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Abstract-In wireless ad-hoc networks, network partitioning occurs when
the mobile nodes move with diverse patterns and cause the network to sepa-
rate into completely disconnected portions. Network partitioning is a wide-
scale topology change that can cause sudden and severe disruptions to on-
going network routing and upper layer applications. Its occurrence can be
attributed to the aggregate group motion exhibited in the movements of the
mobile nodes. By exploiting the group mobility pattern, we can predict the
future network partitioning, and thus minimize the amount of disruptions.

In this paper, we propose a new characterization of group mobility based
on existing group mobility models, which provides parameters that are suf-
ficient for network partition prediction. We then demonstrate how partition
prediction can be made using the mobility model parameters, and illustrate
the applicability of the prediction information. Furthermore, we use a sim-
ple but effective data clustering algorithm that, given the velocities of the
mobile nodes in an ad-hoc network, it can accurately determine the mobility
groups and estimate the characteristic parameters of each group.

I. INTRODUCTION

Wireless ad-hoc networks are networks dynamically formed
by mabile hosts without the support of pre-existing fixed infras-
tructures. To provide communication throughout the network,
the mobile hosts act as routers and cooperate to handle various
network functions, such as traffic routing. The mobile hosts are
moving with diverse mobility patterns that cause frequent fail-
ures and activations of the wireless links. Such frequent changes
in the network topology pose significant challenges to the opera-
tions in wireless ad-hoc networks.

Researchers have proposed mobility prediction schemes [1]
[2] that attempt to predict the future availability of wireless links
based on individual node mobility model, in order to improve
routing algorithm efficiency and build more stable routes. The
changes in link availability are caused by local topology changes,
however, global scale topology changes such as network parti-
tionings cannot be predicted by these schemes. The main cause
of network partitioning is the group mobility behavior of the mo-
bile nodes in wireless ad-hoc networks, where the mobile nodes
belonging to the same movement group exhibit similar move-
ment characteristics, while the nodes of different groups show
diverse mobility patterns. If we consider the scenario where the
mobile nodes are initially dispersed and inter-mixed and many
such movement groups exist, the distinct mobility pattern of each
group causes them to separate, and network partitioning will
eventually occur.

When a network partitions, the partitioned parts are com-
pletely disconnected from other parts of the original network.
Upper layer routing and other applications involving nodes in
separate partitions are severely disrupted, and may terminate if
the partitions do not merge in time. Such situation is unaccept-
able in mission-critical network applications such as battlefield
and rescue operations where every node must receive a certain
level of Quality of Service (QoS) or have constant access to an
important information depository. Therefore, to provision QoS

guarantees for ad-hoc network applications, it is imperative to
predict the occurrence of the network partitioning on a global
scale.

In order to predict network partitioning, we need to iden-
tify and characterize the group-based movements of the mobile
nodes, and use the characterization to quantitatively model the
topology changes. Based on the topology changing pattern, we
can then derive important information about future network par-
titionings. The main contributions of this paper are: First, we
propose a new and enhanced characterization of the mobility
groups based on existing models, which provides parameters
sufficient for network partition prediction. Second, we show a
method of predicting partition timing with the parameters pro-
vided by our enhanced group mobility model. Third, we use a
simple data clustering algorithm such that, given the velocities
of mobile nodes, it can accurately identify the mobility groups
and estimate the characteristic parameters of each group neces-
sary for the partition prediction. Finally, we illustrate that the
clustering algorithm is effective with respect to mobility group
identification.

The organization of this paper is as follows. Section Il presents
the existing group mobility model and our proposed extension.
Section |1l describes the proposed partition prediction scheme
and illustrates its applicability in a mission-critical service appli-
cation. Section IV and V describes and illustrates the mobility-
based clustering algorithm. Finally, Section VI concludes the

paper.

Il. GROuUP MOBILITY MODEL

In realistic ad-hoc network application scenarios such as con-
ference seminar sessions, conventional events, and disaster relief
operations, the mobile users are often involved in team activities
and exhibit collaborative mobility behavior. Such user mobil-
ity can be modeled by a group mobility model where the mobile
users are organized into groups of different mobility pattern, mo-
bility rate, and coverage area. Researchers have previously pro-
posed several group mobility models [3][4], for the purpose of
simulating ad-hoc networks with group-based node movements.

A. Reference Point Group Mobility Model

The Reference Point Group Mobility (RPGM) model was de-
veloped by Hong et al. in [4]. To represent the group mobility
behavior of the mobile nodes, for each mobility group, the model
defines a logical reference center whose movement is followed
by all nodes in the group. The (z,y) physical locations of the
group’s reference center and its node members are given by two
levels of displacement vectors. The group motion vector maps
out the location of the reference center, while the node-dependent
random motion vectors, added to the group motion vector, give



the positions of the nodes. The RPGM model describes the group
membership of a mobile node by its physical displacement from
the group reference center. For example, at time ¢, the location
of the 4th node in the jth group is given by the following:

« Reference location: Y (t)
« Local displacement: Z; ;(t)
« Node location: X ;(t) = Y;(t) + Z;(t)

The node-dependent local displacement or random motion vec-
tor, Z; ;(t), gives the effect of the mobile nodes having their own
localized movements while following the general group motion
defined by the reference center.

The RPGM model can generate topologies of ad-hoc networks
with group-based node mobility for simulation purposes, but for
mobility or partition prediction purposes, it has two disadvan-
tages. First, this model is used in the scope of an omniscient
observer or a God, where the complete information about the
mobility groups including their member nodes and movements
are known. Given the distributed nature of the ad-hoc network,
such global information about the mobility groups are not conve-
niently available to any mobile nodes at run-time. For example, a
mobile user traveling to a destination does not know all the other
users that are heading in the same direction. Therefore, the lack
of prior knowledge about the mobility groups make the RPGM
model inapplicable for run-time partition prediction. Second, the
RPGM model represents the mobile nodes by their physical co-
ordinates. Given only the instantaneous physical locations of the
nodes, it is difficult to discern the nodes’ group movement pat-
terns and the trend in the network topology changes.

B. Reference Velocity Group Mobility Model

We observe that instead of proximity in physical displace-
ments, a more fundamental characteristic of a mobility group
is the similarity of the member nodes’ movements. The node
movement can be characterized by the velocity v = (v,,v,)7,
where v, and v, are the velocity components in the = and y di-
rections. Therefore, we extend the RPGM model by proposing
a velocity representation of the mobility groups and the mobile
nodes: Each mobility group has a characteristic group velocity.
The member nodes in the group have velocities close to the char-
acteristic group velocity but deviate slightly from it. Hence, the
characteristic group velocity is also the mean group velocity. The
membership of the ith node in the jth group is then described as:

« Group velocity: W(t) ~ P; ;(w)
« Local velocity deviation: Uj ;(t) ~ Q;,+(u)
« Node velocity: V; ;(t) = W;(t) + Uj i(t)

We further extend the RPGM model by modeling the group
velocity W (¢) and the local velocity deviation of the member
nodes Uj ;(t) as random variables each drawn from the distri-
bution P; ;(w) and Q; ¢ (u), respectively. The distributions can
be any arbitrary type, e.g. as Gaussian distributions, in order to
model the various mobility patterns that may exist for different
mobility groups and for the nodes within a mobility group.

Analogous to the RPGM maodel, the characteristic group ve-
locity W ;(¢) serves as a reference velocity for the nodes in the

group. Therefore, we call this the Reference Velocity Group Mo-
bility (RVGM) model. This velocity-based group representation
is the time derivative of the displacement-based group represen-
tation in the RPGM model:

V. ( ) _ de,i(t) _ de(t) de,i(t)
PR T dt dt

= Wj (t) + UJ‘J’ (t)

In particular, the characteristic group velocity W ;(¢) is the
changes over time in Y (), the displacement of the group ref-
erence center. We can derive the reference point representation
from the reference velocity representation, by integrating the ve-
locities W;(t), Uj;(t), V;,i(t) over an appropriate time inter-
val, given the initial positions of the group reference center and
the mobile nodes.

Our RVGM model has the following advantages. First, it di-
rectly provides the mobility parameters of each mobility group,
such as its mean group velocity and the variance in the node ve-
locities within the group. Second, by modeling the node veloci-
ties in a mobility group as a random variable with the distribution
Q.+ (u), we can determine the group membership of any mobile
node given the nodal velocity and the velocity distributions of
the existing mobility groups. In Section I1I, we will show how
the mean group velocity and the mobile node’s group member-
ship information can be used to predict network partitioning in
an ad-hoc network.

The velocity representation of our RVGM model also provides
a clearer characterization of the mobility groups, as graphically
illustrated in Figure 1* through the transformation of the mobile
nodes from the a) physical to b) velocity data space.

a) Mobile nodes in the x-y plane b) Mobility clusters in the velocity plane
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Fig. 1. Mobile Nodes Represented by Their a) Physical Coordinates and b)
Velocities

In a) the reference centers of the groups overlap, and the mobile
nodes are scattered with no clear groupings. However, in b) the
mobile nodes are concentrated around the mean group velocity
in their respective mobility groups and the mobility groups are
clearly apparent. In Section 1V, we will show how these prop-
erties of the mobile nodes in the velocity data space can be ex-
ploited to determine the mobility groups and the mobile node
group memberships in an ad-hoc network.

I1l. PARTITION PREDICTION

We first analyze how the group mobility pattern influences the
changes in the ad-hoc network topology during a network parti-

1The reference centers and group velocities are shown by the symbol o, and
the mobile nodes are marked with their mobility group symbols.



tioning. Figure 2 illustrates the progression of a network parti-
tioning. The subplots (a), (b), (c), and (d) show the snapshots of
the mobile nodes and the network topology at different times. At
to=0, the mobile nodes are evenly dispersed in the coverage area,
and the network is one large physical cluster. As the nodes move
with the time, the physical cluster spreads in several directions at
time t,=4, and continues through ¢2=8. By the time ¢3=30, the
original cluster is completely separated into three smaller “is-
lands”, and the network is partitioned.
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Fig. 2. Network Partition and Group Mobility Pattern

To observe the group mobility pattern in the network, suppose
the group membership of the nodes are known. In subplots (e),
(), (9), and (h), we show the same set of topology snapshots but
with the nodes marked by their respective mobility group sym-
bols. The side-by-side comparison of the subplots clearly points
to a cause-and-effect relationship between the group-based node
movements and network partitioning. The mobility groups are
moving at different velocities and towards different destinations,
which causes the initially intermixed mobile nodes to separate
and as the result, the network to partition. As expected, Figure
2(h) shows that the sub-networks resulted from the network par-
titioning are the different mobility groups.

A. Partition Prediction Algorithm

From the above analysis, we observe that global scale changes
in the network topology are attributed to the group mobility pat-

tern. In particular, the movements of mobility groups lead to
network partitioning. Consider again the ad-hoc network in Fig-
ure 2, where the underlying mobility groups have the same ini-
tial position and coverage area. The RVGM model characterizes
each mobility group by its mean group velocity W ;(¢). If such
mean group velocities are known for all mobility groups in the
network, then the occurrence of network partitioning due to the
separation of mobility group can be predicted.

To simplify the problem, we make the following assumptions.
First, we assume all mobility groups have a circular coverage
area of diameter D wherein the mobile nodes are uniformly dis-
tributed. Furthermore, we assume the velocities of the mobility
groups and the mobile nodes are time-invariant, W;, V; ; # f(t).
Based on these assumptions, the network topology can be viewed
as a collection of equal sized “circles” that are initially stacked
on top of each other. We wish to calculate the time at which
the “circles” completely uncover each other using the velocity of
each “circle”.

For example, a simple case of a network consisting of only
two groups C; and Cy, each moving at the velocity W; and
‘W .. Since both groups are moving, to find the relative velocity
between them, we fix one mobility group, e.g. C}, as stationary.
Then, the effective velocity W ;; at which Cy is moving away
from Cj is:

Wi = Wi +(=W;) and Wi, = (ke Wik,y)

where

Wik, Wg,x — Wjz,

Wiky = Wky — Wjy-

Initially, group C}, completely overlaps with group C;. In order
for C}, to fully separate from C, it must move past a minimum
distance of the diameter D of C;’s coverage area. Hence, the
amount of time for C; and C}, to change from total overlap to
complete separation is given by?:

D
T.

gk - 2 2
V Wikae T Wik,y

Consider an ad-hoc network consisting of many diverse mobil-
ity groups whose nodes are initially dispersed and inter-mixed.
Given the mean group velocities, the time of separation T'j;, can
be calculated for any pair of mobility groups. Therefore, the oc-
currence of network partitioning can be predicted as a sequence
of the expected time of separation T;;,s between the various pairs
of mobility groups in the network. E.g., an ad-hoc network with
mobility groups C1, Cs, and Cs, the network is predicted to par-
tition at times ¢ = Tia, T13, T23.

B. Application of Partition Prediction

Predicting the occurrence of network partitioning allows ad-
hoc network applications to act in advance in order to minimize

2Since the coverage area of the mobility group is assumed to be a circle, which
has equal diameter in every direction, hence, only the speed is sufficient to cal-
culate the time of separation.



the disruptions caused by the partitioning. In addition, predicting
the timing of the partitioning can further improve the efficiency
and performance of the applications.

We illustrate with the example of a mission-critical service
in ad-hoc networks. The service can be a critical information
database or a web server that must be accessible to all mobile
nodes in the network. The service runs on a single mobile node
referred to as the server node, and instances of it can be dynam-
ically replicated on any mobile nodes to guarantee service avail-
ability. Figure 3 illustrates how partition prediction information
can ensure a high degree of service availability while minimizing
the number of service replicas required. At time ¢o, the server
node Ng is providing service S to all mobile nodes in the net-
work. However, at time ¢-, the network partitions, as there are
two mobility groups moving towards different directions. In or-
der to continue the service in both partitions, service S must be
replicated onto the departing partition. In the figure, the server
node Ng executes the partition prediction algorithm and calcu-
lates the time of separation T to be ¢5. The server node Ng timely
replicates S’ onto N, at t; just before the partitions completely
separate, and achieves service efficiency by not creating redun-
dant replicates prior to that time.

4
4

Fig. 3. Service Availability Guarantees with Partition Prediction

There is one additional important detail. The above service
replication example implicitly assumes that node Ng knows Ny
is in the separating partition. However, realistically, mobile
nodes do not have the knowledge of which partition they will be
in before the partitioning actually happens. The analysis earlier
in this section shows, the network partitions are formed by the
mobility groups. Therefore, determining what partition a node
will be in is equivalent to identifying the node’'s mability group
membership.

Hence to make partition prediction, we need to determine both
the mean group velocity of each mobility group and the group
membership of each mobile node.

1V. MOBILE NODE VELOCITY CLUSTERING

In a wireless ad-hoc network, we do not have any prior knowl-
edge about the mobility groups, the only information we may
have is the velocities of all the mobile nodes, which we assume
can be obtained via GPS. According to the RVGM model, the
mobile node velocity in mobility group j is represented as a ran-
dom variable with the distribution Q; and has the mean W,
which is the mean group velocity. Each mobility group is mod-
eled as a velocity distribution. Figure 1 graphically illustrates
the different velocity distributions as clusters in the velocity data
space. The centers of the clusters give the means of each velocity

distribution, and the data points in each cluster are the mobile
nodes with their mobility group membership revealed.

Therefore, the problem of determining the mobility groups
and the membership of mobile nodes becomes the identification
of the mobility clusters in the velocity space: their centers and
member data points, given only the velocity vectors of the mo-
bile nodes.

A. Sequential Clustering Algorithm

We propose to use a simple and effective sequential clustering
(SC) algorithm from the field of pattern recognition [5] to solve
this problem.

The SC algorithm classifies a set of data points into clusters
based on a distance measure. It has three advantages that are
suitable for our purpose. First, the algorithm requires little prior
information about the data set; second, it learns about the clusters
as it classifies and adapts its classification rules; and finally, it se-
quentially processes the data points, so the number of data points
is not constrained and can be unknown. The last advantage is
beneficial in wireless ad-hoc networks since the total number of
nodes is dynamic and unknown.

The SC algorithm sequentially process each data point z; in
three steps: (1) Distance measurement: it measures the Eu-
clidean distance d(z;, C},) between the data point and the center
of each existing clustering C. The cluster center is the arith-
metic mean of the velocity vectors of all member data points. (2)
Classification: it selects the minimum distance measured and
compares it with a pre-set distance threshold «. If the minimum
distance is less than «, the data point is classified to the corre-
sponding cluster. If there are not sufficient similarities between
the data point and any of the existing clusters, then a new clus-
ter is created with the data point as the first member. (3) self-
learning: For each data point classified into an existing cluster,
the algorithm self-learns about the cluster by updating the cluster
center.

The SC algorithm has the structure as shown in Table IV-A:

TABLE |
SEQUENTIAL CLUSTERING ALGORITHM

m=1

Crm = {71}

For ¢ = 2 to end of data set
Find Cki d(:l:i, Ck) = minlSjSm d(.’Ei, CJ)
If d(z;,Ck) > a AND (m < mpqe;) then

m=m+1
Cm = {JE,}
Else
Cr,=CrU {JI,}
update the center of Cj,
End

End

Note that the SC algorithm boot-straps itself by classifying the
first data point z; into the first cluster C;. The additional param-
eter monqe IS the maximum number of clusters allowed, and it
prevents too many clusters being created. The two parameters



of the algorithm « and m,, 4, are set to some reasonably esti-
mated values based on some prior knowledge about the mobility
clusters/groups.

V. ILLUSTRATION OF THE SC ALGORITHM

We illustrate the performance of the Sequential Clustering
(SC) algorithm using test data sets consists of a mixture of mobil-
ity groups. Each test data set has 150 data points generated from
3 Gaussian distributions of different mean and variance. The data
points are input into the SC algorithm in a random order. We set
the distance threshold « to a value that approximates the average
difference between the means of the three Gaussian distributions.
We also set m,q2, the maximum number of clusters to 5.

In the first data set, Figure 4, the data points are generated
from distributions of sufficiently different means, and hence form
compact and well-separated clusters. The SC algorithm classifies
all points correctly into three clusters, therefore correctly deter-
mines the mobility group membership of each node, and estimate
the mean group velocities of all mobility groups with close to
100% accuracy.
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Fig. 4. Perfect Accuracy with No Misclassification

However, if the mobility groups have large amounts of scatter-
ing and closely placed mean velocities, the accuracy of the SC
algorithm decreases. In Figure 5, the data points that extend into
the areas of other clusters are misclassified®. The misclassifica-
tion is due to the SC algorithm classifying into the same cluster
all the data points that are within the Euclidean radius of «. Be-
cause of the misclassified data points, the estimated centers of
the cluster deviate from the actual centers, and hence reduce the
accuracy of the estimated mean group velocities.

It is observed that as the mobility groups become less distinct
and have larger overlaps, the number of misclassification of the
SC algorithm increases. At the extreme, when there are little
separations between the groups such that the distances between
their mean velocities are less than the amount variance in each
group, the SC algorithm will classify all data points into a single
cluster. This is a correct classification, however, because if all
mobility groups are sufficiently similar, they should be treated as
one mobility group.

V1. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a velocity-based mobility group
model that characterizes the movements of the mobility groups in

3The misclassified points are marked with the ¢ symbol in the figures.
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Fig. 5. Misclassification

wireless ad-hoc networks. Based on the mobility parameters pro-
vided by the model, we showed how future network partitioning
can be predicted. We also proposed to use a low-complexity data
clustering algorithm that can accurately determine the mobil-
ity groups and their mobility parameters, and identify the group
membership of each mobile node in the network.

The main purposes of this paper were to show the cause-and-
effect relationship between group mobility and network parti-
tioning in the wireless ad-hoc networks, and investigate how mo-
bility groups can be determined from node velocities. In this pa-
per, we did not present any design or implementation details. In
particular, we implicitly assumed the node velocities are known
to the server which runs the data clustering algorithm. Realisti-
cally, a mechanism is required to efficiently collect the velocities
from all mobile nodes. The mechanism should be scalable and
does not incur high communication cost. One approach may be
to piggyback the information on existing network communica-
tions. Additionally, the details of the partition prediction and
subsequent service replication need to be developed. These will
be the focus of our future research.
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