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ABSTRACT
In this paper, we define multicast for ad hoc network through
nodes’ mobility as MotionCast, and study the capacity and
delay tradeoffs for it. Assuming nodes move according to
an independently and identically distributed (i.i.d.) pattern
and each desires to send packets to k distinctive destinations,
we compare the capacity and delay in two transmission pro-
tocols: one uses 2-hop relay algorithm without redundancy,
the other adopts the scheme of redundant packets transmis-
sions to improve delay while at the expense of the capacity.
In addition, we obtain the maximum capacity and the min-
imum delay under certain constraints. We find that the
per-node capacity and delay for 2-hop algorithm without re-
dundancy are Θ(1/k) and Θ(n log k), respectively; and for
2-hop algorithm with redundancy they are Ω(1/(k

√
n log k))

and Θ(
√

n log k), respectively. The capacity of the 2-hop
relay algorithm without redundancy is better than the mul-
ticast capacity of static networks developed in [3] as long as k
is strictly less than n in an order sense; while when k = Θ(n),
mobility does not increase capacity anymore. The ratio be-
tween delay and capacity satisfies delay/rate ≥ O(nk log k)
for these two protocols, which is smaller than that of directly
extending the fundamental tradeoff for unicast established
in [1] to multicast, i.e., O(nk2).
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Architecture and Design—Wireless Communications
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1. INTRODUCTION
Multicast in MANETs is predominant in many practical

situations. For example, group communications in military
networks and disaster alarming in sensor networks. Another
example is the current mobile multimedia services. It is
likely that there is a large number of mobile users accessing
the services, while they favor different programmes provided
by a variety of service stations. These stations are then
required to multicast their data stream to certain groups of
users.

Since certain links may be shared by several destinations,
one potential benefit of multicast is that it can reduce the
total bandwidth required to communicate with all the des-
tinations. Thus, compared with multiple unicast capacity
gain can be obtained by using multicast. Li et al. in [3]
study the capacity of a static random wireless ad hoc net-
work for multicast where each node sends packets to k − 1
destinations. Under protocol interference model, they show
that the per-node multicast capacity is Θ( 1√

n log n
√

k
) when

k = O( n
log n

); the per-node multicast capacity is Θ( 1
n
) when

k = Ω( n
log n

). These results generalize the previous capac-

ity bounds on unicast by Gupta and Kumar [4] and broad-
cast [5]. Other works falling into this class can be seen in [6]
and [7]. Jacquet et al. [6] consider multicast capacity by ac-
counting the ratio of the total number of hops for multicast
and the average number of hops for unicast. Shakkottai et
al. [7] propose a comb-based architecture for multicast rout-
ing which achieves the upper bound for capacity in an order
sense.

While the above studies are all based on static networks,
the effect of mobility on the capacity of wireless ad hoc net-
works has been first explicitly developed in [8], where Gross-
glauser and Tse demonstrate that per-node unicast capacity
does not vanish as the size of the network grows by imple-
menting a 2-hop relay algorithm. Note that the price of
this improving capacity is the increased delay. It has been
shown in [1] [9] that the 2-hop relay algorithm in [8] yields
a tremendous average delay of Ω(n).

The relationships between capacity and delay are further
investigated in the literature of [1] [2] [10] [11]. In the
work by Neely and Modiano [1], the authors present a strat-
egy utilizing redundant packets transmissions along mul-
tiple paths in a cell partitioned MANET to reduce delay
with a sacrifice on the capacity. They establish the follow-
ing necessary tradeoff: delay/capacity ≥ O(n), and develop
schemes that can achieve Θ(1), Θ(1/

√
n) and Θ(1/(n log n))

per-node capacity, when the delay constraint is on the order
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of Θ(n), Θ(
√

n) and Θ(log n), respectively. In [11], Toumpis
and Goldsimth construct a scheme that can achieve a per-
node capacity of Θ(n(d−1)/2/ log5/2 n) under fading channels
when the delay is bounded by O(nd), which turns out to be
better than that in [1]. Afterwards, Lin and Shroff [2] search
the optimal capacity-delay tradeoff and identify the limiting
factors of the existing scheduling schemes in MANETs. Re-
cently, Ying et al. [10] develop joint coding-scheduling algo-
rithms to achieve the optimal delay-throughput tradeoffs.

A key feature of multicast in MANETs is that packets can
be delivered via nodes’ mobility, thus we refer it as Motion-
Cast in this paper. Intuitively, capacity and delay tradeoffs
still exist for MotionCast, but being more complicated than
the situations for an unicast scenario. Packets can also be
delivered through the mobility of the relay nodes, thus a
higher per-node multicast capacity compared with that of a
static wireless ad hoc network is imaginable. However, the
scheduling design becomes harder because of the permanent
change of the network topology and now that more desti-
nations need obtain packets from the source, it will take a
longer time to complete a multicast process, which suggests
a larger delay. Hence, some challenging questions raised
naturally in this context are as follows:

• What is the maximum per-node MotionCast capacity?

• How long will be the induced delay to achieve this
capacity and what is the minimum delay?

• How does the capacity and delay tradeoffs emerge for
MotionCast?

Answering these questions is helpful for us to evaluate the
performance and better understand the fundamental trade-
offs for multicast in large-scale ad hoc networks with mobil-
ity.

In our work, we conduct a study on the scaling behaviors
in a cell partitioned MANET under multicast traffic pattern.
To start with, we propose a 2-hop relay algorithm without
redundancy. This algorithm is a generalized version of the
algorithm presented in [1], which corresponds to a decoupled
queuing model. The variation is that k−1 more destinations
are associated with a source, and delay for a packet will
be determined by the time when it is delivered to all the
destinations. As for a specific packet, we clearly divide nodes
other than the source into relays and destinations (referred
to as an non-cooperative mode) first. In this case, the packet
may be carried to the destinations either through the relays
or via the source, but will not be passed from one destination
to another. Once a packet is sent to a relay, the relay will be
in charge of delivering it to all its destinations. Otherwise, if
the source encounters a destination before a relay, it will do
the job itself. The expression of MotionCast capacity and
delay are calculated under this model, and it turns out that
capacity will degenerate when k is large.

Then, we loose the constraints within our initial model by
permitting information spread among destinations (called a
cooperative mode). At this moment, we do not discrimi-
nate destinations and the remnant nodes except the source
rigorously. We define the first node a source meets as the
“designated relay”, which in fact may possible be an intended
destination. Likewise, the designated relay should carry the
packet from the source until it delivers this packet to all the
destinations that have not received the message. Notice that
only one relay relates to a special packet in the 2-hop relay

algorithm, thus after a relay is designated current destina-
tions will merely act as receivers for the packet and do not
help transmit the packet to other destinations.

Next, we employ redundant packets transmissions to re-
duce the delay. In a 2-hop relay strategy with redundancy, a
source sends a packet to many distinct relays before all the
destinations receive the packet, which increases the chance
that a destination meets some of the relays at the expense
of reduced capacity. If each timeslot only one transmis-
sion from a sender to a receiver is permitted in a cell, we
show that the expect delay in the network is no less than
Ω(
√

n log k). Besides, delay of O(
√

n log k) is attainable in a
proposed scheme with per-node capacity of Ω(1/(k

√
n log k)).

The main results of this paper are summarized as fol-
lows. For 2-hop relay algorithm without redundancy, the
capacity for MotionCast is Θ(1/k) with the average de-
lay of Θ(

√
n log k). Notice that the per-node capacity is

better than the results of static multicast scenario in [3]
as long as k is strictly less than n in an order sense, i.e.,
k = O(nε) (0 ≤ ε < 1). For 2-hop relay algorithm with
redundancy, the capacity is Ω(1/(k

√
n log k)) with the delay

scaling as Θ(
√

n log k). Thus, capacity and delay tradeoffs
emerge between these two algorithms, i.e., we can utilize
redundant packets transmissions to reduce delay but the ca-
pacity will also decrease. The tradeoff obtained by us is
better than that of directly extending the tradeoff for uni-
cast to multicast.

The rest of the paper is organized as follows. In Section II,
we describe the network model. In Section III, we introduce
the 2-hop relay algorithm without redundancy. In Section
IV, the 2-hop relay algorithm with redundancy is presented.
In Section V, we discuss the results. Finally, we conclude in
Section VI.

2. NETWORK MODEL

(a) Network model. (b) Traffic pattern

Figure 1: A cell partitioned MANET model with
c cells and n mobile nodes under multicast traffic
pattern.

Cell Partitioned Network Model : The system model is
based on the cell partitioned network model exploited in [1]
and [13]. Suppose the network is an unit square and there
are n mobile nodes in it. Then, we divide it into c non-
overlapping cells with equal size as depicted in Figure 1. We
assume nodes can communicate with each other only when
they are within a same cell (to locate the nodes, please refer
to [12] and the references therein), and to avoid interference
different frequencies are employed among the neighboring
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cells1. Additionally, to bound the interference inside each
cell, we assume that the number of the cells is on the same
order as that of the nodes throughout this paper. Thus,
node per cell density d = n/c scales as Θ(1).

Mobility Model : Dividing time into constant duration slots,
we adopt the following ideal i.i.d. mobility model. The ini-
tial position of each node is equally likely to be any of the
c cells independent of others. And at the beginning of each
time slot, nodes randomly choose and move to a new cell
i.i.d. over all cells in the network. We do not account the
time a node moves from the existing cell to a new one, hence
this model captures the characteristic of the infinite mobil-
ity. With the help of mobility, packets can be carried by the
nodes until they reach the destinations.

Traffic Pattern: We first define the source-destination re-
lationships before the transmissions start. Numbering all
the nodes from 1 to n, we assume each node i is a source
node associated with k = k(n) randomly and independently
chosen destination nodes D1, D2, . . . , Dk over all the other
nodes in the network. The relationships do not change as
nodes move around. Then, the sources will communicate
data to their k destinations respectively through a common
wireless channel.

Definition of Capacity : First, we define stability of the
network. Packets are assumed to arrive at node i with prob-
ability λi during each slot, i.e. as a Bernoulli process of
arrival rate λi packets/slot. For the fixed λi rates, the net-
work is stable if there exists a scheduling algorithm so that
the queue in each node does not increase to infinity as time
goes to infinity. Thus, the per-node capacity of the network
is the maximum rate λ that the network can stably support.
Note that sometimes the per-node capacity is called capacity
for brief.

Definition of Delay : The delay for a packet is defined as
the time it takes the packet to reach all its k destinations
after it arrives at the source. The total network delay is
the expectation of the average delay over all packets and all
random network configurations in the long term.

Definition of Redundancy: At each timeslot, if more than
one nodes are performing as relays for a packet, we say there
is redundancy in the network. Furthermore, we say the cor-
responding scheduling scheme is with redundancy or redun-
dant. Otherwise, it is without redundancy.

Definition of Cooperative: We adopt the term “cooper-
ative” here to refer a destination can relay a packet from
the source to other destinations. Otherwise, the destina-
tions merely accept packets destined for them, but do not
forward to others, which is called non-cooperative mode.

Notations: In our work, we adopt the following widely
used order notations in a sense of probability. We say that an
event occurs with high probability (w.h.p.), if its probability
tends to 1 as n goes to infinity. Given two functions f(n)
and g(n), we say that f(n) = O(g(n)) w.h.p., if there exist
a constant c such that

lim
n→∞

P (f(n) ≤ cg(n)) = 1. (1)

We say that f(n) = Ω(g(n)) w.h.p., if g(n) = O(f(n))
w.h.p.. If both f(n) = Ω(g(n)) and f(n) = O(g(n)) w.h.p.,
then we say that f(n) = Θ(g(n)) w.h.p..

1It is clear that only four frequencies are enough for the
whole network.

3. CAPACITY AND DELAY IN THE 2-HOP
RELAY ALGORITHM WITHOUT REDUN-
DANCY

In this section, we propose 2-hop relay algorithms without
redundancy and compute the achievable capacity and delay
both under non-cooperative mode and cooperative mode.
Then, we explore the maximum capacity and the minimum
delay in these situations.

3.1 Under non-cooperative mode
In this subsection, we describe a 2-hop relay algorithm

without redundancy. Usually, a source sends a packet to
one of the relays, then the relay will distribute the packet to
all its destinations. While as an initial step, we consider the
non-cooperative mode, which means a destination can not
be a relay.

Figure 2: A decoupled queuing model of the net-
work as seen by the packets transmitted from a sin-
gle source to multiple destinations.

2-hop Relay Algorithm Without Redundancy I: During a times-
lot, for a cell with at least two nodes:

1. If there exists a source-destination pair within the cell,
randomly select such a pair uniformly over all possible
pairs in the cell. If the source has a new packet in
the buffer intended for the destination, transmit. If all
its destinations have received this packet2, then it will
delete the packet from the buffer. Otherwise, stay idle.

2. If there is no such pair, randomly assign a node as
sender and independently choose another node in the
cell as receiver. With equal probability, choose from
the following two options:

• Source-to-Relay Transmission: If the sender has
a new packet one that has never been transmitted
before, send the packet to the receiver and delete
it from the buffer. Otherwise, stay idle.

• Relay-to-Destination Transmission: If the sender
has a new packet from other node destined for
the receiver, transmit. If all the destinations who
want to get this packet have received it, it will be
dropped from the buffer in the sender. Otherwise,
stay idle.

2We assume that nodes can aware this from the control in-
formation passed over a reserved bandwidth channel.
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The algorithm has an advanced decoupling feature be-
tween all n multicast sessions, as illustrated in Figure 2,
where nodes are divided into destinations and relays for the
packets from a single source, and the packets transmissions
for other sources are modeled just as random ON/OFF ser-
vice opportunities.

Let p denote the probability of finding at least two nodes
in a particular cell, and q denote the probability of finding a
source-destination pair within a cell. From Appendix I, we
obtain that

p = 1− �1− 1

c

�n − n

c

�
1− 1

c

�n−1
(2)

q = 1− �k + 1

c

�
1− 1

c

�k
+
�
1− 1

c

�k+1� n
k+1 (3)

When n tends to infinity, it follows p → 1− (d + 1)e−d and

q → 1− e−
k

k+1 d(1 + k
c
)

n
k+1 . Thus, if k = O(nε) (0 ≤ ε < 1),

q → 0; else if k = Θ(n), q → 1− (d + 1)e−d. Then, we have
the following theorem.

Theorem 1. Consider a cell-partitioned network (with n
nodes and c cells) under the 2-hop relay algorithm without
redundancy I, and assume that nodes change cells i.i.d. and
uniformly over each cell every timeslot. If the exogenous
input stream to node i which makes the network stable is
a Bernoulli stream of rate λi = O(µ/k) and k = O(nε)
(0 ≤ ε < 1), then the average delay Wi for the traffic of
node i satisfies

E{Wi} = O(n log k) (4)

where µ = p+q
2d

.

Proof. A decoupled view of the network as seen by a
single source i is shown in Figure 2. In every timeslot, a
new packet arrives with probability λi at source i, and with
probability µ the packet is handed over a relay or trans-
mitted to a destination. We first show that the expression
µ = p+q

2d
still holds.

Denote r1 for the rate at which the source is scheduled to
transmit directly to one of the destinations, and r2 for the
rate at which it is scheduled to transmit to one of its relays.
Then, we have µ = r1 + r2. Since the relay algorithm sched-
ules transmissions into and out of the relay nodes with equal
probability, hence r2 is also equal to the rate at which the
relay nodes are scheduled to transmit to the destinations.
Every timeslot, the total rate of transmission opportunities
over the network is thus n(r1+2r2). Meanwhile, a transmis-
sion opportunity occurs in any given cell with probability p,
hence,

cp = n(r1 + 2r2) (5)

Recall that q is the probability that a given cell contains
a source-destination pair. Since the algorithm schedules
the single-hop source-to-destination transmissions whenever
possible, the rate r1 satisfies

cq = nr1 (6)

It follows from (5) and (6) that r1 = q
d
, r2 = p−q

2d
. The total

rate of transmissions out of the source node is thus given by
µ = r1 + r2 = p+q

2d
.

Next, we compute the average delay for the traffic of
node i. There are two possible routings from a source to

its destinations: one is the 2-hop path along “source-relay-
destinations”, the other is the single-hop path from source
to destinations directly. As for the first routing, packet de-
lay is composed of the waiting time at source and relay. In
this case, the source can be viewed as a Bernoulli/Bernoulli
queue with input rate λi and service rate µ , having an ex-

pected number of occupancy packets given by L̄s = ρ(1−λi)
1−ρ

, where ρ
M
= λi

µ
. From Little’s theorem, the average waiting

time in the source is E{Ws} = L̄s
λi

= 1−λi
µ−λi

. Besides, this

queue is reversible, so the output process is also a Bernoulli
stream of rate λi.

A given packet from this output process is transmitted to
the first relay node with probability r2

µ(n−k−1)
(because with

probability r2
µ

the packet is delivered to a relay, and each

of the n − k − 1 relay nodes are equally likely). Hence, ev-
ery timeslot, this relay independently receives a packet with
probability λr = λir2

µ(n−k−1)
. On the other hand, the relay

node is scheduled for a potential packet transmission to a
destination node with probability µr = r2

n−2
(because when

it acts as a relay, it can transmit packets to n − 2 destina-
tions except the source of the given packet and itself with
equal probability). Notice that packet arrivals and transmis-
sion opportunities are mutually exclusive events in the relay
node. However, different from unicast, each relay node is in
charge of sending a same packet to k distinct destinations
in the multicast scenario abided by the algorithm.

From a more delicate point of view, we model a relay
node as n− 2 parallel sub-queues (each of them buffers the
packets intended for a certain destination), shown in Fig-
ure 3. Then, when a new relay packet arrives at the re-
lay, it will “copy” this packet into k “virtual-duplicates” and
add them into respective sub-queues associated with the k
destinations. Hence for unicast, the incoming rate of each
sub-queue is λr, while for multicast it is k times of that
quantity. It follows that the discrete time Markov chain
for queue occupancy in each sub-queue can be written as
a simple birth-death chain which is identical to a continu-
ous time M/M/1 queue with input rate kλr and service rate
µr. Each destination i (1 ≤ i ≤ k) obtains the packet from
the relay though such a queue, thus the waiting time for
it is an exponential distributed variable with expectation of
E{W i

rd} = 1/(µr − kλr).
The resulting waiting time Wrd for multicast is deter-

mined by the maximum value among all the waiting times
W 1

rd, W 2
rd, ..., W k

rd of the above queues. Observing that these
waiting times are i.i.d exponential variables, by Lemma 2
(see the proof in Appendix II), we obtain that E{Wrd} =
log k/(µr − kλr). Thus, if the packet is delivered through
the path “source-relay-destinations”, the average delay is
E{Ws}+ E{Wrd}.

While if the packet is directly sent to the destinations
by the source, it will wait at the source for a time Ws

first, then the source distributes this packet to the rem-
nant k − 1 destinations. At this time, the source can be
treated as a group of k parallel M/M/1 sub-queues corre-
sponding to its k destinations similarly. The source will
“copy” this packet into k − 1 “virtual-duplicates” and add
them into respective sub-queues associated with the rem-
nant k−1 destinations. Since the probability that the source
need send packets directly to destinations is r1

µ
, the incom-

ing data rate is thus (k−1)λir1
µ

for each sub-queue. Mean-
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Figure 3: A more delicate view of a relay. Each of
a relay node can be modeled as n − 2 parallel sub-
queues buffering packets intended for different des-
tinations. In special, k sub-queues associated with
k destinations of the current source are depicted in
red in the figure.

while, the service rate at each sub-queue equals to the trans-
mission rate r1

k
between a source-destination pair. Hence,

the expectation of the waiting time at each sub-queue is

1/( r1
k
− (k−1)λir1

µ
). And by Lemma 2, we have the expect

waiting time for the packet to reach all k − 1 remnant des-

tinations is E{Wsd} = log(k − 1)/( r1
k
− (k−1)λir1

µ
).

Finally, by weighting the delay occurs in both two rout-
ings, we achieve the total network delay is

E{Wi} =
r1

µ

�
E{Ws}+ E{Wsd}

�
+

r2

µ

�
E{Ws}+ E{Wrd}

�
=

r2

µ

�
1− λi

µ− λi
+

log k
r2

n−2
− kλir2

µ(n−k−1)

�
+

r1

µ

�
1− λi

µ− λi
+

log(k − 1)
r1
k
− (k−1)λir1

µ

�
(7)

Looking upon the asymptotic behaviors of the network
delay when k, n →∞, we have

• If k = O(nε) (0 ≤ ε < 1), then it follows r1 → 0 and

r2, µ → 1−(d+1)e−d

2d
, which means almost all the traffic

is carried along the path of “source-relay-destinations”.
To ensure the stability of the network, the incoming
rate should be less than the service rate at any stage
of the network. Thus,�

µ− λi > 0
r2

n−2
− kλir2

µ(n−k−1)
> 0

i.e., λi < (n−k−1)µ
(n−2)k

→ µ/k (n → ∞). Besides, the

total network delay is governed by the first term of (7),
which is on the order of O(n log k) for a fixed traffic

loading value ρr = kλi(n−2)
µ(n−k−1)

at each relay.

• If k = Θ(n), then it follows r1, µ → 1−(d+1)e−d

d
and

r2 → 0, which means nearly all the packets are de-
livered directly from source to destinations. Likewise,

the network capacity is limited by r1
k
− (k−1)λir1

µ
> 0,

i.e., λi < µ
k(k−1)

. Besides, the total network delay is

governed by the second term of (7), which scales as
O(k log k) = O(n log k) for a fixed traffic loading value

ρs = k(k−1)λi
µ

at the source.

From the first case of the above discussion, we conclude
the theorem.

3.2 Under cooperative mode
In the above subsection, we propose a 2-hop relay al-

gorithm without redundancy obtaining per-node capacity
Ω(1/k) with delay O(n log k), when k = O(nε)(0 ≤ ε < 1).
However, if k = Θ(n) we find that with the same amount of
delay in an order sense, the per-node capacity decreases to
Ω(1/k2). To avoid this degeneration, in this subsection we
bring forward a more general algorithm which does not dis-
criminate destinations and the nodes other than the source,
i.e., under cooperative mode. This algorithm achieves per-
node capacity Ω(1/k) with delay O(n log k) for any k ≤ n,
and it is described as follows.

2-hop Relay Algorithm Without Redundancy II: For each cell
with at least two nodes in a timeslot, a random sender and
a random receiver are picked with uniform probability over
all nodes in the cell. With equal probability, the sender is
scheduled to operate in the two options below:

1. Source-to-Relay Transmission: If the sender has a new
packet one that has never been transmitted before,
send the packet to the receiver and delete it from the
buffer. Otherwise, stay idle.

2. Relay-to-Destination Transmission: If the sender has
packets received from other nodes which are destined
for the receiver and have not been transmitted to the
receiver yet, then choose the latest one, transmit. If
all the destinations who want to get this packet have
received it, it will be dropped from the buffer in the
sender. Otherwise, stay idle.

The algorithm simply designates the first node a source
meets as the relay, no matter if it is a destination. Thus ac-
cording to the scheduling scheme, all the packets will be de-
livered along a 2-hop path “source-relay-destinations”. The
difference is that if the relay is a destination node, it need
only relay the packet to the rest k − 1 destinations; other-
wise, it need relay the packet to all k destinations. Since we
focus the performance in an order sense, we omit this dif-
ference between these two cases. Thus, following the same
analytical steps as Theorem 1 when k is strictly less than n
in an order sense, we summarize the next theorem.

Theorem 2. Consider the same assumptions for the net-
work as Theorem 1, under the 2-hop relay algorithm without
redundancy II. The resulting per-node capacity and the av-
erage delay are Ω(1/k) and O(n log k), respectively, for all
k ≤ n.

Since the second algorithm is better than the first one, we
adopt this algorithm and refer it as 2-hop relay algorithm
without redundancy for brief in the rest of the paper.

3.3 Maximum capacity and minimum delay
Although we have constructed the achievable capacity and

delay if no redundancy is used, open questions still leave
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for the maximum capacity and the minimum delay of this
network. We address these problems here by presenting the
following theorems.

Theorem 3. The multicast capacity of a cell partitioned
network is O(1/k) if only a pair of sender and receiver is
active in each cell per timeslot.

Proof. We use hop argument to prove this result. Con-
sider the minimum number of hops hmin that a source can
send a packet to all k destinations. Although nodes are mo-
bile, we can treat the process of the transmissions as a dy-
namic graph. Specifically, we connect an edge along each two
nodes if the packet is transmitted between them. To form a
connected graph among the source and its destinations, the
minimum number of edges is equal to (k +1)−1 = k, which
means that the graph is a tree. Thus, we get hmin = k.

Denote the input rate at each source by λ, then the num-
ber of bits arriving at these n nodes in an interval [0, T ] is
λTn. Thus, the total number of transmissions of all bits to
their destinations is at least λTnhmin. On the other hand,
the total number of possible transmissions at any timeslot
is upper bounded by that of the cells containing at least two
users, which is no more than c. Hence,

λTnk ≤ Tc (8)

i.e., λ ≤ 1
dk

. Notice that d = Θ(1), thus we have λ =
O(1/k).

Theorem 4. Algorithm permitting at most one transmis-
sion in a cell at each timeslot, which do not use redundancy
cannot achieve an average delay of O(n log k).

Proof. The minimum delay of any packet is calculated
by considering the situation where the network is empty and
node 1 sends a single packet to k destinations. Since relay-
ing the packet can not help reduce delay, it can be treated
as having no relay at all. Denote p′ and W ′

min as the chance
that node 1 meets (i.e., two nodes move into a same cell) one
of the destinations in a timeslot and the minimum amount
of time it takes the source to meet all the destinations, re-
spectively. We have that p′ = 1/c. Since W ′

min = i means
that at the (i− 1)th timeslot the source has met k − 1 des-
tinations and at the ith timeslot it meets the last one, thus
the probability W ′

min = i can be written as

P{W ′
min = i} = kp′

�
(1− p′)i−1 −

�
k − 1

1

�
(1− 2p′)i−1

+

�
k − 2

2

�
(1− 3p′)i−1 − · · ·

�
(9)

Therein the factor kp′ denotes that the last destination D′
k

meets by the source can be any one of the k destinations.
The first term in the latter factor infers that D′

k has not
been met in the former i − 1 timeslots. Because the first
term also includes the probability that the source has not
met D′

k and any one of the other nodes from D′
1 to D′

k−1,
this value should be subtracted from the first term, so the
second term attached and similarly we have the following

terms. Hence, the expectation of E{W ′
min} is

E{W ′
min}

= kp′
+∞X
i=1

i

�
(1− p′)i−1 −

�
k − 1

1

�
(1− 2p′)i−1

+

�
k − 2

2

�
(1− 3p′)i−1 − · · ·

�
= kp′

� +∞X
i=1

i(1− p′)i−1

−
�

k − 1

1

� +∞X
i=1

i(1− 2p′)i−1

+

�
k − 1

2

� +∞X
i=1

i(1− 3p′)i−1 − · · ·
�

= kp′
�

1

p′2
−
�

k − 1

1

�
1

(2p′)2
+

�
k − 1

2

�
1

(3p′)2
− · · ·

�
=

k

p′

�
1− 1

22

�
k − 1

1

�
+

1

32

�
k − 1

2

�
− · · ·

�
=

log k

p′
(10)

wherein Lemma 1 and the following identical relation for
any | x |< 1 are exploited

+∞X
i=1

ixi−1 = (

+∞X
i=1

xi)′ =
1

(1− x)2
.

Finally, notice that 1/p′ = Θ(n), we obtain that E{W ′
min} =

Θ(n log k). Since at any timeslot, if there are more than one
destinations in a same cell as the source, only one desti-
nation could be selected as the receiver, the actual delay
E{Wmin} for the packet to be delivered to all the destina-
tions will be larger or equal than E{W ′

min}, which points
out the theorem.

Combining these results with the capacity and delay achieved
by the 2-hop relay algorithm without redundancy, we find
the exact order of the capacity and delay are Θ(1/k) and
Θ(n log k), respectively.

4. CAPACITY AND DELAY IN THE 2-HOP
RELAY ALGORITHM WITH REDUNDANCY

In this section, we adopt redundancy to improve delay.
The idea originates from a basic notion that if we send a
particular packet to many nodes of the network, the chances
that some node holding the packet reaches a destination
will increase. This approach is also implemented in [1] and
[14]. We first consider the minimum delay of 2-hop relay
algorithms with redundancy. Then, we design a protocol
using redundancy to achieve the minimum delay.

4.1 Lower bound of delay
In this subsection, we obtain lower bound of delay if only

one transmission from a sender to a receiver is permitted in
a cell in the below Theorem.

Theorem 5. There is no 2-hop algorithm with redundancy
can provide an average delay lower than O(

√
n log k), if only
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one transmission from a sender to a receiver is permitted in
a cell.

Proof. To proof this result, we consider an ideal situa-
tion where the network is empty and only node 1 sends a
single packet to k destinations. Clearly the optimal scheme
for the source is to send duplicate versions of the packet to
new relays whenever possible, and if there is a destination
within the same cell as the source, it will choose a destina-
tion as relay. And for a duplicate-carrying relay, it sends
the packet to be relayed to the destinations as soon as it
enters the same cell as a destination. Denote TN as the
time required to reach the k destinations under this optimal
strategy for sending a single packet.

In order to avoid the interdependency of the probability
that different destinations obtain a packet from the source
or the relay nodes, we additionally assume that all the desti-
nations within a same cell as the source or a relay node can
obtain the packet during the transmission, which is referred
to as a multi-destination reception style. Note that our as-
sumption differs from the multi-user reception ( [1]) in that
usually each cell is permitted to have a single reception ex-
cept there are more than one intended destinations within a
the cell, while [1] allows a transmitted packet to be received
by all other users in the same cell as the transmitter. De-
note T ′N as the time to reach the k destinations when we
add the multi-destination reception assumption. It is easy
to see that E{TN} ≥ E{T ′N}.

Then, let Kt represent the total number of nodes that act
as intermedia relays (including the source) at the beginning
of slot t. We have that every timeslot the increase of the
relays is merely due to the source sends the packet to a new
relay. Thus, we have for all t ≥ 1:

Kt ≤ t (11)

Observe that during slots {1, 2, . . . , t} there are at most Kt

nodes holding the packet and willing to help forward it to the
destinations. Hence, during this period, the probability that
a destination meets at least a relay is at most 1− (1− 1

c
)tKt .

We thus have

P{T ′N > t} ≥ 1− �1− (1− 1

c
)tKt

�k
≥ 1− �1− (1− d

n
)t2�k

= 1− (1− e−
d
n

t2)k (n →∞) (12)

Choosing t =
p

n log k/d and letting k →∞, it yields that

P{T ′N > t} ≥ 1− (1− e− log k)k

= 1− (1− 1

k
)k

= 1− e−1 (13)

Thus:

E{TN} ≥ E{T ′N} ≥ E{T ′N | T ′N > t}P{T ′N > t}
≥ (1− e−1)

È
n log k/d (14)

as k, n →∞. From (14), we prove the theorem.

4.2 Scheduling scheme
In the above subsection, we consider the minimum delay

of the network if we implement redundant packets transmis-
sions. In this subsection, for acquiring the upper bound of

the delay, we propose a 2-hop relay algorithm with redun-
dancy to achieve the minimum delay.

Assume each packet is labeled with a Sender Number SN,
and a request number RN is delivered by the destination to
the transmitter just before transmission. In the following al-
gorithm, we let each packet be retransmitted

√
n log k times

to distinct relay nodes.

2-hop Relay Algorithm With Redundancy: In every cell with
at least two nodes, randomly select a sender and a receiver
with uniform probability over all nodes in the cell. With
equal probability, the sender is scheduled to operated in ei-
ther “source-to-relay” transmission, or “relay-to-destination”
transmission, as described below:

1. Source-to-Relay Transmission: The sender transmits
packet SN , and does so upon every transmission op-
portunity until

√
n log k duplicates have been delivered

to distinct relay nodes (possible be some of the desti-
nations), or until the k destinations have entirely ob-
tained SN . After such a time, the sender number is
incremented to SN + 1. If the sender does not have a
new packet to send, stay idle.

2. Relay-to-Destination Transmission: When a node is
scheduled to transmit a relay packet to its destinations,
the following handshake is taken place:

• The receiver delivers its current RN number for
the packet it desires.

• The transmitter sends packet RN to the receiver.
If the transmitter does not have the requested
packet RN , it stays idle for that slot.

• If all k destinations have already received RN ,
the transmitter will delete the packet which has
SN number equal to RN in its buffer.

Next, we present the performance of this algorithm.

Theorem 6. The 2-hop relay algorithm with redundancy
achieves the O(

√
n log k) delay bound, with a per-node ca-

pacity of Ω(1/(k
√

n log k)).

Proof. For the purpose of proving this theorem, we con-
sider an extreme case of the packets transmissions. Note
that when a new packet arrives at the head of its source
queue, the time required for the packet to reach its k des-
tinations is at most TN = T1 + T2, where T1 represents the
time required for the source to distribute

√
n log k dupli-

cates of the packet, and T2 represents the time required to
reach all the k destinations given that

√
n log k relay nodes

hold the packet. The reason behind this claim is the sub-
memoryless property of the random variable TN ([1]), which
means the residual time of TN given that a certain number
of slots have already passed before it expires is stochastically
less than the original time TN .

Now we bound the expectations of T1 and T2 by taking
into account the collisions among the multiple sessions.

The E{T1} bound: For the duration of T1, there are at
least n − √n log k nodes who do not have the packet, and
hence every timeslot the probability that at least one of
these nodes visits the cell of the source is at least 1 − (1 −
1
c
)n−

√
n log k. Given this event, the probability that the
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source is chosen by the 2-hop relay algorithm with redun-
dancy to transmit is expressed by the product α1α2, repre-
senting probabilities for the following conditionally indepen-
dent events: α1 is the probability that the source is selected
from all other nodes in the cell to be the transmitter, and
α2 represents the probability that this source is chosen to
operate in “source-to-relay” transmission. From Lemma 6
in [1], we have α1 ≥ 1/(2 + d).

The probability α2 that the source operates in “source-to-
relay” transmission is 1/2. Thus, every timeslot during the
interval T1, the source delivers a duplicate packet to a new
node with probability of at least φ, where

φ ≥ (1− (1− 1

c
)n−

√
n log k)

1

2(2 + d)
→ 1− e−d

4 + 2d

The average time until a duplicate is transmitted to a
new node is thus a geometric variable with mean less than
or equal to 1/φ. It is possible that two or more duplicates
are delivered in a single timeslot, if we enable multi-user
reception. However, in the worst case,

√
n log k of these

times are required, so that the average time E{T1} is upper
bounded by

√
n log k/φ.

The E{T2} bound: To prove the bound on E{T2}, note
that every timeslot in which there are at least

√
n log k nodes

possess the duplicates of the packet, the probability that one
of these nodes transmits the packet to one of the destina-
tions is given by the chain of probabilities θ0θ1θ2θ3. The θi

values represent probabilities for the following conditionally
independent events: θ0 represents the probability that there
is at least one other node in the same cell as the destination
(θ0 = 1 − (1 − 1

c
)n−1 → 1 − e−d), θ1 represents the proba-

bility that the destination is selected as the receiver (similar
to α1, we have θ1 ≥ 1/(2 + d)), θ2 represents the proba-
bility that the sender is operates in “relay-to-destination”
transmission (θ2 = 1/2), and θ3 represents the probabil-
ity that the sender is one of the

√
n log k nodes who pos-

sess a duplicate of the packet intended for the destination
(where θ3 =

√
n log k/(n − 1) ≥ plog k/n). Thus, every

timeslot, the probability that each destination receives a de-

sired packet is at least 1−e−d

4+2d

p
log k/n. Similar to Theorem

4, since T2 completes when all k destinations receive the
packet, the value of E{T2} is thus less than or equal to the
log k times of the inverse of that quantity. Hence, we have
E{T2} ≤ 4+2d

1−e−d

√
n log k.

Finally according to Lemma 2 in [1], we bound the total
network delay E{W} = O(

√
n log k), and obtain the achiev-

able per-node capacity under this algorithm is Ω(1/(k
√

n log k))
(Note that a new relay packet arriving at a relay will occupy
k sub-queues in the model of Fig. 3 until it reaches all k des-
tinations, thus the capacity should be divided by a factor k
in the expression.).

5. DISCUSSION
In Section 3 and Section 4, we present algorithms both

without and with redundancy to fulfill the task of Motion-
Cast. In this section, we draw a comparison of the capacity
and delay with the former results and discuss the capacity
and delay tradeoffs obtained in this paper.

The capacity and delay tradeoffs between the 2-hop relay
algorithm without and with redundancy can be summarized
in the following table.

scheme capacity delay
2-hop relay w.o. redund Θ( 1

k
) Θ(n log k)

2-hop relay w. redund Ω( 1

k
√

n log k
) Θ(

√
n log k)

Compared with the multicast capacity of static networks
developed in [3], we find that capacity of the 2-hop relay
algorithm without redundancy is better when k = O(nε)
(0 ≤ ε < 1); otherwise, capacity remains the same as that of
static networks, i.e., mobility cannot increase capacity. How-
ever, capacity of the 2-hop relay algorithm with redundancy
is no better than that of static networks if k log k = Ω(log n)
due to the redundant packets transmissions. Moreover, com-
pared with the results of unicast in [1], we find that capacity
diminishes by a factor of 1/k and 1/(k

√
log k) for the 2-hop

relay algorithm without and with redundancy, respectively;
delay increases by a factor of log k and

√
log k for the 2-hop

relay algorithm without and with redundancy, respectively.
This is because we need distribute a packet to k destina-
tions during MotionCast. Particularly, if k = Θ(1) we find
the results of unicast is a special case of our paper.

Furthermore, we see that delay of the 2-hop algorithm
with redundancy is better than that of the 2-hop algorithm
without redundancy, but its capacity is also smaller than
that of the no redundancy algorithm. This suggests that
redundant packets transmissions can reduce delay at an ex-
pense of the capacity. The ratio between delay and capacity
satisfies delay/rate ≥ O(nk log k) for these two protocols.
However, if we fulfill the job of MotionCast by multiple uni-
cast from the source to each of the k destinations, we find
that capacity will diminish by a factor of 1/k and delay will
increase by a factor of k for both algorithms without and
with redundancy, which infers the fundamental tradeoff for
unicast established in [1] becomes delay/rate ≥ O(nk2) in
MotionCast. Thus, it turns out our tradeoff is better than
that of directly extending the tradeoff for unicast to multi-
cast.

6. CONCLUSION AND FUTURE WORK
In this paper, we study capacity and delay tradeoffs for

MotionCast. We utilize redundant packets transmissions to
realize the tradeoff, and present the performance of the 2-
hop relay algorithm without and with redundancy respec-
tively. We find that the capacity of the 2-hop relay algorithm
without redundancy is better than that of static networks
when k = O(nε) (0 ≤ ε < 1). And our tradeoff is better than
that of directly extending the tradeoff for unicast to multi-
cast. We have not taken into account the multi-hop trans-
mission schemes and the effect of different mobility patterns
yet, which could be a future work.
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Appendix I – The derivation of p and q

Since p represents the probability of finding at least two
nodes in a particular cell, the opposite event of it is there is
no node (and this happens with a probability of (1− 1

c
)n) or

only one node in the cell (this occurs with a probability of
n
c
(1− 1

c
)n−1, where n infers that the node in the cell can be

any one among all n nodes of the network). Thus, we have
the expression of (2).

As for q, it represents the probability of finding a source-
destination pair within a cell. Note that directly calculat-
ing the probability can hardly obtain an integrate expres-
sion, we temporarily adopt the following assumptions here.
Suppose the number of nodes n is divisible by k + 1. For
simplicity, we uniformly and randomly divide the network
into different groups with each of them having k + 1 nodes.
And assume packets from each node i in a specific group
must be delivered to all the other nodes within the group.
Thus, any two nodes within a same group is a pair of source-
destination. The probability that there is not any source-
destination pair belonging to any group within a particular
cell is k+1

c
(1 − 1

c
)k + (1 − 1

c
)k+1. Since each group is inde-

pendent with others, the probability that there is not any
source-destination pair in the cell is thus n

k+1
th power of the

above quantity. Hence, the probability of the inverse event
q is given by (3).

Appendix II – Useful lemmas
Here we present useful lemmas in this paper.

Lemma 1.
kP

i=1

(−1)i−1

i

�
k
i

�
= ln(k + 1) + r, where k ≥ 1

and r is Euler constant.

Proof. Denote the left-hand-side of the equation by A(k),

then we have A(k − 1) =
kP

i=1

(−1)i−1

i

�
k−1

i

�
. Notice that�

k
i

�
=
�

k−1
i

�
+
�

k−1
i−1

�
, it follows

A(k)−A(k − 1) =

kX
i=1

(−1)i−1

i

�
k − 1

i− 1

�
=

1

k

kX
i=1

(−1)i−1

�
k

i

�
(15)

Recall that (1 − 1)k =
kP

i=0

(−1)i
�

k
i

�
= 0, hence we obtain

kP
i=1

(−1)i−1
�

k
i

�
= −

kP
i=1

(−1)i
�

k
i

�
= −� kP

i=0

(−1)i
�

k
i

�− 1
�

= 1.

Combining with (15), we get A(k)−A(k − 1) = 1
k
, then

A(k) = A(1) +

kX
i=2

�
A(k)−A(k − 1)

�
= 1 +

kX
i=2

1

k
=

kX
i=1

1

k
(16)

Since the right-hand-side of (16) is the harmonic series, this
lemma holds.

Lemma 2. Suppose X1, X2, ..., Xk are continuous i.i.d ex-
ponential variables with expectation of 1/a, and denote Xmax =
max{X1, X2, ..., Xk}, then E{Xmax} = Θ(log k/a) (for sim-
plicity, we can treat E{Xmax} just as log k/a), where k ≥ 1.

Proof. Consider the cdf of Xmax,

FXmax(t) = P{Xmax ≤ t} = (1− e−at)k (17)
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Thus, the pdf of Xmax can be expressed as

fXmax(t) =
dFXmax(t)

dt
= k(1− e−at)k−1 · ae−at (18)

Then, we obtain

E{Xmax} =

Z ∞

0

k(1− e−at)k−1ae−at · tdt

= ka

Z ∞

0

k−1X
i=0

�
k − 1

i

�
(−1)ie−a(i+1)t · tdt

=

k−1X
i=0

ka

�
k − 1

i

�
(−1)i 1�

a(i + 1)
�2

=

kX
i=1

ka

�
k − 1

i− 1

�
(−1)i−1 1

a2i2

=
k

a

kX
i=1

(−1)i−1

i2

�
k − 1

i− 1

�
=

1

a

kX
i=1

(−1)i−1

i

�
k

i

�
(19)

According to Lemma 1, we conclude this lemma.
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