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AbstractThis paper examines the application of linear transformations for speaker and environmen-tal adaptation in an HMM-based speech recognition system. In particular, transformationsthat are trained in a maximum likelihood sense on adaptation data are investigated. Otherthan in the form of a simple bias, strict linear feature-space transformations are inappropriatein this case. Hence, only model-based linear transforms are considered. The paper comparesthe two possible forms of model-based transforms: (i) unconstrained, where any combina-tion of mean and variance transform may be used, and (ii) constrained, which requires thevariance transform to have the same form as the mean transform (sometimes referred to asfeature-space transforms). Re-estimation formulae for all appropriate cases of transform aregiven. This includes a new and e�cient \full" variance transform and the extension of theconstrained model-space transform from the simple diagonal case to the full or block-diagonalcase. The constrained and unconstrained transforms are evaluated in terms of computationalcost, recognition time e�ciency, and use for speaker adaptive training. The recognition perfor-mance of the two model-space transforms on a large vocabulary speech recognition task usingincremental adaptation is investigated. In addition, initial experiments using the constrainedmodel-space transform for speaker adaptive training are detailed.



1 IntroductionIn recent years there has been a vast amount of work done on estimating and applying lineartransformations to HMM-based recognisers [2, 4, 12, 16]. Though not the only possible modeladaptation scheme, for example maximum a-posteriori adaptation [9] may be used, linear trans-forms have been shown to be a powerful tool for both speaker and environmental adaptation. Thetransformations may be estimated in many ways, but for the purpose of this paper only maximumlikelihood (ML) estimation will be considered. Here, the transformation is trained on a partic-ular set of adaptation data, such that it maximises the likelihood of that adaptation data giventhe current model-set. The theory behind these ML trained transforms is well established [21].However the actual forms of the transform that have been applied to date are limited, due to thecomplexity of optimising the transformation parameters. The aim of this paper is to present thevarious forms of maximum likelihood linear transformations that may be applied to an HMM-basedspeech recognition system and how they may be simply estimated.Usually linear transformations are described as being applied in either the model-space orfeature-space [20]. This paper uses the same labelling, but applied in a very strict sense. Thusa feature-space transform is required to only act on the features, it is not allowed to alter therecogniser stage in any way1. A variety of linear feature-space transformations for adaptation andcompensation for speech recognition have been proposed in the literature [11, 14, 15]. ML trainingof linear feature-space transformations may be shown to be, not surprisingly, inappropriate forspeech recognition (see appendix A). In contrast, model-space transformations, which act on themodel parameters themselves, have been shown to be useful. There are two main forms of model-space transformation2. First, there is the unconstrained case (e.g. [12, 8]) where the transformson the means and variances are unrelated to each other. Alternatively, for the constrained case(e.g. [4]), the mean transformation and variance transformation are required to have the sameform, other than the bias. Both forms of transform may be used for speaker adaptation [12, 4] andenvironmental compensation [20, 8].Re-estimation formulae for both forms of model-space transform are given in this report. Forthe unconstrained transform the various cases of variance transform are described. These includea new and e�cient variance transform. Extension of the constrained model-space transform fromthe simple diagonal case to the full or block-diagonal case is also presented. These transforms arethen compared in terms of e�ciency at run-time and in training the transform.There has also been much interest in using adaptation techniques in both training and testing [1,10]. Here, instead of applying the test set adaptation transforms to a speaker-independent model-set they are applied to a model set trained using that adaptation scheme. Thus the model-setused in adaptation should model just the intra-speaker variability rather than both the intra andinter-speaker variability. Speaker adaptive training (SAT) [1] is one such scheme. Standard SATuses an unconstrained model-space transform of the mean in both training and testing. The useof constrained model-space transforms for SAT is presented here. It yields simple re-estimationformulae, overcoming some of the problems associated with traditional SAT training.The next section describes the two possible linear model-space transformations. For the uncon-strained model-space transform an e�cient new variance transform is described. The theory behindconstrained transformations is extended so that full, or block-diagonal, linear transformations maybe trained in addition to the diagonal case described in [4]. Various implementation issues involv-ing linear transformations are then detailed including speed and applicability for speaker adaptivetraining. Finally, experiments on a large vocabulary task are described and conclusions drawn.1This disagrees with the \de�nition" in some papers (e.g. [21]), where the linear \feature-space" transform usedis a constrained model-space transformation described in section 2.2. The descriptions of the transforms given ismore consistent with that of [4]. However for non-linear transformations this de�nition does not permit a set ofpossibly useful transformations.2Here the terms constrained and unconstrained refer to the form of variance transform and are not related to theuse of constrained as used in [4] where it refers to the constraint that many components share the same transform.2



2 Linear Model-Space TransformationsAs previously described there are two forms of model-space linear transformation. First an uncon-strained transformation may be used where the mean transformation and the variance transformare independent of one another. Alternatively a constrained transform may be used, where thetransformation of the variance must correspond to that applied to the mean. Both these transformsare described in detail below.In all cases the parameters of the linear transform are found using an EM approach [3]. Theparameters of the transforms are found by optimising the following equationQ(M;M̂) = (1)K � 12 MXm=1 TX�=1 m(� ) hK(m) + log(j�̂(m)j) + (o(� ) � �̂(m))T �̂(m)�1(o(� )� �̂(m))iwhere �̂(m) and �̂(m) are the transformed mean and variance for component m (the superscript(m) will be used to indicate the component for the model parameters), M is the total number ofcomponents associated with the particular transform, andm(� ) = p(qm(� )jM;OT ) (2)qm(� ) indicates Gaussian componentm at time � . K is a constant dependent only on the transitionprobabilities, K(m) is the normalisation constant associated with Gaussian component m, andOT = fo(1); : : : ;o(T )g is the adaptation data on which the transform is to be trained.2.1 Unconstrained Model-Space TransformationsUnconstrained linear model-space transformations allow any transform of the mean and variance.They are therefore more exible than the constrained case. The general linear transform of themean, �, is given by �̂ = A�+ b =W� (3)� is the extended mean vector, � 1 �T �T , and W is the extended transform, � bT AT �T .The variance transform may be modi�ed either using�̂ = LHLT (4)where L is the Choleski factor of the original covariance matrix �, or�̂ = H�HT (5)In both cases H is the transformation matrix to be obtained. Solutions for various speci�c casesof these general transforms can be obtained.2.1.1 Mean transformThe general transformation of the mean may be solved [8]. The following equation is usedvec(Z) =  MXm=1 kron(V(m);D(m))! vec(W) (6)where vec(:) converts a matrix to a vector ordered in terms of the rows, kron(:) is the Kroneckerproduct, V(m) = TX�=1 m(� )�(m)�1 (7)3



Z = MXm=1 TX�=1 m(� )�(m)�1o(� )�(m)T (8)and D(m) = �(m)�(m)T (9)Solving this expression is computationally expensive as it involves inverting an (n2+ n)� (n2+ n)matrix. In [12] the case of the general linear transformation of the means is solved for the diagonalcovariance case. This is known as maximum likelihood linear regression (MLLR). It is shown thatthe ith of the inverse of the transform is given byŵTi = G(i)�1zTi (10)where G(i) = MXm=1 1�(m)2i �(m)�(m)T TX�=1 m(� ) (11)Equation 10 requires the inverse of an (n + 1) � (n + 1) matrix3. If an approximate solution tothe estimation of the mean constrained model-space transformation is available, then it is possibleto iteratively re�ne this solution rather than starting from scratch. Considering only the diagonalcovariance matrix case and di�erentiating with respect to wij gives@Q(MM̂)@wij = MXm=1 TX�=1 m(� ) 1�(m)2i �oi(� )�wi�(m)� �(m)Tj (12)Using the de�nition of G(i) as given in equation 11 and equating to zero, this may be expressed aswij = zij �Pk 6=j wikg(i)ikg(i)ij (13)where Z is de�ned in equation 8. At each iteration this is guaranteed to increase the likelihood4.As this is an indirect optimisation solution, it is not possible to state the number of iterationsrequired for a \good" solution, however there is now no need for inverting G(i).2.1.2 Variance transformWhen the variance is to be transformed in addition to the means, the optimisation is performedin two stages [8]. First the mean transformation is found, given the current variance (and variancetransform). Second the variance transform is found given the current mean (and mean transform).The whole process may then be repeated. Thus the following set of inequalities are set up.L(OT j �M) � L(OT jM̂) � L(OT jM) (15)where the models M̂ have just the means updated to �̂(1); : : : ; �̂(M) and the models �M have boththe means and the variances �̂(1); : : : ; �̂(M) updated.3The cost of diagonal covariance transforms may be compared with the cost of full covariance cases. For the fullcase, using standard inversion routines, the inversion takes O(n6) operations. This may contrasted with the cost ofthe diagonal case, MLLR, which is O(n4) operations.4This is simple to show as @2Q(MM̂)@w2ij = (�) MXm=1 TX�=1 m(�) 1�(m)2i �(m)2j (14)this indicating a maximum. Note there is also the constraint that there are no numerical accuracy problems.4



In [16] the case of a bias on the mean with a simple scaling of the variance is described. In [8]this is extended to the case where a general transform of the mean is applied. It should be notedthat for the simple diagonal variance transform case, the same results are obtained using eitherequation 4 or 5. In [8] the form of the variance transform is also extended to the case wherenon-diagonal transforms are used in equation 4. It is shown thatH = MPm=1�L(m)T � TP�=1 m(� )(o(� ) � �̂(m))(o(� )� �̂(m))�L(m)�MPm=1 TP�=1 m(� ) (16)Unfortunately, the computational cost associated with recognition using the transform obtainedfrom 16 is high. In fact it is comparable to the full covariance case, though not necessarily withthe memory requirements [8], since the likelihood must be calculated asL (o(� );�;�;A;b;H) = N �o(� ); �̂; �̂� (17)and �̂ is now a full covariance matrix.Alternatively the variance transform described in equation 5 may be used. In appendix B aniterative solution for the non-diagonal variance transform case is given, assuming that the originalcovariance matrices were diagonal. It is shown that�h�1�i = ciG(i)�1vuut PMm=1PT�=1 m(� )ciG(i)�1cTi ! (18)where G(i) = MXm=1 1�(m)2i TX�=1 m(� )�o(� )� �(m)��o(� ) � �(m)�T (19)and ci is the ith row vector of the cofactors ofH�1. The optimisation described is thus an iterativeone over rows, since each row is related to the other rows by the cofactors. It is guaranteed toincrease the likelihood at each iteration. The optimisation has the same form as the semi-tiedfull-covariance optimisation [7], where an indirect method over the rows was previously presented.The advantage of the indirect method was that it did not involve the inversion of G(i). In contrastto the variance transform in equation 4, the likelihood calculation at run time may be implementede�ciently when the original models have diagonal covariance matrices asL (o(� );�;�;A;b;H) = N �H�1o(� );H�1�̂;��� log (jHj) (20)Thus by appropriately modifying the means the additional cost at recognition time is just a matrix-vector multiplication and a simple addition.The transform using a simple bias on the variance [19, 21] is not considered here, as for manysituations it can give an inappropriate transformation. For cases where the variance bias is notconstrained to be positive any unobserved component may end up with negative variances unlesssome variance ooring is used. Unfortunately constraining the variance bias to be positive is amajor restriction as in many cases, particularly with cepstral parameters currently popular inspeech recognition, the variance tends to decrease. This is true for both speech corrupted byadditive noise and when performing speaker adaptation.2.2 Constrained Model-Space TransformationsThe constrained model-based transform was �rst described in [4]. Here the transformation appliedto the variance must correspond to the transform applied to the means. Thus the general form is�̂ = A0� � b0 (21)5



and �̂ = A0�A0T (22)In [4] the problem is solved for the diagonal transformation case. Here, a solution for the fulltransformation case which is guaranteed to increase the likelihood of the adaptation data is given.It is assumed for this work that the originalmodels to be adapted have diagonal covariance matrices.Substituting equations 21 and 22 in equation 1 and re-arrangingQ(M;M̂) = K � 12 MXm=1 TX�=1 m(� ) hK(m) (23)+ log(j�(m)j)� log(jAj2) + (ô(� )� �(m))T�(m)�1(ô(� ) � �(m))iwhere ô(� ) = A0�1o(� ) +A0�1b0 = Ao(� ) + b =W�(� ) (24)so W is again the extended transformation matrix, � bT AT �T , and �(� ) is the extended ob-servation vector, � 1 o(� )T �T . An iterative solution to this optimisation problem is describedin appendix C. It is shown that the ith row of the transform is given bywi = ��pi + k(i)�G(i)�1 (25)where pi is the extended cofactor row vector � 0 ci1 : : : cin �, (cij = cof(Aij)),G(i) = MXm=1 1�(m)2i TX�=1 m(� )�(� )�(� )T (26)k(i) = MXm=1 1�(m)2i �(m)i TX�=1 m(� )�(� )T (27)and � satis�es a simple quadratic expression given in equation 71. Again this is an iterativesolution over the rows since the rows of the transform are dependent on one another via theextended cofactor vector pi. In appendix C an iterative solution over the rows, which does notrequire inverting G(i) is also given.Equation 23 illustrates a possible advantage of the constrained model-space transformationcompared to the unconstrained case. The constrained transform may be implemented as a trans-formation of the observed features and a simple addition of the term log(jAj)5. Thus duringrecognition the likelihoods are calculated asL (o(� );�;�;A;b) = N (Ao(� ) + b;�;�) + log (jAj) (28)Furthermore there is no need to adapt the original model parameters, which may in some circum-stances be computationally expensive.3 Implementation Issues3.1 Complexity versus speci�cityThe play o� between the complexity of the transformation, e.g. full, block-diagonal or diagonal,versus the number of transformations that may be robustly estimated is an important one. Nor-mally the complexity of the transformation is selected then an appropriate number of transforms5This addition is the reason that it is not a feature-space transform, though of course when using a singletransformation it does not alter the performance, but is necessary when multiple transformations are used6



generated. The question of what the appropriate number of transforms is for a particular set ofadaptation data and how the components should be grouped together is interesting and is dis-cussed in [6]. The question of complexity versus speci�city was also examined in [16], where usingan unconstrained block-diagonal mean transformation was shown to be better than a diagonaltransformation. This may be contrasted with variances where the use of a diagonal transform wasfound to be about the same as block-diagonal or full transforms [8], but at a considerably increasedcomputational cost (as the transformation was implemented using equation 4).3.2 Computational CostAn important consideration in the choice of adaptation algorithm is the computational load, bothin training the transform and during recognition. This is particularly important when trainingand applying the transforms in an incremental adaptation mode6. For this section only the uncon-strained and constrained model-space transformations with diagonal covariance matrices for theoriginal models will be considered. In both cases the cost of a full transformation matrix will becalculated7.1. Unconstrainedmodel-space transformation: When calculating the transform using thedirect method with diagonal covariance matrices, it is necessary to invert an (n+1) by (n+1)matrix for each of the dimensions of the transformation matrix. This inversion may be per-formed in O(n3) operations8. Hence the total cost is approximately O(n4) operations pertransform. After the transformation has been estimated O(Mn2) operations are requiredto transform the model means. At run-time there is no additional cost. Using the indirectmethod there is no need for the inversion. The cost of each iteration is cheap, however thenumber of iterations required depends on how good the initial estimate is. If a diagonalvariance transform is to also be used, the cost of calculating the transform is minimal (equa-tion 4 using only the leading diagonal), with a cost of applying O(Mn) operations to scalethe variances. Again there is no recognition time cost. However, if a full variance transformis to be used there is some additional cost. If the transform as described in equation 4 isused then, though cheap to calculate, there is a large runtime cost as a full covariance matrixlikelihood must be calculated per component. Alternatively, if the form of equation 5 is usedthen at runtime the cost is a matrix-vector multiplication per transform per observation vec-tor. In this case the cost estimating the transform is approximately the same as estimatinga constrained model-space transform described below.2. Constrained model-space transformation: Using the optimisation scheme described inappendix C, the most expensive operation for each row is the generation of the cofactors.Even a very naive implementation costs only 13n3 + 12n2 + 16n2 operations per row of thetransform. Thus the total cost is approximately O(n4) per iteration. This has ignoredthe actual cost of inverting G(i) which only needs to be performed once, costing O(n4).Unfortunately the constrained case is an indirect optimisation scheme. The total cost thenbecomes (I + 1)O(n4), where I is the total number of iterations9. In reality of course whenusing incremental adaptation the new transform estimate will be initialised with the previousone, thus dramatically reducing the required number of iterations. Furthermore, it is notnecessary to invert G(i), as an indirect optimisation over each row may be used. Duringrecognition there is a cost of a matrix-vector multiplication for each transform for eachobservations, in addition to a simple addition per component. Thus, for R transforms this isO(TRn2), where T is the total number of observations.6The adaptation data is made available as the system is used and the models repeatedly adapted.7Both schemes scale in the same way when block-diagonal transforms are used.8This may actually be done in nlog2(7) operations.9In practice by initialising the leading diagonal terms to their diagonal transform values (this is non-iterative)only a couple of iterations were required in the optimisation to obtain \good" transforms.7



The �nal choice of the most appropriate transformation, solely considering speed not performance,depends on the application and the nature of the model-set being used. For static adaptation,for example on enrolment, the use of an unconstrained model transformation (with either noneor diagonal variance transformation) is good as the adaptation is only performed once and thereis no additional recognition time cost. In contrast where incremental adaptation is to be used, aconstrained model space transformation is good as there is no need to adapt the actual modelsthemselves.3.3 Numerical AccuracyFor the general unconstrained mean transformation case with a diagonal covariance matrix, nu-merical accuracy problems occur during the inversion of of the term G(i) whereG(i) = MXm=1 1�(m)2i �(m)�(m)T TX�=1 m(� ) (29)and �(m) is the extended mean vector. It is simple to see that when M < n, G(i) cannot have fullrank. This problem can be easily handled by using singular value decomposition (SVD), whereeigenvalues that are below the accuracy of the machine are set to zero [11].A similar situation may occur for the constrained model-space transform, or when calculatingthe e�cient full variance transform for the unconstrained case. Again the numerical accuracyproblem manifests itself when inverting G(i), though now this has the formG(i) = MXm=1 1�(m)2i TX�=1 m(� )�(� )�(� )T (30)There are two solutions to this problem. The �rst is to use block-diagonal transformations, thusdramatically reducing the chance of non-full rank matrices. Alternatively SVD may again be used.3.4 Statistics RequiredAn issue in the practical implementation of estimating the transform is the statistics required. Forthe unconstrained case details of possible storage options are detailed in [8]. If only a mean trans-form is to be used then either O(n3) parameters at the transform level, or O(n) parameters at thecomponent level. For the constrained case, if implemented directly it is necessary to store O(n2),where n is the dimension of the feature vector, parameters per component. This can very rapidlybecome expensive in terms of memory as the number of components increases. Alternatively, theoptimisation in appendix C is expressed in terms of G(i) along with k(i) and an occupation countat the transform level. It is thus only necessary to store O(n3) counts per transform and O(n) percomponent to estimate the transform. As there are typically far fewer transforms than componentsthis is an e�cient way of storing the statistics.4 Speaker Adaptive TrainingRecently there has been much interest in using adaptation techniques in both training and testing.When using these techniques, instead of applying the test set adaptation transforms to a speaker-independent model-set they are applied to a model set trained using that adaptation scheme. Twocurrently popular transforms used are vocal tract normalisation (VTN) [10] and speaker adaptivetraining (SAT) [1]. The gains obtained using VTN have been shown to be essentially additive to thegains obtained using SAT [18]. This paper does not consider the use of VTN as it is only concernedwith linear transformations, though VTN would similarly be expected to improve results quotedhere. The standard SAT training uses an unconstrained model-space transformation of the means(MLLR). This section considers the use of a constrained model-space transformation, instead ofthe standard unconstrained transformation, for this task.8



In standard SAT the new mean and variance are given by [1]�̂(m) = 0@ SXs=1 T (s)X�=1 m(� )A(s)T�(m)�1A(s)1A�1 SXs=1 T (s)X�=1 m(� )A(s)T�(m)�1 �o(� )� b(s)� (31)and �̂(m) = PSs=1PT (s)�=1 m(� )(o(� )� �̂(sm))(o(� )� �̂(sm))TPSs=1PT (s)�=1 m(� ) (32)where �̂(sm) = A(s)�̂(m) + b(s) (33)(34)and �A(s);b(s)	 is the transformation associated with speaker s10. Unfortunately when implement-ing these re-estimation formulae there are severe computational and memory overheads [13, 18].In order to update the means as described in equation 31 it is necessary to store a full, or block-diagonal, matrix for each component. This rapidly becomes impractical as the number of compo-nents used in the system increases. Furthermore it is not possible to perform a simple update ofthe model means and variances in the same pass.These problems do not occur when the constrained model-space linear transformation is usedin SAT. The re-estimation formulae become almost identical to the standard mean and variance re-estimation formulae11. The training of the speaker-dependent constrained transforms is performedas described in section 2.2. The updating of the means and variances involves optimising thefollowing auxiliary functionQ(M;M̂) = K � 12 SXs=1 MXm=1 T (s)X�=1 m(� ) hK(m) (35)+ log(j�(m)j)� 2 log(jA(s)j) + (A(s)o(� ) + b(s) � �(m))T�(m)�1(A(s)o(� ) + b(s) � �(m))iBy inspection this is very similar to the standard optimisation task, hence the estimates of themean and variance will be given by�̂(m) = PSs=1PT (s)�=1 m(� )ô(s)(� )PSs=1PT (s)�=1 m(� ) (36)and �̂(m) = PSs=1PT (s)�=1 m(� )(ô(s)(� ) � �̂(m))(ô(s)(� )� �̂(m))TPSs=1PT (s)�=1 m(� ) (37)where ô(s)(� ) = A(s)o(� ) + b(s) (38)Thus with the constrained model-space transform the use of speaker adaptive training is simpleand requires minimum alteration to the standard code.10For simplicity of notation a single transform is assumed per speaker. The extension to multiple transformationsis trivial.11The presentation given here considers linear transformations. If the alternative feature-space transformationde�nition given in [21] is used instead of the strict form presented here, the same re-estimation formulae will resultfor all the possible feature-space transforms, since the Jacobian will only be a function of the observation not themodel parameters. 9



5 ResultsThe results presented in this section are not meant to show a complete comparison of all possiblelinear model-space transformations trained in a ML fashion. The aim is to compare some possibleconstrained and unconstrained transformations for speaker adaptation, environmental adaptationand speaker adaptive training.5.1 Recognition SystemThe baseline system used for the recognition task was a gender-independent cross-word-triphonemixture-Gaussian tied-state HMM system. This was the same as the \HMM-1" model set used inthe HTK 1994 ARPA evaluation system [22]. The speech was parameterised into 12 MFCCs, C1to C12, along with normalised log-energy and the �rst and second di�erentials of these parameters.This yielded a 39-dimensional feature vector. Cepstral mean normalisation was then applied tothis vector. The acoustic training data consisted of 36493 sentences from the SI-284 WSJ0 andWSJ1 sets, and the LIMSI 1993 WSJ lexicon and phone set were used. The standard HTK systemwas trained using decision-tree-based state clustering [23] to de�ne 6399 speech states. For the H1task a 65k word list and dictionary was used with the trigram language model described in [22].For the S5 task a 5K vocabulary with trigram language model was used. All decoding used adynamic-network decoder [17] which can either operate in a single-pass or rescore pre-computedword lattices. A 12 component mixture Gaussian distribution was then trained for each tied state,a total of about 6 million parameters.For the secondary channel experiments, S5, a PLP version of the standard MFCC models werebuilt using single-pass retraining [5] on the secondary channel training data. This was to ensurethat a reasonable initial model set was used in the adaptation process.All recognition tests were carried out on the 1994 ARPA Hub 1 and S5 evaluation data. TheH1 task is an unlimited vocabulary task with approximately 15 sentences per speaker. The datawas recorded in a clean12 environment. The S5 task is an unknown microphone task with a 5kword vocabulary.5.2 Constrained versus Unconstrained TransformationsThe experiments carried out in this section were run using incremental adaptation. The choiceof clustering for the transformations was generated using a regression class tree [12] with theminimum occupancy thresholds empirically derived from similar tasks for both the diagonal andblock transformation cases.Transform Form Error Rate (%)Set H1 Dev H1 Eval S5 Eval| | 9.57 9.20 9.00Constrained Diagonal 8.47 8.48 7.99Block 8.14 7.75 7.62Unconstrained Diagonal 8.61 8.48 7.93Block 8.06 8.13 7.15Table 1: Incremental adaptation results on H1 development and evaluation dataTable 1 shows the performance of the block-diagonal constrained model-space transform and anunconstrained mean transform run in an incremental adaptation mode. Comparing the two formsof transformation it is hard to obtain a consistent picture. On the evaluation data, the constrained12Here the term \clean" refers to the training and test conditions being from the same microphone type with ahigh signal-to-noise ratio. 10



case performs better, on the S5 task the unconstrained case performs better. For the unconstrainedcase, further slight reductions in word error rate may be obtained by compensating the variances,for example using a diagonal variance transform on the H1 evaluation task the performance was8.04% error rate, and on the S5 task 6.93%. What can be observed from table 1 is that the useof block diagonal transformations, though resulting in far fewer transformations, gave consistentlybetter results than the diagonal transform in all cases.5.3 Speaker Adaptive TrainingAll the experiments described in this section were carried out in an unsupervised static mode withthe speaker-independent recognition transcriptions used for adaptation. This was not acceptablefor the actual evaluation, but was felt to allow better contrasts as the same initial adaptation wordtranscription can be used for all schemes. In all cases a block-diagonal transform was used withseparate blocks for the static, delta and delta-delta parameters.Transform Number Error Rate (%)Set Transforms H1 Dev H1 EvalConstrained 1 9.07 7.972 8.64 7.73Unconstrained 1 8.49 8.302 8.39 8.21Table 2: Baseline static unsupervised adaptation resultsTable 2 shows the performance of the standard SI model set adapted using static unsupervisedadaptation on the test data. For unsupervised static adaptation it is again hard to assess whether aconstrained transform is better or worse than an unconstrained one. The unconstrained transformperforms better on the development data, the constrained transform performed better on theevaluation data. This again indicates that in terms of performance the two types of transform arecomparable.The SAT training routine used in these experiments was as follow:1. Start with the speaker independent model set and an identity matrix transformation;2. Estimate a speaker-dependent constrained transform given current model set;3. Estimate new model set given current speaker-dependent transform using two iterations ofBaum-Welch re-estimation (updating all the model parameters);4. Goto step 2.For the experiments presented here only a single speaker-dependent transform was used duringtraining. During recognition two passes through the data using the speaker-independent transcrip-tion was performed with the SAT models. The �rst was used to obtain a single transform forthe speaker with the SAT model. The alignments for this were felt not to be optimum13, so anadditional pass using this transform with the same transcription to obtain the alignments was usedto generate transforms used for recognition.Table 3 shows the results on the H1 task. On the �rst iteration of speaker adaptive traininggains, over applying a constrained transform to the standard speaker-independent models, of 5%and 7% respectively for the development and evaluation data using two transforms were obtained.By using an additional iteration of speaker adaptive these gains were increased to 7% and 8%.This is comparable with gains obtained using unconstrained model-space transforms in the SATtraining [1, 18], despite only using a single transform during training.13In practice this was found to only make a small di�erence.11



Transform Speaker Adapt Number Error Rate (%)Set Iteration Transforms H1 Dev H1 EvalConstrained 1 1 8.42 7.442 8.23 7.22Constrained 2 1 8.26 7.262 8.00 7.09Table 3: Speaker adaptive models static unsupervised adaptation results6 ConclusionsThis paper has examined the use of ML trained linear transformations applied to an HMM-basedspeech recognition system. It has only considered model-space transformations, as it can be shownthat a linear feature-space other than as simple bias trained in a ML fashion is not an appropriatetransformation. The various forms of model-space linear transformations are investigated. Theymay be split into two groups: (i) unconstrained where the mean and variance transform are unre-lated to one another; (ii) constrained where the variance transform has the same form as the meantransform. For the unconstrained model-space transform solutions to both the mean and variancetransforms are derived, with a new e�cient form of full variance transform being given. The rangeof possible constrained model-space transforms is extended beyond the simple diagonal case to thefull or block-diagonal case. The performance of these unconstrained and constrained model-spacetransforms are then compared for both speaker adaptation and environmental adaptation. In bothcases the use of block-diagonal transforms out-performed the diagonal transform case. However, itis not clear from the experiments performed whether one or other of the model-space transformsis better in terms of performance.The use of this constrained transform for speaker adaptive training is also described. Simplere-estimation formulae for both the means and the variances, which avoid many of the problemsassociated with the use of the unconstrained transform for SAT, may be obtained for this case.Moreover these formulae may be implemented with little change to the standard training scheme.The gains obtained using the constrained transform were similar to the gains reported elsewherefor the unconstrained transform.AcknowledgementsMark Gales is funded as a Research Fellow at Emmanuel College, Cambridge. The notation used forthe full covariance MLLR transform was suggested by Olivier Capp�e of ENST. Sree Balakrishnangave invaluable help with the optimisations presented in the appendices.
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A Linear Feature-Space TransformationsIn [21] the general concept of ML training of transforms is discussed. The feature-space transfor-mations described use the following expression for the probability of the transformed observationL(ô(� );�;�; v) = N (ô(� );�;�)jJv(ô(� ))j (39)where ô(� ) is the transformed data, Jv(ô(� )) is the Jacobian matrix and v represents the param-eters of the transform. Unfortunately this does not �t within the form of feature-space transformdescribed here as, when more than one transform is used, it is necessary to alter the recogniser toaccommodate the term jJv(ô(� ))j. Unless the constraint that the Jacobian is always 1 is satis�ed,this cannot be implemented as a true feature-space transform. Equation 39 covers a very widerange of possible transforms. For the particular case of linear transformations, it results in thesame form as the constrained model-space transform described in section 2.2.Though not the obvious thing to do, it is worth briey investigating the strict linear feature-space transform. In [11] the general linear feature-space transformation isô(� ) = Ao(� ) + b (40)When using a simpli�ed form of this transform where A is the identity matrix, the maximumlikelihood estimate of this bias term is simply obtained [2]. This may be applied in either thefeature-space or the model-space [20] with identical results. For the transformation described inequation 40, a ML solution is given in [11]. This involves an EM algorithm [3], where the followingequation must be optimisedQ(M;M̂) = (41)K � 12 MXm=1 TX�=1 m(� ) hK(m) + log(j�(m)j) + (Ao(� ) + b� �(m))T�(m)�1(Ao(� ) + b� �(m))iwhere K is a constant dependent only on the transition probabilities, K(m) is the normalisationconstant associated with Gaussian component m, OT = fo(1); : : : ;o(T )g is the adaptation data.For the analysis presented here, a simpler transformation will be considered, as it well illustratesthe limitations of the true feature-space transform trained with ML estimation. Considerôi(� ) = aioi(� ) (42)and the same transformation is to be applied to all the data. The simpli�ed task is now to �nd a.There is a closed form solution to this problemai = PMm=1PT�=1 m(� ) � oi(�)�(m)i�(m)2i �PMm=1PT�=1 m(� ) � o2i (�)�(m)2i � (43)Now consider the experiment where a linear scaling is required for all the training data. Since thestatistics required to generate a are obtained from a ML model set trained on the same data, eachscaling, ai, should be one. Otherwise the transform is felt to be inappropriate. Using the samealignments to construct the transform as the models, equation 43 may be rewritten asai = PMm=1 ��(m)2i�(m)2i �PT�=1 m(� )PMm=1 ��(m)2i +�(m)2i�(m)2i �PT�=1 m(� ) (44)Unfortunately, this is guaranteed to be less than one. Assuming that, for the time being, ML esti-mation yields the optimal recogniser, the use of adaptation of this form will degrade performance.13



In preliminary experiments14 in a noise corrupted environment, performance was indeed degradedcompared to the no adaptation case. Of course the problems with this form of transform are fairlyintuitively obvious, as the data has been transformed into a new domain, but the models and henceprobabilities are calculated for the original domain. This domain mapping is overcome in equa-tion 39 via the use of the Jacobian. Thus the use of maximum likelihood estimation for obtainingfeature-space transformations, as de�ned in this work, is not an appropriate transformation forspeech recognition.It is not necessary to train the feature-space linear transform with ML, indeed schemes forhybrid connectionist HMM systems which cannot typically use model-based adaptation, have useddiscriminative trained linear input transforms for both speaker and environmental adaptation [14].Unfortunately, it is not a simple task to train the feature-space transform discriminatively for astandard HMM-based speech recogniser.B Unconstrained Variance OptimisationThis section considers the optimisation of the variance transform,H, when using an linear uncon-strained model-space transform where the variance has the form�̂(m) = H�(m)HT (45)For the optimisation presented here it is assumed that the original covariance matrices are diagonaland that the mean transform has already been found. Instead of estimatingH the inverse is found.Letting A = H�1 (46)the objective is to maximise the following expressionQ(M;M̂) = K � 12 MXm=1 TX�=1 m(� ) hK(m) (47)+ log(j�(m)j)� log(jAj2) + �Aô(m)(� )�T �(m)�1 �Aô(m)(� ))��where ô(m)(� ) = o(� )� �̂(m) (48)and �̂(m) is the estimate of the mean of component m given the current mean transform. Di�er-entiating with respect to A(�)@Q(M;M̂)@A = MXm=1 TX�=1 m(� )��AT�1 +�(m)�1 �Aô(m)(� )� ô(m)(� )T� (49)Noting that (aT�1)ij = cof(Aij)Pnk=1 aikcof(Aik) (50)where cof(Aij) is the cofactor of element aij. Considering only the ith row and equating to zeroyields MXm=1 TX�=1 m(� ) ciciaTi = aiG(i) (51)14These experiments performed in collaboration with Natasha Gaye and Professor Steve Young at CambridgeUniversity. 14



where the 1� n row vector ci is de�ned cij = cof(Aij) and G(i) is de�ned asG(i) = MXm=1 1�(m)2i TX�=1 m(� )�ô(m)(� )��ô(m)(� )�T (52)Rearranging yields MXm=1 TX�=1 m(� )ciG(i)�1 = ciaTi ai (53)It is simple to see that ai must be in the direction of ciG(i)�1. Letting ai = �ciG(i)�1 givesMXm=1 TX�=1 m(� )ciG(i)�1 = �2ciG(i)�1cTi ciG(i)�1 (54)Therefore � = �vuut PMm=1PT�=1 m(� )ciG(i)�1cTi ! (55)Only the positive root is considered15, hence the �nal solution for row i isai = ciG(i)�1vuut PMm=1PT�=1 m(� )ciG(i)�1cTi ! (56)The optimisation is thus an iterative one, where each row of A is optimised given the current valueof all the other rows.The solution presented here is a direct method over the rows and indirect over the columns.The optimisation has the same form as the semi-tied full-covariance matrix optimisation [7] wherean indirect method over the rows was presented.C Constrained Model-Space OptimisationThe objective is to maximise the following expression with respect to A and bQ(M;M̂) = K � 12 MXm=1 TX�=1 m(� )�K(m) (57)+ log(j�(m)j)� log(jAj2) + (Ao(� ) + b� �(m))T�(m)�1(Ao(� ) + b� �(m))�Let W be the extended transformation matrix, � bT AT �T , and �(� ) be the extended observa-tion vector, � 1 o(� )T �T , thusô(� ) = Ao(� ) + b =W�(� ) (58)Using the fact that only diagonal covariance matrices are being considered, it is possible to rewriteequation 57 as (ignoring all terms independent of W)Q(M;M̂) = � log(piwTi )� 12 nXi=1 �wiG(i)wTi � 2wik(i)T� (59)15It makes no di�erence whether the positive or negative root is selected as they will yield the same likelihood.15



where pi is the extended cofactor row vector � 0 ci1 : : : cin �, (again cij = cof(Aij)),G(i) = MXm=1 1�(m)2i TX�=1 m(� )�(� )�(� )T (60)k(i) = MXm=1 1�(m)2i �(m)i TX�=1 m(� )�(� )T (61)and � = MXm=1 TX�=1 m(� ) (62)Di�erentiating with respect to wi yields@Q(M;M̂)@wi = � pipiwTi �wiG(i) + k(i) (63)The optimisation is on a row by row basis, noting that after optimisation each row it is necessaryto update the cofactor vector ci for the new row i to be optimised.C.1 Direct Method over RowsAssuming that the determinant of A is non-zero and equating to zero for row i,� pipiwTi = wiG(i) � k(i) (64)Rearranging yields piwTi k(i)G(i)�1 + �piG(i)�1 = piwTi wi (65)Considering the direction of the row vector wi it is simple to see thatwi = ��piG(i)�1 + �k(i)G(i)�1� (66)The task is now to �nd � and �. Substituting this expression for wi and post-multiplying by G(i)yields �piG(i)�1�pTi + �k(i)T�k(i) + �pi = �2piG(i)�1 �pTi + �k(i)T��pi + �k(i)� (67)This may be re-arranged to�� � �2piG(i)�1 �pTi + �k(i)T��pi = � (��� 1)piG(i)�1 �pTi + �k(i)T�k(i) (68)For this equality to always hold, it is necessary that�� = 1 (69)and � = �2piG(i)�1 �pTi + �k(i)T� (70)Rearranging this and substituting in equation 69 yields�2piG(i)�1pTi + �piG(i)�1k(i)T � � = 0 (71)16



This is a simple quadratic expression in � and may be solved in the usual way. There will againbe two possible solutions, so there is the question of which root to select. It is simple to show thatboth roots are maxima. Substitutingwi = ��pi + k(i)�G(i)�1 (72)into equation 59 and ignoring all the terms independent of � yieldsQ(i)(M;M̂) = � log(j��1 + �2j)� 12�2�1 (73)where �1 = piG(i)�1pTi (74)and �2 = piG(i)�1k(i)T (75)and using the two maximum values of �,Q(i)(M;M̂) = � log ������2 �p(�22 + 4�1�)2 �����!� �12  ��2 �p(�22 + 4�1�)2�1 !2 (76)As it is not possible to ensure that �2 > 0, the value of � is selected that maximises Q(i)(M;M̂).The optimisation presented here is an iterative one, since it performs a row by row optimisationand each row is dependent on the other rows via its cofactors. The total number of iterationsrequired will depend on the start point.C.2 Indirect Method over RowsUsing the optimisation in the previous section requires the inverse of G(i) to be calculated for alldimensions. If an initial solution which is felt to be \close" to the actual solution is known thenan alternative solution is possible, which does not require this inversion.Consider only element wij.@Q(M;M̂)@wij = � pijpiwTi �wig(i)Tj + k(i)j (77)Equating this expression to one and re-arranging into the form�1w2ij � �2wij � �3 = 0 (78)where �1 = pijg(i)jj�2 = pij 0@k(i)j �Xl6=j wilg(i)lj 1A � jAj(j)g(i)jj�3 = �pij + jAj(j)0@k(i)j �Xl6=j wilg(i)lj 1Aand jAj(j) =Xl6=j wilpil (79)Solving this is a standard problem, thuswij = �2 �p�22 + 4�1�32�1 (80)There are two solutions, so there is the question of which root is to be chosen. Similar argumentsto the direct method are used to select the root.17
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