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Abstract— Constant Bit Rate (CBR) traffic is expected to
Such

sources may have stringent delay and loss requirements and

be a major source of traffic in high-speed networks.

in many cases, they should be delivered exactly as they were
generated.

A simple delay priority scheme will bound the cell delay
and jitter for CBR streams, so that in the network switches,
CBR traffic will only compete with other CBR traffic in the
networks. In this paper, we will consider a multiplexor in
such an environment. We provide an exact analysis of the
jitter process in the homogeneous case. In this case, we
obtain the complete characterization of the jitter process
showing the inaccuracies of the existing results.

Our results indicate that jitter variance is bounded and
never exceeds the constant % slot. It is also shown that the
per-stream successive cell inter-departures times are nega-
Higher

order correlation coefficients are shown to be zero. Simple

tively correlated with the lag 1 correlation of 7%.

asymptotic results on per-stream behavior are also provided
when the number of CBR streams is considered large.

In the heterogeneous case, we bound the jitter distribu-
tion and moments. Simple results are provided for the com-
putation of the bound on the jitter variance for any mix of
CBR streams in this case. It is shown that streams with a
low rate (large period) do experience little jitter variance.
However, the jitter variance for the high-rate streams could

be quite substantial.

Keywords— Jitter, cell delay variation, cell based networks,
ATM, periodic arrivals, statistical multiplexing, asymptotic

analysis

I. INTRODUCTION

Broadband Integrated Services Digital Networks (B-
ISDN) will transport diverse classes of services such as
data, voice, image, and video. ATM (Asynchronous Trans-
fer Mode) is being standardized as the transport mecha-
nism to integrate and support such services in a single net-
work. ATM is a connection-oriented packet-switched net-
work where packets are segmented into fixed size cells which
are statistically multiplexed over the high speed links. Sta-

tistical multiplexing of the cells generated from diverse traf-
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fic sources with possibly very different characteristics on an
ATM link introduces considerable flexibility and potential
saving in the allocation of network resources. However,
if the network is not properly designed, dimensioned and
controlled, extensive cell delay, cell loss and cell delay var:-
ation (CDV) or jitter may deteriorate the performance of

the network to an unacceptable level.

The success of the ATM networks will be heavily depen-
dent upon being able to provide the required QoS (Quality
of Service) to the classes of traffic supported by the net-
work. An important class of traffic to be supported by the
ATM networks are those for which a timing relation should
be maintained between source and destination. These ser-
vices are classified as Class A and Class B in the ITU-T
Recommendation 1.362. Class A services are connection-
oriented constant bit-rate (CBR) like DS1 and nx64 kbps
circuit emulation. This class is supported by AALL. Class
B which is supported by AAL2 denotes the variable hit-
rate (VBR) services like packet video or audio. Asin Class
A, these services are connection-oriented and require a tim-
ing relation between source and destination. We note that
Class C services are connection-oriented, but do not require

timing (e.g., Frame Relay and X.25).

Class A (CBR) and B (VBR) services with timing rela-
tion between source and destination are expected to com-
prise a major portion of the total traffic on the network
generated from the multimedia sources. However, as such
sources traverse multiple nodes in the network and com-
pete for the network resources with other traffic, they lose
their original pattern. Jitter is defined as the alteration of
the original pattern of the cell arrival process at the multi-
plexing stages of the network. A play-out delay (or "elastic
buffer”) is used for the reconstruction of the stream into
its original pattern hefore it is delivered to the final desti-
nation. The duration of the play-out delay is determined
by the jitter process and the QoS. Important performance
measures for classes A and B are delay, loss and jitter. For

class C, delay and loss are important measures.



In this paper we provide the analysis of jitter incurred to
individual periodic cell streams going through a node in an
ATM network. It should be noted that the periodic arrival
processes are not only limited to periodic sources (e.g., real-
time speech or video, output of a peak rate enforcer), it is
also due to window flow control protocols which have a
periodic cycle equal to the connection round trip time [8].

In this work, we consider nodes which support a number
of CBR sources. Most of the existing teletraffic analysis
in computer and communication networks cannot handle
periodic cell streams which are generated from the CBR
traffic. This is largely due to the fact that we deal with
a combinatorial problem and not necessarily a traditional
“queueing” problem.

The problem of characterizing the superposition of peri-
odic processes is an important problem which dates back
to 1953 [4]. There has been number of works in attempting
to provide the queueing analysis of such processes. Refer-
ences [5]. [1], [24], [2] are examples of infinite buffer and
[15] consider the finite buffer case.

In the jitter analysis, the existing work concentrates on
a single tagged stream and a random background traffic
modeling the superposition of all the other traffic compet-
ing for resources with the tagged stream in a node. The
background traffic is assumed to have a known distribution
disregarding the probabilistic nature of individual streams.
The tagged stream has been assumed to be originally peri-
odic (i.e., CBR traffic) or having a general renewal process
[20], [18].

The problem of jitter calculation has been also addressed
by many other authors. Examples are [21], [10], [11], [14],
(7], [6]. [22], [9]. [23], [3], [13], [16]. In [21]. [10], [11]. [22],
[9], the jitter process is studied in the context of peak rate
enforcement in ATM networks. In the analysis of the jitter
process, as in [17], [19], only a tagged stream is assumed to
be periodic.

In [7] [6] [23] and [13], the issues of real-time transmis-
sion and bounding the jitter is considered. In [3], the delay
and the jitter process is analyzed for a single arrival peri-
odic batch process where a random number of cells arrive
periodically.

In [17] and [19], an analysis of the jitter for a single
node was given. Simple closed-form results were obtained
in the light and heavy traffic. In [18], the multiple node
environment was considered where the departure process

of a tagged stream from any node in the network was ap-

proximated by a renewal process characterized by its inter-
arrival time marginal distribution of the cells. Tt was shown
that this approximation was indeed, very good as far as
predicting the marginal distribution of the tagged stream
from a node was concerned. It was also shown that irre-
spective of the traffic level, as the number of nodes in the
network increases, the marginal density of the departure
process of the tagged stream (from the last node in the
network) converges to a distribution. In the heavy traffic,
a simple functional equation satisfied by this distribution
which upperbounds all the moments (e.g., variance) of the
jitter process in all ranges of traffic levels and arbitrary
number of nodes in the network was provided.

The work in this paper departs sharply from all the ex-
isting work in number of directions. First, we consider the
case where the sndividual traffic streams (and not only the
tagged stream) are periodic. Unlike the existing work, we
do not approximate the background traffic with a known
and simple distribution. We note that in an environment
where CBR traffic is given delay priority, this class of traffic
competes for bandwidth in a node with only CBR traffic.
In this situation, all the individual streams competing with
a tagged periodic stream are in fact periodic.

Second, we do not assume “mini-priority” for the tagged
stream since we deal with individual CBR streams and any
stream could indeed be a tagged stream! The mini-priority
assumption which had been made for simplicity, assumes
that, when there is more than one cell arriving in a slot, the
cell from the tagged stream enters the buffer first. In this
paper, no mini-priority to any CBR stream is given. In the
event that multiple cells arrive from different streamsin the
same time slot, they enter the buffer in a random order. In
fact, it is not difficult to see that if mini-priority is given
to all the streams (say the cell from stream i enters the
buffer before the cells from stream j if ¢ < j), the streams
will preserve their original periodic pattern. Although such
a bhehavior is quite desirable, it may be quite difficult to
implement it in practice.

In this paper, our main goal is the characterization of the
inter-departure process (marginal and joint) of individual
streams in both homogeneous and heterogeneous environ-
ments. We note, unlike the classical queues, with all ar-
rivals being periodic, we do not have an unstable situation
and the queue is always bounded and periodic. In fact,
due to the periodicity of the individual streams, most of

the results in classical queueing theory may not be appli-



cable. For mathematical tractability, we will pay special
attention to the cases where the buffer is fully utilized, i.e.,
the queue utilization is 100 percent. We note that a fully
loaded queue will provide a worst average case analysis of
the system. The quality of the bound will be examined in
the homogeneous case where an exact analysis is possible
for any level of utilization.

This paper provides some new insight in the behavior
of ATM multiplexors serving CBR streams. Among many
results, it establishes simple bounds on the inter-departure
of individual cell streams. It also shows that in the homo-
geneous case, the variance of the inter-departure process
is (upper) bounded by the constant % This may indicate
that (homogeneous) CBR multiplexors have a tendency to
preserve the shape of individual traffic streams. This con-
cludes Section 1 of the paper.

The outline for the remainder of the paper is as follows.
In Section 2 we provide the mathematical model and the
basic definitions and the problem statement. Section 3
deals with the homogeneous case. In Section 4 we cover
the analysis of the heterogeneous multiplexor, where the
periodic streams may not have the same period. Some
comparisons with the existing models are reported in Sec-
tion 5. Finally, the numerical results and conclusions are

provided in Section 6.

II. MATHEMATICAL MODEL

We assume an ATM environment, where time is slotted
and takes non-negative integer values t = {0,1,2,---}. The
time interval [t — 1,¢) is referred to as slot t. We assume
that sources produce fixed-length packets (ATM cells) in-
dependently of each other. The cells are stored in a loss-free
buffer (queue). It is assumed that the departures from the
cell buffer take place at the beginning of slots, and the ar-
rivals during a slot. We define:
¢: = queue length (in number of cells) at the end of ' slot
A, = number of arrivals from all sources in the t*" slot

so that we have the following evolution equation
Qi1 = max(q — 1,0) + Ay, (1)

In what follows, we describe the arrival process of in-
dividual streams. Without loss of generality, the individ-
ual traffic source of interest (tagged stream) is assumed
to be periodic with period T and cells arrive in slots
t, = (’n - 1)T+1, n > 1 so that the nth tagged cell is

arrived in slot ¢,. Other periodical streams are described

with respect to the tagged stream. A stream 2 is fully
described by the doublet {I;, T;} where I; denotes the (ini—
tial) offset random variable denoting the slot number of the
first cell arriving from source ¢, and T; denotes the source
period. We will assume that I; is an integer-valued ran-
dom variable uniformally distributed in [1,7;]. It is also
assumed that the offset random variables of all sources are
mutually independent. The latter assumption establishes
the independence of individual periodic streams.

The cell transmission is assumed to be FCFS and one cell
per slot is transmitted as long as the buffer is non-empty.
The cells arriving in the same time slot enter the buffer
randomly. We are concerned with the tagged stream inter-
departure times. We let Q(t,) denote the number of cells
seen in the buffer by the n'" tagged cell arriving at time
tn. We note that in the event of multiple arrivals at time
th, Q(f,q) includes those cells entering the buffer ahead of
the tagged cell.

As in [17], [18]. [19], we define the random variable .J,

as the inter-departures of nt and (n + I)St cells. We have

Jn = Q(tﬂ+1) - Q(tn) +T (2)

and the centered jitter process

Jo=J,—-T. (3)

In the next section we provide the analysis. A major part
of this manuscript will be devoted in the characterization of
the random sequence .J,,, n > 1. We find it most convenient
to separate the homogeneous case where all the streams
have the same period equal to T from the heterogeneous

case.

III. HomoGENEOUS CBR MULTIPLEXORS

In this section we consider the homogeneous environ-
ment. It is assumed that the multiplexor supports (N +1),
0 < N <T -1 periodic streams each with period T.

Based on the description of the individual arrival
streams, 1t 1s easy to see that the superposition process
of all the streams is also periodic with period T, so that

the total number of cells arriving in any slot ¢ satisfies
441’1.’T+i = ‘41:‘, (4)

In particular, we are interested in the random variable
Ay which represents the total number of arrivals in the

arrival slots of the tagged stream. We can decompose this



random variable into three parts of (see Fig. 1)
Ay =140 b2, (5)

where 1 accounts for the cell from the tagged stream and
bg] (bgz)) denotes the number of cells entering the buffer

before (after) the cell from the tagged stream.

In the next proposition, we provide the jitter distribu-
tion. We will need the following two discrete distribution

functions

AT

Bi(p.N) = <2/)p’“(1 -p)NF kel0,N]  (6)

and
for |j| <k

,Mh{ﬁ‘ﬁm (7)
0, otherwise
where By (p, V) is the probability mass function of a bino-
mial distribution with parameters p and N, and fi(j) is
the probability mass distribution of a discrete triangular
random variable centered at zero in the range [—k, k].
Proposition 1: If the initial queue length go = 0, then
for t > T, q; is periodic with period T and for n > 1, the

per-stream jitter process satisfies (fn =J,-T)

N
~ : .. : -
Pr{Ju=j} =D BulmN)f(i). i< N (8)
k=j
N@BT+N-1)
672
When N =T — 1 (fully utilized system)

above results are true for n > 1.

var(Jy) = (9)

nd gy >T -1,

IN
C»J'I [\

&

Proof: The periodicity of ¢, is already reported in [2],
[12] based on the assumption of ¢ = 0. For this case, we
have [12]

t .
maxo<i<i(y, ., ; Aj —1i),whent <T
qr = { o<i<t(2j=r—i A — ) (10)

' .
maxo<i<7(2o;_; Aj — i), whent > T,

since for t > T, the term (3

follows that ¢,7+; = ¢mr+; for any n,m > 1 and ¢ > 0 in

]I?:t,l- Aj — 1) is periodic, so it
particular we have ¢; = ¢4, . For the fully utilized system
(i.e., when N = T — 1) the queue will not empty during
first period and the periodical behavior will take place for
all periods, including first (in particular ¢ = gr4+1). To
have this, it is sufficient that qo > T — 1.

Based on the above discussion, at least for n > 2 we have

Jo=T+0b", =) (11)

n+1

In what follows, we proceed to prove Eq. (8). Under the
assumption of uniformally distributed offset random vari-
ables I; in [1,T], it is clear that the number of arrivals in
arrival slots of the tagged stream has a Binomial distribu-

tion and we have

1 ,

Pr{4, :k—l—l}:Bk(T,N), ke{0,...,N} (12)
It should be also clear that conditioning on A4, the ran-
dom variables b,(,llJ_] and bf,,,l)

tribution. We have (0 <1 < k)

have a (discrete) uniform dis-

Pr{b? =i| A =k+1}=
= Pe{p) =i A =k+1)=

1 ‘
- — 0<i<k 1
r1 0SS (13)

Since the order of arrivals from all the streams in slot
(n—1)T + 1 is independent of those in slot nT + 1, there-

(1) (1)

fore random variables by, " and b, ), are also conditionally

independent given A;. So that

Pr{p'')

l .
n+1 — bgz ) =)

A = lf} = fr(J) (14)

and Eq. (8) follows.

var(Jy,) can be found by direct calculation from Eq. (8).

The variance of jitter var(.J,) =

This completes the proof. O

The above proposition provides simple results on the dis-
tribution and any moment of the jitter process. As ex-
pected, the jitter variance is an increasing function of the
number of periodic streams. The maximum jitter variance
occurs at N =T — 1 which corresponds to the system uti-
lization of 100%. It is interesting to note that this variance
never exceeds the constant %

Another interesting insight on the operation of the CBR
homogeneous multiplexor is that as the number of sources
increases, the variance of the jitter process approaches to
a constant. This limiting behavior is indicative of the in-
herent “smoothness” of the departure process of individual
streams in homogeneous CBR multiplexors. This result
should be contrasted to the case where the background
traffic does not consist of individual identical periodic pro-
cesses (see Section 5).

In what follows, we examine the marginal distribution
of the jitter process for large T. This case is motivated
by high-speed environment where a multiplexor is serving
large number of slow (large T') CBR streams, e.g., circuit

emulation of CBR packetized voice traffic streams. In the
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Fig. 1. System Variables for Homogeneous Case

limiting case as T — oc, we will let N — oc too, to keep
a constant system utilization of p = (N + 1)/T. Using the
Poisson distribution as the limiting behavior of Binomial
distribution, we can easily establish this limit. We denote

the Poisson distribution function

k
Tr(A) = cxp(—)\)% (15)

so that

lim Pr{.J, =j} =
Am Prin = ji

e[Sy
= i;(i+1)! |"|i_z;(«z+1)(z+1>! (16)

Based on the above result, the probability of zero jitter

is simply
) - 1—e"? .
T]H’I‘;PI{JH—O}— — (17)

which is a decreasing function of p and takes its menzmum
value of 1 — e~! = .632 at p = 1. Other masses of the lim-
iting behavior of the marginal distribution may be shown
to be an wncreasing function of p and they take their maz-
tmum value at p = 1. The limiting distribution for them

can be simplified to an expression with finite summations

li Pr{J, =} =
ptim P = J)
il il
—1 -~ _ .1 =
=1-—c¢ kz%k! |jl|c—e ;Lk‘ (18)

There  — p— | 0 1 4Q4 = e
where ¢ = e7' Y77 | - = 484829107 up to nine signifi-
cant digits.

In the remainder of this section, we consider the joint dis-

tribution of successive inter-departure times. We will need

the probability generating function of an integer-valued
uniform random variable in [0, k] which is given by
1 — Rkl
u(z) = m (19)
Now define the joint probability generating function of
m, successive jitters random variables jn_,_,;, 0<i<m as

m

J(z1: 29,000y 2me1) = E(H zi]"“),

i=0

(20)

and we have the following proposition summarizing the cor-
relation structure of successive jitters.
Proposition 2: The joint probability generating func-

tion of jn+i, 0 << mis given by

1.
N 1
](21,22 ...... Zm+1)—z Bk(_ H)X
k=0
m P
xu(—)[] | «(==)u(zm+1), (21)
1 =1 “itl

2. The non-consecutive cell jitters are uncorrelated (i.e.,
random variables .J, and J,y,, are uncorrelated for

m > 2) and their joint distribution is given by

Pr{j"*(‘m = ]jn = l} =
o Br(& N) () fui), m > 2
) (22)
,,j20o0ri,j <0, m=1

3. J, and j,,+1 (successive cell jitters of any tagged

stream) are negatively correlated. The normalized cor-

1

relation of J, and Jy41 is —3

independently of T and
number of background streams as long as 1 < N <

T-1.



(1)
n+i+1

lowing our approach in the determination of the marginal

. ¥ 1 .
Proof: First we note that J,4; =0 - b;ii, so fol-
distribution, we condition on the random variable A,y =
Aq. However, since the order of cell arrivals to the queue at
the arrival slots of the tagged stream (slots nT+ 1, n > 0)
are independent of each other, it is easy to see that the

. 1)
random variables ")

nti are conditionally independent and

we have

1
Pr{bi}li:]’ 441=k+1}zz, 0<;<k

(23)

Now using the fact that A; has a Binomial distribution,
Part 1 and 2 follow easily.
To prove Part 3, we note that E(J,,) = 0 and the nor-

malized lag 1 coefficient is given hy

’U(I?"(jn) .

~q =
1 =

Now. by specializing the expression given by Eq. (21) for

m = 1, routine differentiation of J(z1,22) provides the
claimed result of vy = —%. i

IV. HETEROGENEOUS CBR MULTIPLEXORS

In this section, we present the per-stream jitter analysis
of a general heterogeneous CBR multiplexor. Due to the
complexity of the analysis, a fully utilized system is only
considered so that the multiplexor is serving a sufficient
number of periodic streams resulting a total utilization of
one. This assumption will be crucial in the simplification
of the analysis (see below) and will bound the jitter for
any heterogeneous CBR multiplexor. Consider a situation
where the total utilization is less than one, we can always
add a periodical stream to the system to attain a total
utilization of one. Now, it is easy to argue that the new
system will always result in a worse jitter as compared to
the original system.

As in the homogeneous case, we assume that our tagged
stream has a period of T slots. The multiplexor supports N
other background traffic streams where stream ¢ has period
T;. We are not making any restriction on the values of T;
except that the total utilization p is assumed to be unity
so that

— 1 = 1 — |4
p—T—i—i:li_l. (25)

Before we proceed further, we identify three regions be-
tween the arrival slots of the tagged stream. Region 1
(Region 3) consists of only one slot t, (t,,+1) and Re-

gion 2 denotes the T' — 1 slots in open range (t,,t,11)

(slots between the arriving slots of the tagged stream).
Kl-(r), 1 <2 <3, 1< 7r < N denotes the number of
cells arriving from background stream r in region . We

also define the joint pgf

() () ~(7) R
h,n(zl,ZQ,zg):E(le‘* 2o 2y K ) (26)

and we let K; denote the total number of cells from all

background streams in region 7. We also let

H(217ZQ,23) = E(Zl Kl:g K253 7(3) (27)

and finally, the following representation of T, is used as it

compares with T, the period of the tagged stream

T =m,T, +jra 0< jr <T, - ]-: (28)

where m, denotes the number of 7). periods fitting in the
period of T' and resulting in j, remainder slots.

For clarity, the subscript n is dropped in the definitions.
Figure 2, provide a pictorial representation of various sys-

tem variables.

The key in the simplification in the heterogeneous case
is that if the initial queue length ¢ is sufficiently large,
then the queue never empties and the “max” operator in
the evolution Eq. (1) does not play any role. Now, based
on this fact, the evolution equation Eq. (2) becomes a
simple first order difference equation and we easily relate

the queue length at different slot times. In particular, we

get

Tn = Qtar1) = Q(ta) + T =142 10}, + K2 (29)

where the random variable bg}rl (bﬁf’) represent the num-
ber of cells entering the queue before (after) the tagged
(2)

and b( 21 are

cell arriving in slots ¢,,44 (tn). We note by, "

uniformally distributed in [0, K] and [0, K3], respectively.
Denote U[0, K] as an integer-valued uniform random vari-

able in range of [0, K], we have

J, =14 U0, K]+ Ky + U0, K3 (30)

Proposition 3: We have the following results for a

heterogeneous CBR multiplexor:

1.

hr(zlazQ:CB) =

ﬁ(%+@%ﬁ+%+ﬂ%i)
if j, 0, (31)

QW“G%+@%ﬁ)ﬁﬁ:0
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Fig. 2. System variables and notations for background stream with period 7T,
l .
and =, foriy;=1,4=0, i3=1
N :{f L, forii =0 1 o 8
— =, fori; =0, 02 =1, i3 =
H(zy,20,23) = Hhr(zl,:%zg). (32) T, 1 2 3

r=1
2. The probability generating function of .J,, is given by

z 1l
): m/ / H(:hZ,Zg) dz1dzs3 (33)

3. Variance of .J,, is given by

var(J,) = (2T2 )Z Z

J(z

T"

r=1j=r+1
N
+> (my* —me+ B) = (T = 1)(T = 2) (34)
r=1
where 2
20 jr. Lif 7. #0
8, = I 7 (35)
21',‘: lf]r =0
4. Maximal value of J, is
N
max(J,) =1+ N+ Z my (36)

r=1
Proof:

period T,. Assume that for this stream j, # 0. Since one

First, we concentrate on a single stream of

cell from this stream arrives with equal probability 11— in

slots [t,,t, + T, — 1], it is obvious that

Pr{E!" =i, K" = m, +in, K\ = i3} =

f]# for iy =iy =13 =0
_ 71—7«’ fori1=1, Zg=13:0 (37)
] & forin=0,iy=1,i3=0
T%forilzl, iQZO, Zf;:l

For

the case of j, = 0, we have (obviously m, > 1 for this case)

=iy} =

so that h,(z1, 22, 2z3) for j. # 0 follows immediately.

Pr{K\"” =i\, K§” = m, — 1 + iy, K"

$0 h,.(z1, 22, z3) for j, = 0 follows.

The product form of H(z, 22, 23) follows immediately
because of the independence of individual streams.

To find J(z), we note that if K is an integer-valued ran-
dom variable taking non-negative integers and has a pgf

f(z), then the p.g.f. of U0, K] is

E(:VI0K (39)

which easily follows by conditioning on K. Taking advan-

tage of this fact in Eq. (32), will immediately give Eq.
To find var(J,) = J"(1) + T — T?, we note that
(1=2)" J(z

/ / H 41,2 z3) dzydzz _F(z) (40)

so that J"(1) = ﬁF(’:”j(l). Using standard results of dif-

ferentiation of integrals, we get

o .0 9 1
J'(1) = 2 S A
( ) (62] + 022 + 82’3 + 3 82’12 + 0222 +
1 0? 0? 0?2 1 02
- - H(1,1.1) (41
30722 Dz1029 Ozalzs 2(‘)21([}/‘!3) (L1, ) (4l)

Using the expression for H(z1, 29, 23 ), after some tedious
manipulations, we get Eq. (34).

The last item is obvious from the fact the that maximum
number of background cells arriving from one individual
source during T slots is m, + 1. This can be easily shown
to be true for j,, = 0. O

Significant simplification in the expression (34) may re-

sult if we consider the practical situation where we have



R classes of traffic streams. Class k is characterized by
the doublet (J\’k,Tk) where N; denotes the total number
of streams in this class each having period T;. We denote
pr = Ni/T) to be the total utilization of all the streams
in class k. Assuming that tagged stream belongs to class k
and using the fact that Zi{:l pr = 1, it is possible to show
that var(Jy (F J) the jitter variance for any stream in class k

is given by

1(11(7(1‘)) 1<1+

Zpr>+z o (42)

6
r=1 r=1
where 12.it] .
~ Oy WAL ) =
*/112{[. J . N (43)
Jror(1 = 3o/ T).ifj. # 0
and as before, the representation T, = m, . + 7, 1 <r <

R is used for T}.

Similarly, we can find higher order statistics of the jitter
process. To find the joint pgf of .J,, and J,, 41 we identify five
regions. Region 1, Region 3 and Region 5 consists of only
oune slot t,,, t,4+1 and t,42 respectively, Region 2 denotes
the T — 1 slots in open range (¢, f,41 ), and finally Region
4 191)Iesenfs the T — 1 slots in open range (fy41, tny2). We
, 1<:<5, 1<7r< N denote the number of

cells arriving from background stream r in region :. Define

also let Ix’i
the joint pgf

(44)

5 K"
]1’7‘<217':27Z3',Z4725):E(Hf:i ‘ )

i=1

and we let K; denote the total number of cells from
all background streams in region i.  We can show
he(z1, 20, 23, 24, 25) is given by

((zg24)mr ! (2123 s 4 e 11 274) Jif e =0
(2024)™7 (2120 + - 23 + (7r_l)7z + (77*;1)74) it g =Ty )2

(z220)™" (3 + ”—‘lﬁ SR CEESI I (15)
+T+7{’”),1f0<gr<1/) .
(z924)™7 <Z1Z1 + ’JT*T —1)z924 + 22 z5 + Ty h 1 2y
+5 + Tmfplia ~4),1f1 /)<]r <T,
and
5 N
H(z1,29,23,24,25) = B( H Hh Z1, 22, 23, 24, 25 )
=1 r=1
(46)
and
1z
J(21,22) = —

ZQ— 1_22)
/ dy / d'/z/ H(yr, 21,92, 22, y3)dys (47)

so that successive differentiations of (z1 — 1)(z2 — 1)(z2 —
z1)J(z1,22) at z1 = zo = 1 will provide joint moments of
Jp and J,y1. Similar to the variance calculations, the joint

moments are expressible to derivatives of the function H.

V. CoMPARISONS WITH EXISTING RESULTS

In this section, we make comparisons with the existing
results. The performance measure of interest will be the
jitter variance in the homogeneous environment since its
exact form is quite simple (see Eq. 8). We also assume a
fully loaded system (total utilization of unity), due to the
availability of closed form expressions in this case.

The first comparison we perform will be with random
background traffic. The cell arrivals in successive slots
are assumed i.i.d with p.g.f B(z), i.e., probability of k
background cells arriving in any slot is by and B(z) =
Yoreo brz*. Tt is assumed that B/(1) = 1 — 1? so that
the total utilization including that of the periodic tagged
stream adds up to unity.

Extending the simple analysis for the mini-priority case
in [17], [18

case of random priority, we can easily find the p.g.f of jitter

], [19] (fully loaded system is assumed) to the

to be
1 ?
s =150 T | [ Ba] e
-z /.
After simple calculations, we get
/ (T-1)3r-1) 3T-1 /
var= U= =D L 20y (1)
which simplifies to
T-1)(3T-1 3T -1
var = ( 6);2 ) + 3 o2, (50)

where 032 represent the variance of the batch size of the
background traffic.

The simple result above clearly shows that inaccuracy of
approximating the superposition of the identical periodic
traffic by any i.i.d batch process. The batch background
approximation predicts a jitter variance which grows lin-
early with the period T and batch size variance o2, The
result in the exact model, predict an upper bound (con-
stant %) as reported in Eq. 8.

Another interesting comparison we report here is when
the periodic arrival streams are not independent from each
other and in the worst case situation are completely syn-
chronized. This might happen in certain applications. In

this case, every T slots, we have a deterministic batch of T



slots arriving. Assuming our usual random priority assign-

ment and fully loaded system, we can show that

I b
J(z)=z2|/7——]| , 51
0=+ |7=5] 51)
so that the jitter variance is given by

v T = DT+ 1)

.
; (52)
showing a variance growing with square of the period T
which could grossly overestimate the exact variance. It
also shows that such synchronizations could result in con-

siderably large jitter variance.

VI. NUMERICAL RESULTS AND CONCLUSIONS

In this section, we present the numerical results and con-
clusions. Tables 1-3 depict the results for the homogeneous
case. In Table 1, the marginal density of the centered jitter
J, and jitter variance are presented. A period of T = 32
slots is considered. The number of background streams N
takes different values resulting in different total utilization
p. As expected, the probability of zero (centered) jitter is
minimized at maximum utilization of p = 1 and any prob-
ability of non-zero jitter is maximized at this utilization.

Table 2 depicts the marginal density of jitter at the p =1
as the period T changes. It is interesting to note that
as T increases, the jitter distribution approaches to its
asymptotic value very quickly. The asymptotic behavior
(as T'— oo) at p = 1 provides a simple bound on the jitter
distribution in the homogeneous case, since independently
of the multiplexor utilization and the rate, it provides a
simple result on the worst case jitter behavior. It is also
evident even as T — oc, the jitter distribution goes to zero
very fast. For finite 7', the maximum value of (centered)
jitter is N, the number of background streams.

In Table 3, we depict the conditional distribution of
jner given jn = () for various values of T'. The results
are based on Eq. (22). It is interesting to note that the
convergence to the limiting case of T' = oc appears to be
quite rapid. Also, a substantial part of the probability mass
of the centered jitter is located at zero, indicating that if
the inter-departure time of two successive cells belonging to
any stream is not perturbed, the likelihood of perturbation
in future cell inter-departure times is rather small.

Tables 4 and 5 provide some results in the heterogeneous
environment. In Table 4, we assume that the tagged stream

has a period of T' = 6 slots. Jitter distribution and variance

are reported. Different columns provide a different mix of
background traffic. N; denotes the number of background
periodic streams with period T;. It is interesting to note
that the tagged stream tend to “suffer” more (larger vari-
ance in cell inter-departure time distribution) in scenarios
in which its period is small as compared to the periods of
other background streams. In general, we cannot conclude
that the smallest rate streams (largest period) will always
experience the largest variance. However, under certain
conditions, the stream with the largest period always ex-
periences the smallest variance (see the scenario below).
In Table 5 we consider five classes and we report the
jitter variance and lag 1 correlation for each class. Different
“base” periods T are considered. The total utilization for
%, and %,
3 and 4 each have a total utilization of % The period of

classes 1 and 5 are respectively and Classes 2,

class ¢ is chosen to be T; = % The number of streams in
class i is then determined by N; = p,;T;, resulting in a total
utilization of p; for class i. It is interesting to note that
the stream with slowest rate (largest period) experiences
the least variance and the lag 1 correlation for this stream
coincides with the homogeneous case. In fact, based on the
Eq. (42), it is easy to see that if all the periods are fraction
of a given base period, then the streams with the largest
period experiences the smallest variance never exceeding
the constant % The lag 1 correlation for this stream is also

the same as the homogeneous case, namely the constant
1

5

It is also interesting to note that as the base period T in-
creases, the variance of all the streams (except the one with
the largest period) increases almost linearly with the base
period T. However, the correlation coefficient vy appears
to be converging as T — oo. In general, we did not observe
a direct relationship between the jitter variance and its lag

1 correlation coefficient in the heterogeneous case.
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