
1Per-Stream Jitter Analysis in CBR ATMMultiplexorsAleksandr Privalov, Khosrow SohrabyAbstract|Constant Bit Rate (CBR) tra�c is expected tobe a major source of tra�c in high-speed networks. Suchsources may have stringent delay and loss requirements andin many cases, they should be delivered exactly as they weregenerated.A simple delay priority scheme will bound the cell delayand jitter for CBR streams, so that in the network switches,CBR tra�c will only compete with other CBR tra�c in thenetworks. In this paper, we will consider a multiplexor insuch an environment. We provide an exact analysis of thejitter process in the homogeneous case. In this case, weobtain the complete characterization of the jitter processshowing the inaccuracies of the existing results.Our results indicate that jitter variance is bounded andnever exceeds the constant 23 slot. It is also shown that theper-stream successive cell inter-departures times are nega-tively correlated with the lag 1 correlation of � 12 . Higherorder correlation coe�cients are shown to be zero. Simpleasymptotic results on per-stream behavior are also providedwhen the number of CBR streams is considered large.In the heterogeneous case, we bound the jitter distribu-tion and moments. Simple results are provided for the com-putation of the bound on the jitter variance for any mix ofCBR streams in this case. It is shown that streams with alow rate (large period) do experience little jitter variance.However, the jitter variance for the high-rate streams couldbe quite substantial.Keywords|Jitter, cell delay variation, cell based networks,ATM, periodic arrivals, statistical multiplexing, asymptoticanalysis I. IntroductionBroadband Integrated Services Digital Networks (B-ISDN) will transport diverse classes of services such asdata, voice, image, and video. ATM (Asynchronous Trans-fer Mode) is being standardized as the transport mecha-nism to integrate and support such services in a single net-work. ATM is a connection-oriented packet-switched net-work where packets are segmented into �xed size cells whichare statistically multiplexed over the high speed links. Sta-tistical multiplexing of the cells generated from diverse traf-A.Privalov and K.Sohraby are with the Telecommunications Net-working Dept. Computer Science and Telecommunications, Univer-sity of Missouri - Kansas City, 5100 Rockhill Road Kansas City, MO64110, USA E-mail: fprivalov,sohrabyg@cstp.umkc.edu

�c sources with possibly very di�erent characteristics on anATM link introduces considerable exibility and potentialsaving in the allocation of network resources. However,if the network is not properly designed, dimensioned andcontrolled, extensive cell delay, cell loss and cell delay vari-ation (CDV) or jitter may deteriorate the performance ofthe network to an unacceptable level.The success of the ATM networks will be heavily depen-dent upon being able to provide the required QoS (Qualityof Service) to the classes of tra�c supported by the net-work. An important class of tra�c to be supported by theATM networks are those for which a timing relation shouldbe maintained between source and destination. These ser-vices are classi�ed as Class A and Class B in the ITU-TRecommendation I.362. Class A services are connection-oriented constant bit-rate (CBR) like DS1 and n�64 kbpscircuit emulation. This class is supported by AAL1. ClassB which is supported by AAL2 denotes the variable bit-rate (VBR) services like packet video or audio. As in ClassA, these services are connection-oriented and require a tim-ing relation between source and destination. We note thatClass C services are connection-oriented, but do not requiretiming (e.g., Frame Relay and X.25).Class A (CBR) and B (VBR) services with timing rela-tion between source and destination are expected to com-prise a major portion of the total tra�c on the networkgenerated from the multimedia sources. However, as suchsources traverse multiple nodes in the network and com-pete for the network resources with other tra�c, they losetheir original pattern. Jitter is de�ned as the alteration ofthe original pattern of the cell arrival process at the multi-plexing stages of the network. A play-out delay (or "elasticbu�er") is used for the reconstruction of the stream intoits original pattern before it is delivered to the �nal desti-nation. The duration of the play-out delay is determinedby the jitter process and the QoS. Important performancemeasures for classes A and B are delay, loss and jitter. Forclass C, delay and loss are important measures.



2 In this paper we provide the analysis of jitter incurred toindividual periodic cell streams going through a node in anATM network. It should be noted that the periodic arrivalprocesses are not only limited to periodic sources (e.g., real-time speech or video, output of a peak rate enforcer), it isalso due to window ow control protocols which have aperiodic cycle equal to the connection round trip time [8].In this work, we consider nodes which support a numberof CBR sources. Most of the existing teletra�c analysisin computer and communication networks cannot handleperiodic cell streams which are generated from the CBRtra�c. This is largely due to the fact that we deal witha combinatorial problem and not necessarily a traditional\queueing" problem.The problem of characterizing the superposition of peri-odic processes is an important problem which dates backto 1953 [4]. There has been number of works in attemptingto provide the queueing analysis of such processes. Refer-ences [5], [1], [24], [2] are examples of in�nite bu�er and[15] consider the �nite bu�er case.In the jitter analysis, the existing work concentrates ona single tagged stream and a random background tra�cmodeling the superposition of all the other tra�c compet-ing for resources with the tagged stream in a node. Thebackground tra�c is assumed to have a known distributiondisregarding the probabilistic nature of individual streams.The tagged stream has been assumed to be originally peri-odic (i.e., CBR tra�c) or having a general renewal process[20], [18].The problem of jitter calculation has been also addressedby many other authors. Examples are [21], [10], [11], [14],[7], [6], [22], [9], [23], [3], [13], [16]. In [21], [10], [11], [22],[9], the jitter process is studied in the context of peak rateenforcement in ATM networks. In the analysis of the jitterprocess, as in [17], [19], only a tagged stream is assumed tobe periodic.In [7], [6], [23] and [13], the issues of real-time transmis-sion and bounding the jitter is considered. In [3], the delayand the jitter process is analyzed for a single arrival peri-odic batch process where a random number of cells arriveperiodically.In [17] and [19], an analysis of the jitter for a singlenode was given. Simple closed-form results were obtainedin the light and heavy tra�c. In [18], the multiple nodeenvironment was considered where the departure processof a tagged stream from any node in the network was ap-

proximated by a renewal process characterized by its inter-arrival time marginal distribution of the cells. It was shownthat this approximation was indeed, very good as far aspredicting the marginal distribution of the tagged streamfrom a node was concerned. It was also shown that irre-spective of the tra�c level, as the number of nodes in thenetwork increases, the marginal density of the departureprocess of the tagged stream (from the last node in thenetwork) converges to a distribution. In the heavy tra�c,a simple functional equation satis�ed by this distributionwhich upperbounds all the moments (e.g., variance) of thejitter process in all ranges of tra�c levels and arbitrarynumber of nodes in the network was provided.The work in this paper departs sharply from all the ex-isting work in number of directions. First, we consider thecase where the individual tra�c streams (and not only thetagged stream) are periodic. Unlike the existing work, wedo not approximate the background tra�c with a knownand simple distribution. We note that in an environmentwhere CBR tra�c is given delay priority, this class of tra�ccompetes for bandwidth in a node with only CBR tra�c.In this situation, all the individual streams competing witha tagged periodic stream are in fact periodic.Second, we do not assume \mini-priority" for the taggedstream since we deal with individual CBR streams and anystream could indeed be a tagged stream! The mini-priorityassumption which had been made for simplicity, assumesthat, when there is more than one cell arriving in a slot, thecell from the tagged stream enters the bu�er �rst. In thispaper, no mini-priority to any CBR stream is given. In theevent that multiple cells arrive from di�erent streams in thesame time slot, they enter the bu�er in a random order. Infact, it is not di�cult to see that if mini-priority is givento all the streams (say the cell from stream i enters thebu�er before the cells from stream j if i < j), the streamswill preserve their original periodic pattern. Although sucha behavior is quite desirable, it may be quite di�cult toimplement it in practice.In this paper, our main goal is the characterization of theinter-departure process (marginal and joint) of individualstreams in both homogeneous and heterogeneous environ-ments. We note, unlike the classical queues, with all ar-rivals being periodic, we do not have an unstable situationand the queue is always bounded and periodic. In fact,due to the periodicity of the individual streams, most ofthe results in classical queueing theory may not be appli-



3cable. For mathematical tractability, we will pay specialattention to the cases where the bu�er is fully utilized, i.e.,the queue utilization is 100 percent. We note that a fullyloaded queue will provide a worst average case analysis ofthe system. The quality of the bound will be examined inthe homogeneous case where an exact analysis is possiblefor any level of utilization.This paper provides some new insight in the behaviorof ATM multiplexors serving CBR streams. Among manyresults, it establishes simple bounds on the inter-departureof individual cell streams. It also shows that in the homo-geneous case, the variance of the inter-departure processis (upper) bounded by the constant 23 . This may indicatethat (homogeneous) CBR multiplexors have a tendency topreserve the shape of individual tra�c streams. This con-cludes Section 1 of the paper.The outline for the remainder of the paper is as follows.In Section 2 we provide the mathematical model and thebasic de�nitions and the problem statement. Section 3deals with the homogeneous case. In Section 4 we coverthe analysis of the heterogeneous multiplexor, where theperiodic streams may not have the same period. Somecomparisons with the existing models are reported in Sec-tion 5. Finally, the numerical results and conclusions areprovided in Section 6.II. Mathematical ModelWe assume an ATM environment, where time is slottedand takes non-negative integer values t = f0; 1; 2; � � �g. Thetime interval [t� 1; t) is referred to as slot t. We assumethat sources produce �xed-length packets (ATM cells) in-dependently of each other. The cells are stored in a loss-freebu�er (queue). It is assumed that the departures from thecell bu�er take place at the beginning of slots, and the ar-rivals during a slot. We de�ne:qt = queue length (in number of cells) at the end of tth slotAt = number of arrivals from all sources in the tth slotso that we have the following evolution equationqt+1 = max(qt � 1; 0) +At; (1)In what follows, we describe the arrival process of in-dividual streams. Without loss of generality, the individ-ual tra�c source of interest (tagged stream) is assumedto be periodic with period T and cells arrive in slotstn = (n � 1)T + 1; n � 1 so that the nth tagged cell isarrived in slot tn. Other periodical streams are described

with respect to the tagged stream. A stream i is fullydescribed by the doublet fIi; Tig where Ii denotes the (ini-tial) o�set random variable denoting the slot number of the�rst cell arriving from source i, and Ti denotes the sourceperiod. We will assume that Ii is an integer-valued ran-dom variable uniformally distributed in [1; Ti]. It is alsoassumed that the o�set random variables of all sources aremutually independent. The latter assumption establishesthe independence of individual periodic streams.The cell transmission is assumed to be FCFS and one cellper slot is transmitted as long as the bu�er is non-empty.The cells arriving in the same time slot enter the bu�errandomly. We are concerned with the tagged stream inter-departure times. We let Q(tn) denote the number of cellsseen in the bu�er by the nth tagged cell arriving at timetn. We note that in the event of multiple arrivals at timetn, Q(tn) includes those cells entering the bu�er ahead ofthe tagged cell.As in [17], [18], [19], we de�ne the random variable Jnas the inter-departures of nth and (n+ 1)st cells. We haveJn = Q(tn+1)�Q(tn) + T (2)and the centered jitter process~Jn = Jn � T: (3)In the next section we provide the analysis. A major partof this manuscript will be devoted in the characterization ofthe random sequence Jn; n � 1. We �nd it most convenientto separate the homogeneous case where all the streamshave the same period equal to T from the heterogeneouscase. III. Homogeneous CBR MultiplexorsIn this section we consider the homogeneous environ-ment. It is assumed that the multiplexor supports (N+1),0 � N � T � 1 periodic streams each with period T .Based on the description of the individual arrivalstreams, it is easy to see that the superposition processof all the streams is also periodic with period T , so thatthe total number of cells arriving in any slot i satis�esAnT+i = Ai; (4)In particular, we are interested in the random variableA1 which represents the total number of arrivals in thearrival slots of the tagged stream. We can decompose this



4random variable into three parts of (see Fig. 1)A1 = 1 + b(1)n + b(2)n ; (5)where 1 accounts for the cell from the tagged stream andb(1)n (b(2)n ) denotes the number of cells entering the bu�erbefore (after) the cell from the tagged stream.In the next proposition, we provide the jitter distribu-tion. We will need the following two discrete distributionfunctionsBk(p;N) = �Nk � pk(1� p)N�k; k 2 [0; N ] (6)and fk(j) = ( 1k+1 � jjj(k+1)2 ; for jjj � k0; otherwise ; (7)where Bk(p;N) is the probability mass function of a bino-mial distribution with parameters p and N , and fk(j) isthe probability mass distribution of a discrete triangularrandom variable centered at zero in the range [�k; k].Proposition 1: If the initial queue length q0 = 0, thenfor t � T , qt is periodic with period T and for n > 1, theper-stream jitter process satis�es ( ~Jn = Jn � T )Prf ~Jn = jg = NXk=jjjBk( 1T ;N)fk(j); j j j� N; (8)var(Jn) = N(3T +N � 1)6T 2 � 23 : (9)When N = T � 1 (fully utilized system) and q0 � T � 1,above results are true for n � 1.Proof: The periodicity of qn is already reported in [2],[12] based on the assumption of q0 = 0. For this case, wehave [12]qt = (max0�i<t(Ptj=t�iAj � i);when t < Tmax0�i<T (Ptj=t�iAj � i);when t � T; (10)since for t � T , the term (Ptj=t�iAj � i) is periodic, so itfollows that qnT+i = qmT+i for any n;m � 1 and i � 0 inparticular we have qtn = qtn+1 . For the fully utilized system(i.e., when N = T � 1) the queue will not empty during�rst period and the periodical behavior will take place forall periods, including �rst (in particular q1 = qT+1). Tohave this, it is su�cient that q0 � T � 1.Based on the above discussion, at least for n � 2 we haveJn = T + b(1)n+1 � b(1)n : (11)

In what follows, we proceed to prove Eq. (8). Under theassumption of uniformally distributed o�set random vari-ables Ii in [1; T ], it is clear that the number of arrivals inarrival slots of the tagged stream has a Binomial distribu-tion and we havePrfA1 = k + 1g = Bk( 1T ;N); k 2 f0; : : : ; Ng (12)It should be also clear that conditioning on A1, the ran-dom variables b(1)n+1 and b(1)n have a (discrete) uniform dis-tribution. We have (0 � i � k)Prfb(2)n = i j A1 = k + 1g == Prfb(1)n+1 = i j A1 = k + 1g == 1k + 1 ; 0 � i � k (13)Since the order of arrivals from all the streams in slot(n� 1)T + 1 is independent of those in slot nT + 1, there-fore random variables b(1)n and b(1)n+1 are also conditionallyindependent given A1. So thatPrfb(1)n+1 � b(1)n = j j A1 = kg = fk(j) (14)and Eq. (8) follows. The variance of jitter var(Jn) =var( ~Jn) can be found by direct calculation from Eq. (8).This completes the proof. 2The above proposition provides simple results on the dis-tribution and any moment of the jitter process. As ex-pected, the jitter variance is an increasing function of thenumber of periodic streams. The maximum jitter varianceoccurs at N = T � 1 which corresponds to the system uti-lization of 100%. It is interesting to note that this variancenever exceeds the constant 23 .Another interesting insight on the operation of the CBRhomogeneous multiplexor is that as the number of sourcesincreases, the variance of the jitter process approaches toa constant. This limiting behavior is indicative of the in-herent \smoothness" of the departure process of individualstreams in homogeneous CBR multiplexors. This resultshould be contrasted to the case where the backgroundtra�c does not consist of individual identical periodic pro-cesses (see Section 5).In what follows, we examine the marginal distributionof the jitter process for large T . This case is motivatedby high-speed environment where a multiplexor is servinglarge number of slow (large T ) CBR streams, e.g., circuitemulation of CBR packetized voice tra�c streams. In the
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-ttn�1 tn tn+1�1 tn+1tagged cellb(1)nbackgroundcells

b(2)nbackgroundcells tagged cellb(1)n+1backgroundcells
b(2)n+1backgroundcells?

6A1 cells ?
6A1 cells� -T slotsFig. 1. System Variables for Homogeneous Caselimiting case as T ! 1, we will let N ! 1 too, to keepa constant system utilization of � = (N + 1)=T . Using thePoisson distribution as the limiting behavior of Binomialdistribution, we can easily establish this limit. We denotethe Poisson distribution function�k(�) = exp(��)�kk! (15)so thatlimT!1Prf ~Jn = jg == e��0@ 1Xi=jjj �i(i+ 1)! � jjj 1Xi=jjj �i(i+ 1)(i+ 1)!1A :(16)Based on the above result, the probability of zero jitteris simply limT!1Prf ~Jn = 0g = 1� e��� ; (17)which is a decreasing function of � and takes its minimumvalue of 1� e�1 � :632 at � = 1. Other masses of the lim-iting behavior of the marginal distribution may be shownto be an increasing function of � and they take their max-imum value at � = 1. The limiting distribution for themcan be simpli�ed to an expression with �nite summationslimT!1;�!1Prf ~Jn = jg == 1� e�1 jjjXk=0 1k!� j j j 0@c� e�1 jjjXk=1 1kk!1A (18)where c = e�1P1k=1 1k!k = :484829107 up to nine signi�-cant digits.In the remainder of this section, we consider the joint dis-tribution of successive inter-departure times. We will need

the probability generating function of an integer-valueduniform random variable in [0; k] which is given byu(z) = 1� zk+1(k + 1)(1� z) : (19)Now de�ne the joint probability generating function ofm successive jitters random variables ~Jn+i, 0 � i � m asJ(z1; z2; : : : ; zm+1) = E( mYi=0 zi ~Jn+i ); (20)and we have the following proposition summarizing the cor-relation structure of successive jitters.Proposition 2: The joint probability generating func-tion of ~Jn+i, 0 � i � m is given by1. J(z1; z2; ; : : : ; zm+1) = NXk=0 Bk( 1T ;N)��u( 1z1 )[ mYi=1u( zizi+1 )]u(zm+1); (21)2. The non-consecutive cell jitters are uncorrelated (i.e.,random variables ~Jn and ~Jn+m are uncorrelated form � 2) and their joint distribution is given byPrf ~Jn+m = j; ~Jn = ig == 8><>:PNk=0Bk( 1T ; N)fk(j)fk(i); m � 2PNk=0Bk( 1T ; N) 1k+1fk(i+ j);i; j � 0 or i; j � 0; m = 1 (22)3. ~Jn and ~Jn+1 (successive cell jitters of any taggedstream) are negatively correlated. The normalized cor-relation of ~Jn and ~Jn+1 is � 12 independently of T andnumber of background streams as long as 1 � N �T � 1.



6 Proof: First we note that ~Jn+i = b(1)n+i+1 � b(1)n+i, so fol-lowing our approach in the determination of the marginaldistribution, we condition on the random variableAnT+1 =A1. However, since the order of cell arrivals to the queue atthe arrival slots of the tagged stream (slots nT +1; n � 0)are independent of each other, it is easy to see that therandom variables b(1)n+i are conditionally independent andwe havePrfb(1)n+i = j j A1 = k + 1g = 1k ; 0 � j � k (23)Now using the fact that A1 has a Binomial distribution,Part 1 and 2 follow easily.To prove Part 3, we note that E( ~Jn) = 0 and the nor-malized lag 1 coe�cient is given by1 = E( ~Jn ~Jn+1)var( ~Jn) (24)Now, by specializing the expression given by Eq. (21) form = 1, routine di�erentiation of J(z1; z2) provides theclaimed result of 1 = � 12 . 2IV. Heterogeneous CBR MultiplexorsIn this section, we present the per-stream jitter analysisof a general heterogeneous CBR multiplexor. Due to thecomplexity of the analysis, a fully utilized system is onlyconsidered so that the multiplexor is serving a su�cientnumber of periodic streams resulting a total utilization ofone. This assumption will be crucial in the simpli�cationof the analysis (see below) and will bound the jitter forany heterogeneous CBR multiplexor. Consider a situationwhere the total utilization is less than one, we can alwaysadd a periodical stream to the system to attain a totalutilization of one. Now, it is easy to argue that the newsystem will always result in a worse jitter as compared tothe original system.As in the homogeneous case, we assume that our taggedstream has a period of T slots. The multiplexor supportsNother background tra�c streams where stream i has periodTi. We are not making any restriction on the values of Tiexcept that the total utilization � is assumed to be unityso that � = 1T + NXi=1 1Ti = 1: (25)Before we proceed further, we identify three regions be-tween the arrival slots of the tagged stream. Region 1(Region 3) consists of only one slot tn (tn+1) and Re-gion 2 denotes the T � 1 slots in open range (tn; tn+1)

(slots between the arriving slots of the tagged stream).K(r)i ; 1 � i � 3; 1 � r � N denotes the number ofcells arriving from background stream r in region i. Wealso de�ne the joint pgfhr(z1; z2; z3) = E(z1K(r)1 z2K(r)2 z3K(r)3 ) (26)and we let Ki denote the total number of cells from allbackground streams in region i. We also letH(z1; z2; z3) = E(z1K1z2K2z3K3) (27)and �nally, the following representation of Tr is used as itcompares with T , the period of the tagged streamT = mrTr + jr; 0 � jr � Tr � 1; (28)where mr denotes the number of Tr periods �tting in theperiod of T and resulting in jr remainder slots.For clarity, the subscript n is dropped in the de�nitions.Figure 2, provide a pictorial representation of various sys-tem variables.The key in the simpli�cation in the heterogeneous caseis that if the initial queue length q0 is su�ciently large,then the queue never empties and the \max" operator inthe evolution Eq. (1) does not play any role. Now, basedon this fact, the evolution equation Eq. (2) becomes asimple �rst order di�erence equation and we easily relatethe queue length at di�erent slot times. In particular, wegetJn = Q(tn+1)�Q(tn) + T = 1 + b(2)n + b(1)n+1 +K2 (29)where the random variable b(1)n+1 (b(2)n ) represent the num-ber of cells entering the queue before (after) the taggedcell arriving in slots tn+1 (tn). We note b(2)n and b(1)n+1 areuniformally distributed in [0;K1] and [0;K3], respectively.Denote U [0;K] as an integer-valued uniform random vari-able in range of [0;K], we haveJn = 1 + U [0;K1] +K2 + U [0;K3] (30)Proposition 3: We have the following results for aheterogeneous CBR multiplexor:1. hr(z1; z2; z3) == 8>><>>: zmr2 � z1Tr + (jr�1)z2Tr + z3Tr + Tr�jr�1Tr � ;if jr 6= 0;z(mr�1)2 � z1z3Tr + (Tr�1)z2Tr � ; if jr = 0(31)
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-ttn�1 tn tn+1�1 tn+1 -� (mr + 1)Tr slots-� 1 slot -� mrTr + jr � 1 slots -� 1 slot -� Tr � jr � 1 slots-� T � 1 slotsK(r)1cellsarrive K(r)2cellsarrive K(r)3cellsarrive

Fig. 2. System variables and notations for background stream with period Trand H(z1; z2; z3) = NYr=1hr(z1; z2; z3): (32)2. The probability generating function of Jn is given byJ(z) = z(1� z)2 Z 1z Z 1z H(z1; z; z3) dz1dz3 (33)3. Variance of Jn is given byvar(Jn) = �2T 2 + 13� NXr=1 NXj=r+1 1TrTj ++ NXr=1(mr2 �mr + �r)� (T � 1)(T � 2) (34)where �r = ( 2mrjrTr ; if jr 6= 012Tr ; if jr = 0 (35)4. Maximal value of Jn ismax(Jn) = 1 +N + NXr=1mr (36)Proof: First, we concentrate on a single stream ofperiod Tr. Assume that for this stream jr 6= 0. Since onecell from this stream arrives with equal probability 1Tr inslots [tn; tn + Tr � 1], it is obvious thatPrfK(r)1 = i1;K(r)2 = mr + i2;K(r)3 = i3g == 8>>>><>>>>: Tr�jr�1Tr ; for i1 = i2 = i3 = 01Tr ; for i1 = 1; i2 = i3 = 0jr�1Tr ; for i1 = 0; i2 = 1; i3 = 01Tr for i1 = 1; i2 = 0; i3 = 1 (37)so that hr(z1; z2; z3) for jr 6= 0 follows immediately. Forthe case of jr = 0, we have (obviously mr � 1 for this case)PrfK(r)1 = i1;K(r)2 = mr � 1 + i2;K(r)3 = i3g =

= ( 1Tr ; for i1 = 1; i2 = 0; i3 = 11� 1Tr ; for i1 = 0; i2 = 1; i3 = 0 (38)so hr(z1; z2; z3) for jr = 0 follows.The product form of H(z1; z2; z3) follows immediatelybecause of the independence of individual streams.To �nd J(z), we note that if K is an integer-valued ran-dom variable taking non-negative integers and has a pgff(z), then the p.g.f. of U [0;K] isE(zU [0;K]) = 11� z Z 1z f(z)dz (39)which easily follows by conditioning on K. Taking advan-tage of this fact in Eq. (32), will immediately give Eq.(33).To �nd var(Jn) = J 00(1) + T � T 2, we note that(1� z)2 J(z) = z Z 1z Z 1z H(z1; z; z3) dz1dz3 = F (z) (40)so that J 00(1) = 112F (iv)(1). Using standard results of dif-ferentiation of integrals, we getJ 00(1) = ( @@z1 + 2 @@z2 + @@z3 + 13 @2@z12 + @2@z22++13 @2@z12 + @2@z1@z2 + @2@z2@z3 + 12 @2@z1@z3 )H(1; 1;1) (41)Using the expression for H(z1; z2; z3), after some tediousmanipulations, we get Eq. (34).The last item is obvious from the fact the that maximumnumber of background cells arriving from one individualsource during T slots is mr + 1. This can be easily shownto be true for jr = 0. 2Signi�cant simpli�cation in the expression (34) may re-sult if we consider the practical situation where we have



8R classes of tra�c streams. Class k is characterized bythe doublet (Nk; Tk) where Nk denotes the total numberof streams in this class each having period Tk. We denote�k = Nk=Tk to be the total utilization of all the streamsin class k. Assuming that tagged stream belongs to class kand using the fact thatPRk=1 �k = 1, it is possible to showthat var(J(k)n ), the jitter variance for any stream in class kis given byvar(J(k)n ) = 16  1 + 2T 2k � 5Tk � RXr=1 �rTr!+ RXr=1 ~�r; (42)where ~�r = � �r=2; ifjr = 0jr�r(1� jr=Tr); ifjr 6= 0 (43)and as before, the representation Tk = mrTr + jr, 1 � r �R is used for Tk.Similarly, we can �nd higher order statistics of the jitterprocess. To �nd the joint pgf of Jn and Jn+1 we identify �veregions. Region 1, Region 3 and Region 5 consists of onlyone slot tn, tn+1 and tn+2 respectively, Region 2 denotesthe T � 1 slots in open range (tn; tn+1), and �nally Region4 represents the T � 1 slots in open range (tn+1; tn+2). Wealso let K(r)i ; 1 � i � 5; 1 � r � N denote the number ofcells arriving from background stream r in region i. De�nethe joint pgfhr(z1; z2; z3; z4; z5) = E( 5Yi=1 zK(r)ii ) (44)and we let Ki denote the total number of cells fromall background streams in region i. We can showhr(z1; z2; z3; z4; z5) is given by8>>>>>>><>>>>>>>: (z2z4)mr�1 � z1z3z5Tr + (Tr�1)z2z4Tr � ; if jr = 0(z2z4)mr � z1z5Tr + z3Tr + (jr�1)z2Tr + (jr�1)z4Tr � ; if jr = Tr=2(z2z4)mr � z1Tr + (jr�1)z2Tr + z3Tr + (jr�1)z4Tr + z5Tr++Tr�2jr�1Tr � ; if 0 < jr < Tr=2(z2z4)mr � z1z4Tr + (2jr�Tr�1)z2z4Tr + z2z5Tr + (Tr�jr�1)z2Tr ++ z3Tr + (Tr�jr�1)z4Tr � ; if Tr=2 < jr < Tr (45)andH(z1; z2; z3; z4; z5) = E( 5Yi=1 zKii ) = NYr=1hr(z1; z2; z3; z4; z5)(46)and J(z1; z2) = z1z2(1� z1)(z2 � z1)(1� z2)��Z 1z1 dy1 Z z2z1 dy2 Z 1z2 H(y1; z1; y2; z2; y3)dy3 (47)

so that successive di�erentiations of (z1 � 1)(z2 � 1)(z2 �z1)J(z1; z2) at z1 = z2 = 1 will provide joint moments ofJn and Jn+1. Similar to the variance calculations, the jointmoments are expressible to derivatives of the function H.V. Comparisons With Existing ResultsIn this section, we make comparisons with the existingresults. The performance measure of interest will be thejitter variance in the homogeneous environment since itsexact form is quite simple (see Eq. 8). We also assume afully loaded system (total utilization of unity), due to theavailability of closed form expressions in this case.The �rst comparison we perform will be with randombackground tra�c. The cell arrivals in successive slotsare assumed i:i:d with p.g.f B(z), i.e., probability of kbackground cells arriving in any slot is bk and B(z) =P1k=0 bkzk. It is assumed that B0(1) = 1 � 1T so thatthe total utilization including that of the periodic taggedstream adds up to unity.Extending the simple analysis for the mini-priority casein [17], [18], [19] (fully loaded system is assumed) to thecase of random priority, we can easily �nd the p.g.f of jitterto be J(z) = z [B(z)] T�1 � 11� z Z 1z B(y)dy�2 (48)After simple calculations, we getvar = (T � 1)(3T � 1)2T 2 + 3T � 13 B00(1) (49)which simpli�es tovar = (T � 1)(3T � 1)6T 2 + 3T � 13 �b2; (50)where �b2 represent the variance of the batch size of thebackground tra�c.The simple result above clearly shows that inaccuracy ofapproximating the superposition of the identical periodictra�c by any i.i.d batch process. The batch backgroundapproximation predicts a jitter variance which grows lin-early with the period T and batch size variance �b2. Theresult in the exact model, predict an upper bound (con-stant 23 ) as reported in Eq. 8.Another interesting comparison we report here is whenthe periodic arrival streams are not independent from eachother and in the worst case situation are completely syn-chronized. This might happen in certain applications. Inthis case, every T slots, we have a deterministic batch of T



9slots arriving. Assuming our usual random priority assign-ment and fully loaded system, we can show thatJ(z) = z � 1� zTT (1� z)�2 ; (51)so that the jitter variance is given byvar = (T � 1)(T + 1)6 ; (52)showing a variance growing with square of the period Twhich could grossly overestimate the exact variance. Italso shows that such synchronizations could result in con-siderably large jitter variance.VI. Numerical Results and ConclusionsIn this section, we present the numerical results and con-clusions. Tables 1-3 depict the results for the homogeneouscase. In Table 1, the marginal density of the centered jitter~Jn and jitter variance are presented. A period of T = 32slots is considered. The number of background streams Ntakes di�erent values resulting in di�erent total utilization�. As expected, the probability of zero (centered) jitter isminimized at maximum utilization of � = 1 and any prob-ability of non-zero jitter is maximized at this utilization.Table 2 depicts the marginal density of jitter at the � = 1as the period T changes. It is interesting to note thatas T increases, the jitter distribution approaches to itsasymptotic value very quickly. The asymptotic behavior(as T !1) at � = 1 provides a simple bound on the jitterdistribution in the homogeneous case, since independentlyof the multiplexor utilization and the rate, it provides asimple result on the worst case jitter behavior. It is alsoevident even as T !1, the jitter distribution goes to zerovery fast. For �nite T , the maximum value of (centered)jitter is N , the number of background streams.In Table 3, we depict the conditional distribution of~Jn+m given ~Jn = 0 for various values of T . The resultsare based on Eq. (22). It is interesting to note that theconvergence to the limiting case of T = 1 appears to bequite rapid. Also, a substantial part of the probability massof the centered jitter is located at zero, indicating that ifthe inter-departure time of two successive cells belonging toany stream is not perturbed, the likelihood of perturbationin future cell inter-departure times is rather small.Tables 4 and 5 provide some results in the heterogeneousenvironment. In Table 4, we assume that the tagged streamhas a period of T = 6 slots. Jitter distribution and variance

are reported. Di�erent columns provide a di�erent mix ofbackground tra�c. Ni denotes the number of backgroundperiodic streams with period Ti. It is interesting to notethat the tagged stream tend to \su�er" more (larger vari-ance in cell inter-departure time distribution) in scenariosin which its period is small as compared to the periods ofother background streams. In general, we cannot concludethat the smallest rate streams (largest period) will alwaysexperience the largest variance. However, under certainconditions, the stream with the largest period always ex-periences the smallest variance (see the scenario below).In Table 5 we consider �ve classes and we report thejitter variance and lag 1 correlation for each class. Di�erent\base" periods ~T are considered. The total utilization forclasses 1 and 5 are 730 , and 530 , respectively and Classes 2,3 and 4 each have a total utilization of 15 . The period ofclass i is chosen to be Ti = ~Ti . The number of streams inclass i is then determined by Ni = �iTi, resulting in a totalutilization of �i for class i. It is interesting to note thatthe stream with slowest rate (largest period) experiencesthe least variance and the lag 1 correlation for this streamcoincides with the homogeneous case. In fact, based on theEq. (42), it is easy to see that if all the periods are fractionof a given base period, then the streams with the largestperiod experiences the smallest variance never exceedingthe constant 23 . The lag 1 correlation for this stream is alsothe same as the homogeneous case, namely the constant� 12 .It is also interesting to note that as the base period ~T in-creases, the variance of all the streams (except the one withthe largest period) increases almost linearly with the baseperiod ~T . However, the correlation coe�cient 1 appearsto be converging as ~T !1. In general, we did not observea direct relationship between the jitter variance and its lag1 correlation coe�cient in the heterogeneous case.ACKNOWLEDGMENTThe authors express their sincere thanks to the anonymousreferees for their useful suggestions which resulted in addi-tion of Section V to this paper.References[1] N. Bambos and J. Walrand. On queues with periodic inputs.Applied Probability Trust, 26:381{189, 1989.[2] A. Bhargava, P. Humblet, and M.G. Hluchyj. Queueing analysisof continuous bit-stream transport in packet networks. pages903{907, IEEE GLOBECOM, Dallas, Texas, November 1989.



10 TABLE IThe distribution of centered jitter in homogeneous case(� < 1, T=32)Prf ~Jn = ig� = 0:25 � = 0:5 � = 0:75 � = 1i (N=7) (N=15) (N=23) (N=31)0 0.8972 0.796579 0.711005 0.637945� 1 0.049272 0.092152 0.123749 0.146581� 2 0.002065 0.008844 0.018297 0.028952� 3 6.13*10�5 6.72*10�4 0.002212 0.004756� 4 1.25*10�6 4.05*10�5 2.20*10�4 6.54*10�4� 5 1.66*10�8 1.96*10�6 1.82*10�5 7.61*10�5� 6 1.30*10�10 7.62*10�8 1.26*10�6 7.58*10�6Jitter Variance0.116211 0.268555 0.441732 0.635742TABLE IIThe distribution of centered jitter in homogeneous case(� = 1)Prf ~Jn = igi T=2 T=3 T=10 T=30 T=10 0.75 0.703704 0.651322 0.638338 0.632121�1 0.125 0.135802 0.144802 0.146532 0.147291�2 0 0.012346 0.025703 0.028857 0.0303418�3 0 0 0.003459 0.004716 0.00536198�4 0 0 3.47*10�4 6.44*10�4 8.20*10�4�5 0 0 2.56*10�5 7.41*10�5 1.10*10�4�6 0 0 1.34*10�6 7.29*10�6 1.31*10�5Jitter Variance0.2500 0.37037 0.5700 0.633704 0.666667TABLE IIIConditional distribution of centered jitter and jittervariance (� = 1)Prf ~Jn+m = i j ~Jn = 0;gi T=2 T=3 T=10 T=30 T=10 0.833333 0.807018 0.777679 0.770448 0.766988� 1 0.083333 0.090643 0.097545 0.099055 0.099753� 2 0 0.005848 0.012232 0.013766 0.014494� 3 0 0 0.001272 0.001740 0.001982� 4 0 0 1.04*10�4 1.93*10�4 2.47*10�4� 5 0 0 6.45*10�6 1.88*10�5 2.79*10�5� 6 0 0 2.92*10�7 1.59*10�6 2.87*10�6Jitter Variance0.166667 0.22807 0.319524 0.346819 0.360659

TABLE IVJitter distribution and variance (T=6, � = 1):(A) T1 = 3; N1 = 2; T2 = 6; N2 = 1;(B) T1 = 8; N1 = 4; T2 = 6; N2 = 2; (C) T1 = 12; N1 = 10;(D) T1 = 15; N1 = 5; T2 = 2; N2 = 1; (E) T1 = 18; N1 = 15;PrfJn = igi (A) (B) (C) (D) (E)1 0 3.15*10�5 0.001191 0 0.0025712 0 8.69*10�4 0.011007 0 0.0183913 0.001157 0.010390 0.046558 0.011805 0.0620054 0.020833 0.063090 0.118732 0.094757 0.1307325 0.151620 0.210241 0.202251 0.245310 0.1927926 0.652778 0.378149 0.240519 0.312922 0.2106487 0.151620 0.304595 0.202251 0.223191 0.1761538 0.020833 0.031276 0.118732 0.090720 0.1147929 0.001157 0.001359 0.046558 0.019572 0.05876410 0 0 0.011007 0.001723 0.02362711 0 0 0.001191 0 0.007398Jitter Variance0.490741 1.01273 2.60417 1.52037 3.44136TABLE VVariance and 1 for heterogeneous caseperiod oftagged stream ~T=60 ~T=120 ~T=240T = T1 var 0.644907 0.655764 0.6612091 -1/2 -1/2 -1/2T = T2 var 5.331296 10.348889 20.3577551 -0.940793 -0.968649 -0.983845T = T3 var 5.773426 11.353171 22.4765331 -1/2 -1/2 -1/2T = T4 var 5.454630 10.735278 21.2508791 -0.513750 -0.518630 -0.521175T = T5 var 5.294907 10.451875 20.7107921 -0.447119 -0.446421 -0.445922[3] I. Cidon, A. Khamisy, and M. Sidi. Dispersed messages indiscrete-time queues: Delay, jitter and threshold crossing. IEEEINFOCOM, Toronto, Canada, June 1994.[4] D. R. Cox and W. L. Smith. The superposition of several strictlyperiodic sequences of events. Journal of BIOMETRIKA, 40:1{11, 1953.[5] A.E. Eckberg, The single server queue with periodic arrival pro-cess and deterministic service times. IEEE TRANS. on COM.pages 556{562, March 1979.[6] D. Ferrari. Delay jitter control scheme for packet-switchinginternetworks. Computer Communications, 15(6):367{373,July/August 1992.[7] D. Ferrari, D.C. Verma, and H. Zhang. Guaranteeing delay jitterbounds in packet-switching networks. Technical report, TENETGroup, CS Division of the University of California and the In-ternational Computer Sciences Institute, Berkeley, California,
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