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ABSTRACT

We characterize the fundamental limits of localizatiomgssignal
strength in indoor environments. Signal strength appresetre at-
tractive because they are widely applicable to wireless@enet-
works and do not require additional localization hardwave.show
that although a broad spectrum of algorithms can trade acgdor
precision, none has a significant advantage in localizgtienfior-

mance. We found that using commaodity 802.11 technology aver
range of algorithms, approaches and environments, onexgeatte

a median localization error of 10ft and 97th percentile ot.30Ve
present strong evidence that these limitations are fundehand
that they are unlikely to be transcended without fundamigntzore
complex environmental models or additional localizatiofmastruc-
ture.

Categories and Subject Descriptors

C.2.5 Local and Wide-Area Networks]

General Terms

Algorithms, Measurement, Performance, Design, Experiati&m
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1. INTRODUCTION

Localizing sensors is necessary for many higher level sarete
work functions such as tracking, monitoring and geomedidsed
routing. Recent years have seen intense research invesgigaing

off-the-shelf radios as a localization infrastructure §ensor nodes.

the area angbrecisionis the size of the returned area. In contrast,
point-based approaches have difficulty describing suchaidistic
trade-offs in a systematic manner. Using accuracy andgiceciwe
were able to quantitatively describe the limits of diffaréotaliza-
tion approaches by observing the impact of increased poec{se.
less area) on accuracy.

Although examining this accuracy vs. precision tradeofegiin-
sight into performance limits, such an approach does nqt tsl
reason if the observed limitations are fundamental to therghm
or inherent in the data. Area-based algorithms, however la
additional critical advantage in their ability to describealization
uncertainty. Therefore, using a Bayesian network, as ortheoB
area-based algorithms we developed, we express the untieda
arising from these effects in terms of probability densiindtions
(PDFs) that describe the likely position as a function ofdhserved
data and a widely used propagation model.

Our study showed that a broad spectrum of signal-strengtacba
algorithms have similar localization performance. Ouwuhessalso
showed that there is significant uncertainty arising from tiata
given the Bayesian model. Our conclusion is that these dtinits
are fundamental and that they are unlikely to be transcewitedut
qualitatively more complex models of the environment orithoiaial
hardware above that required for communication.

2. ALGORITHMS

Table 1 summarizes our algorithm menagerie. The algorithmns
hibit a broad range of localization techniques, includimgéirprint-
ing, signal propagation modeling, maximum likelihood eestiion,

The motivation has been a dual use one: using the same radio haand Bayesian networks.

ware for both communication and localization would repnésse
tremendous savings over deployment of a specific locatizati-
frastructure.

In this work we explore the fundamental limits of localizatius-
ing signal strength in indoor environments. Such enviramsare
challenging since the radio propagation is much more chabén
outdoor settings, where signals travel with little obstiore. Explor-
ing the limits of signal strength approaches is importantait tells
us the localization performance we can expect without aufdit

hardware in the sensor nodes and base-stations. We use2iid 80

Wireless Local Area Network (WLAN) technology in our stuthg-
cause of its commodity status. Our results however are caipé
to any radio technology where there are considerable enviental
effects on the signal propagation.

We compared a wide range of existipgint-basedocalization al-
gorithms. We also developed 3 novel algorithms thataea-based
That is, the returned localization answer is a possible @resol-
ume) that might contain the sensor radio rather than a sjpgjla.
The key property of such algorithms is that they can traderacy

3. METRICS

We used a broad range of performance metrics. The traditiona

localization metric is the “distance error” between theureed po-
sition and the true position. However, a problem with thignmnés
that it does not apply to area-based approaches. We thuoslict
metrics appropriate for area-based algorithms.

3.1 Area-Based Metrics

Tile Accuracy.Many of our area-based algorithms describe space
as a set of small discrete tiles, rather than as a continuaaustity.
Tile accuracy thus refers to the percentage of times theitiigois
able to return the true tile that contains the object. Thisrimean
be somewhat misleading because often, the true tile is ¢ttotee
returned set, which motivates the next metric.

Distance AccuracyThis is the distance between the true tile
and tiles in the returned area. To gauge the distributioriles tn
relation to the true location, we sort all the tiles accogdia this

for precision, whereccuracyis the likelihood the object is within metric. We then return the distances of o0& (min), 25", 50"
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(median),75'", and100*™ (max) percentiles of the tiles. This metric
is somewhat comparable to the traditional metric.

Precision. The overall precision refers to the size of the returned
area, i.e., the sq.ft.



[ Algorithm [ Abbreviation | Description |

Area-Based

Simple Point Matching SPM Matches the RSS to a tile set using thresholds.

Area Based Probability ABP-o Matches the RSS to a tile set probabilistically with confickeboundx%.

Bayesian Network BN Returns the most likely tiles using a Bayesian network.
Point-Based

Bayesian Point Bl Returns the most likely point using a Bayesian network.

Averaged Bayesian B2 Returns the mid-point of the top 2 most likely points.

RADAR [1] R1 Finds the closest training point based on distance in sgpede.

Averaged RADAR R2 Returns the midpoint of the closest 2 training points in algipace.

Gridded RADAR GR Applies RADAR using an interpolated grid.

Highest Probability [2] P1 Applies likelihood estimation to received signal.

Averaged Highest Probability P2 Returns the midpoint of the top 2 likelihoods.

Gridded Highest Probability GP Applies likelihoods to an interpolated grid.

Table 1: All algorithms and variants.

3.2 Room-level Metrics

Since many indoor sensor-network applications can opatdte
level of rooms, we extended the accuracy and precision csetii
operate at the room-level. For area-based algorithms, gpnoach

is to map the returned area into an ordered set of rooms, where

ordering tells the user which room order to try.

Room AccuracyThis corresponds to the percentage of time

the true room, where the object is located, is returned irottbered
set of rooms. An important variation of this metric is the-room
accuracy, which is the percentage of times the true room @ngm
the topn—rooms.

Room PrecisionThis corresponds to the average number of rooms

returned by the algorithm.

4. RESULTS

We characterized the performance of our area-based digwit
using the metrics described above. We then compared thdarpe
mance with single-location based approaches. To show thakee
sults are not an artifact of a specific floor, we ran our consoas
using measured data from two distinct buildings.

Comparing Area-based AlgorithmsBoth the number and
location of the training fingerprints are expected to impacaliza-
tion performance. We experimented with different ways akirig
training sets depending on the fingerprints’ coordinateg. fovind
that as long as the samples are uniformly-distributed, btitnec-
essarily uniformly-spaced, the specific methodology hacheasur-
able effect on our results. The number of samples has an tmnp.
although it was not as strong as we expected.

cient sample density. As a general rule of thumb, a relatisparse
sampling with a density of 1/230%f(every 15ft) was sufficient cov-
erage for all the algorithms. Reasonable performance wasnatble
with much less sampling every 20 ft.

Regarding room-level accuracy, we found similar accusaa@oss
many of the algorithms, with the exception of the Bayesigraaches
and at low sampling densities. We also found that the topoBas
Siccuracy for area-based algorithms is significant and Lsefu
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Figure 1: Error CDF across algorithms (115 training samples.

Fundamental UncertaintyTo explore the fundamental uncer-
tainty, we experimented with the BN algorithm since it gieegiew
of the spatial uncertainty PDF given both measurements amatla-
ematical model of causal relationships. We generated taingr
PDFs along both the, y axes for the testing samples. We found
wide distributions in most of the cases, which showed a hiegree
of uncertainty in the positions. The PDFs from the BN aldorit
along with the very similar performance give very strongdevice
athat the fundamental uncertainty of all of the algorithménideed
comparable.

Our results showed fundamental tradeoff for tile accuraongt a 5. CONCLUSION

precision; any algorithm that improves tile accuracy wosspreci-
sion. Characterizing the distance accuracy CDFs for diffetrain-
ing sizes showed that area-based algorithms have compadibl
tance accuracy in the intermediate percentiles (25%, mealal
75%); the differences are most pronounced at the edges dfishe
tribution. On the other hand, the algorithms had a wide waré
precisions.

Comparing All AlgorithmsHaving shown a wide range of
area-based algorithms have similar fundamental perfocmawe
expanded our investigation to point-based algorithms. Svepared
the CDF of the traditional distance error metric for poiasbd algo-
rithms, along with the CDF of the median percentile for dpeaed
algorithms.

As shown in Figure 1, the key result was the striking simijari

of the algorithms. The CDFs had a similar slope, mediansratou
10-15ft, and long tails after the 87percentile. Indeed, many CDFs

differ by less than a few feet, and there are regions whesedtess.
The CDFs of the point-based algorithms showed only marginal
provements in performance as a function of sample size vstiffa

We characterized the limits of a wide variety of approaclds-t
calization in indoor environments using signal strengttl 862.11
technology. We found a median error of 10ft and &"9Fercentile
of 30ft is an expected bound for the performance of a good-algo
rithm and much sampling. Our results suggest that algosthased
on matching and signal-to-distance functions are unabt@pture
the myriad of effects on signal propagation. Still, theicdtization
accuracy is significant and useful.

Given that we experimented with large training sets, it ikkety
that additional sampling will increase accuracy. Addingliddnal
hardware and altering the model are the only alternatives.
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