to missing higher order contributions is linearly added
to upper and lower bounds of the envelope, according to Equation (4). Note that the
scale in the running mb mass in the Yukawa coupling contributes significantly to the scale
variation, and contributes about 5 percentage points to the total scale uncertainty of 15%
to 20% in the range of Higgs boson masses considered. Neglecting the µb variation would
therefore lead to an underestimate of the scale uncertainty. All individual sources of
uncertainty - scale variation, total PDF uncertainty (including αs and mb variation) and
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√
s[TeV], PDF set mH± [GeV] σNLO [pb] δPDF [%] δαs [%] δmb [%]

8 200 0.198 n.a n.a. n.a.

CT10 400 0.0293 n.a n.a. n.a.

600 0.00608 n.a n.a. n.a.

8 200 0.205 +2.3
−2.7 n.a. +0.5

−0.5

MSTW2008 400 0.0299 +7.9
−7.6 n.a. +0.5

−0.5

600 0.00610 +17.8
−20.8 n.a. +0.5

−0.5

8 200 0.203 ±4.3 +1.1
−0.8 n.a.

NNPDF2.3 400 0.0288 ±6.4 +0.8
−1.2 n.a.

600 0.00569 ±8.4 +0.8
−2.2 n.a.

14 200 0.938 n.a n.a. n.a.

CT10 400 0.180 n.a. n.a. n.a.

600 0.0475 n.a. n.a. n.a.

14 200 0.972 +1.1
−0.8 n.a. +0.5

−0.4

MSTW2008 400 0.186 +2.2
−2.7 n.a. +0.4

−0.4

600 0.0489 +6.9
−5.5 n.a. +0.3

−0.6

14 200 0.983 ±2.6 +0.1
−0.0 n.a.

NNPDF2.3 400 0.187 ±3.8 +0.4
−0.5 n.a.

600 0.0481 ±5.0 +0.6
−0.9 n.a.

Table 4: Central value and PDF, αs, mb uncertainties for the next-to-leading order total
tH− production cross section in the 4F scheme, computed with different input PDF sets.
Central values are computed with the default value of αs(MZ) provided by each PDF
set, αs variation by varying αs(MZ) by ±0.0012 about its central value, mb variation by
varying the mb pole mass in the input PDFs and in the hard matrix element by ±60
MeV. The n.a. in the boxes means that there is no available PDF set to compute the
corresponding variation.
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√
s[TeV] mH± [GeV] σNLO [pb] ∆±

µ [%] δ±PDF+αs+mb
[%] ∆±

tot [%]

8 200 0.202 +18.2
−20.1 ±4.4 +22.6

−24.5

400 0.0295 +20.6
−21.3 ±9.2 +29.8

−30.4

600 0.00601 +23.7
−22.0 ±19.6 +43.4

−41.6

14 200 0.973 +16.8
−17.5 ±3.6 +20.4

−21.1

400 0.187 +17.7
−18.4 ±3.8 +21.5

−22.2

600 0.0491 +19.4
−18.7 ±6.6 +25.9

−25.3

Table 5: Central prediction, scale uncertainty, PDF+αs+mb uncertainty, and total the-
oretical uncertainty for the next-to-leading order tH− production cross section in the 4F
scheme.
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Figure 7: 4F cross section and uncertainties for pp→ tH±+X for the LHC at
√
s = 8 TeV

(left) and 14 TeV (right). Shown is the combined central value and the total uncertainty,
split up into PDF+αs+mb and scale uncertainties.

total uncertainty - are listed in Table 5. The results in the table show that overall the scale
uncertainty is the dominating source of theoretical uncertainty for lower mH± masses. The
same can be observed in Figure 7 in which the central prediction for the 4F scheme cross
section is presented, with its uncertainty split up into scale and PDF+αs+mb uncertainties.
At large mH± masses, especially at 8 TeV, the large x gluon uncertainty drives the total
theoretical uncertainty above 40%. The release of PDF sets that include the constraints
from the precise LHC jet and top data will help in reducing the uncertainty of the gluons
at large x and consequently decrease the uncertainty of the theoretical predictions.

5 Comparison and matching

The 4F and 5F schemes only yield identical results for the pp → tH± + X cross sections
in an all-order calculation, as was shown for instance in Reference [45]. At finite order,
the schemes include different contributions, since the perturbative expansion is ordered
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differently. Thus, the predictions within the two schemes can be used to cross-check results,
and to estimate the impact of neglected contributions at higher order.

To obtain a unique theoretical prediction which can be confronted with experimental
data, the 4F and 5F schemes can be combined using a prescription called Santander-
matching [28]. In the asymptotic limits mH±/mb → 1 and mH±/mb → ∞, the 4F and
5F schemes, respectively, provide the unique description of the cross section. For realistic
Higgs boson masses in the range from 200 GeV to 600 GeV considered here, both schemes
contribute with a given finite weight which depends on the charged Higgs boson mass [28].
The difference between the two approaches is formally logarithmic, and thus the depen-
dence of their relative importance on the Higgs boson is determined by a logarithmic term,
i.e.

σmatched =
σ4F + wσ5F

1 + w
, (6)

with the weight w defined as

w = log
mH±

mb
− 2 . (7)

This yields a weight of 100% for the 5F-scheme cross section σ5F in the limit of mH±/mb →
∞ as desired. A weight of 50% is given to both cross sections for mH± around 100 GeV,
to reflect the observation that predictions for both schemes agree well in this region. The
theoretical uncertainties are combined as

∆σ±tot,matched =
∆σ±tot,4F + w∆σ±tot,5F

1 + w
. (8)

The Santander-matching scheme is a pragmatic and simple approach to derive a unique
prediction from the 4F and 5F scheme results, and not based on a thorough field-theoretic
analysis. However, the Santander-matched results encompass the essential features of the
the two schemes. The corresponding matched predictions and uncertainty estimates are
expected to be close to the true cross section, in particular as the 4F and 5F scheme
calculations for heavy charged Higgs boson production with the improved scale setting
prescription are in good mutual agreement.

The cross section and uncertainty for the results of the 4F and 5F scheme calculations
and their combination for

√
s = 8 and 14 TeV are presented in Figure 8. The predic-

tions from both schemes agree well within their uncertainties, with differences of at most
10%. The prediction [17] that the impact of the resummation of the collinear logarithms
decreases for higher masses of the produced heavy particle is confirmed. The overall theo-
retical uncertainty of the matched NLO prediction is about 20–30%, very close to the 5F
uncertainty that, for the considered range of masses, has a larger weight.

A much better agreement than in earlier comparisons [12] is observed. There, the choice
for the factorisation scale in the 5F-scheme was µf = (mt +mH±) /3. The dynamical
choice for µf used here significantly improves the agreement between the predictions in
the two schemes. In addition the improved treatment of threshold effects in the modern
PDF sets employed here has lead to a decrease of the bottom PDFs compared to previous
analyses, and has thus moved the 5F scheme calculation closer to the 4F cross section
prediction.
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Figure 8: Santander-matched cross section and uncertainties for pp → tH± + X at the
LHC for 8 and 14 TeV. The 4F and 5F scheme results as well as the combined values are
shown, together with their total uncertainties.

6 Varying the parameter tan β

The cross section for charged Higgs boson production in association with a top quark
and a bottom quark depends on the ratio of the vacuum expectation values of the two
Higgs doublets, tanβ = v2/v1, through the Yukawa coupling, see Equation (2). The
Yukawa coupling consists of two pieces which scale as tanβ and cotβ, respectively. Thus
changing tanβ induces a non-trivial change in the cross section, but also in the theoretical
uncertainty. First, the scale dependence as a function of tanβ is considered for two
values of the charged Higgs boson mass and the centre-of-mass energies 8 and 14 TeV in
Figure 9. A relatively uniform behavior is observed where the scale dependence decreases
with decreasing tanβ from about 20% to 15% and 10% to 5% for the 4F and 5F scheme
calculations, respectively. This is caused by the decreasing relevance of the running bottom
Yukawa coupling, which is proportional to tanβ and which adds about 5 percentage points
to the overall scale uncertainty for large tanβ.

The NLO cross sections in the 4F and 5F schemes and in the Santander-matched
calculation are displayed in Figure 10 for the LHC at

√
s = 14 TeV. The total cross

section is essentially proportional to the size of the tbH± coupling which has a minimum
for tanβ ≈ 8. Comparing the 4F and 5F scheme calculations, both agree over the whole
range of tanβ although the difference in the central values is slightly larger for small tanβ.
In this region, the results become sensitive to the top-bottom-Yukawa interference term
∝ mtmb, which is absent in the 5FS calculation.

In a type-I 2HDM all quarks couple to only one of the Higgs doublets. In such models,
the Yukawa coupling of the charged Higgs boson H− to a top quark and bottom antiquark
is given by

gtb̄H− |type−I =
√

2
(mt

v
PR cotβ − mb

v
PL cotβ

)
. (9)

In contrast to the type-II 2HDM, for type-I the bottom Yukawa coupling is not enhanced by
tanβ, so that gtb̄H− |type−I =

√
2mt/v PR cotβ+O(mb/mt). Up to corrections suppressed

by O(mb/mt), the cross section for heavy charged Higgs boson production in the type-I
2HDM, σ|type−I ∝ g2

tb̄H− |type−I ∝ 2(mt/v)2 cot2 β+O(mb/mt), can thus be obtained from
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Figure 9: Scale dependence as a function of tanβ for the 4F and 5F predictions for the
LHC at

√
s = 8 TeV (top row) and

√
s = 14 TeV (bottom row) for two values of mH±

masses: 200 GeV (left) and 600 GeV (right).
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Figure 10: The pp → tH− + X cross section as a function of tanβ. Shown are the 5F
scheme calculation (top row), the 4F scheme calculation (middle row) and the matched
calculation (bottom row) for the LHC at

√
s = 14 TeV for a charged Higgs boson mass

of 200 GeV (left column) and 600 GeV (right column). The upper two rows show the
PDF+αs+mb uncertainties while for the bottom row, the scale uncertainties are included
as well.
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the type-II cross section, σ|type−II,tanβ=1 ∝ g2
tb̄H− |type−II,tanβ=1 ∝ 2(mt/v)2 + O(mb/mt),

evaluated at tanβ = 1 and rescaled by cot2 β. This relation is correct to all orders in QCD,
but not to all orders in the electroweak corrections. Given the overall theoretical uncer-
tainty of the cross-section prediction of O(30%) it is, however, an excellent approximation
and sufficient for all practical purposes. Note that the charged Higgs boson cross-section
predictions for the type-I and type-II 2HDMs also hold for the so-called lepton-specific
and flipped 2HDMs, respectively, see e.g. Reference [63].

7 Conclusions

An updated and improved NLO-QCD calculation of the associated production of a heavy
charged Higgs boson at the LHC within a type-II two-Higgs-doublet model has been
presented. The improvements with respect to previous NLO predictions include adopting
a new scale setting procedure for the five-flavour scheme, a thorough treatment of the
theoretical uncertainties based on state-of-the-art PDF sets, and a matched prediction for
the four- and five-flavour scheme calculations.

The dynamical choice of the factorisation scale in the five-flavour scheme calculation
significantly improves the agreement between the four- and five-flavour schemes. The
overall uncertainty of the matched cross-section prediction is approximately 20–30%, and
includes the dependence on the renormalisation scale, the factorisation scale, the scale of
the running bottom quark mass in the Yukawa coupling, as well as the input parameter
uncertainties in the parton distribution functions, in the QCD coupling αs, and in the bot-
tom quark mass. The scale dependence and the input parameter uncertainties contribute
about equally to the overall uncertainty.

The NLO-QCD cross-section prediction is provided as a function of mH± and tanβ,
and a simple yet accurate prescription is presented to convert the result to the production
of heavy charged Higgs bosons in type-I , and in so-called lepton-specific and flipped two-
Higgs-doublet models. The numerical results are made available through the wiki page
of the LHC Higgs Cross Section working group [64], and allow the interpretation of LHC
searches for heavy charged Higgs bosons for a wide class of beyond-the-SM scenarios.
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