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Abstract—This paper presents an architecture that enforces
time requirements and gives minimal end-to-end delays for mul-
timedia applications. The layers and mechanisms allowing the
system to fulfill the selected synchronization, i.e., the logical
relationships and timed interval semantics, are presented. The
proposed approach relies on the use of a formal model based
on extended time Petri nets, i.e., the time stream Petri net
model (TStreamPN), that allows the user to completely specify
the time requirements of a given application. The architecture
implements, in the application layer and on top of asynchronous
environments, the requested quality of service (perceived by the
user) with respect to time. At the transport layer, the use of a
partial order transport service improves the reactive response
of the communication transfers. Its principles are presented to-
gether with a presynchronization sublayer that makes the partial
order transport service match the applicative synchronization
requirements. Moreover, measurements on the implementation
of a videoconference system show that the requirements of the
quality of service are fulfilled.

Index Terms—Multimedia communication architecture, multi-
media synchronization, partial order transport, real-time presen-
tation, videoconference.

I. INTRODUCTION

T HIS paper aims to study and develop an approach and
a set of adequate mechanisms to ensure to users a set

of quality of service parameters like audio quality, video
quality, and end-to-end delay. What has been emphasized
in this study are the requirements related to the temporal
semantics. For this purpose, we have intensively analyzed
the multimedia synchronization requirements of applications
to first specify and second ensure both intra- and interstream
temporal requirements. Controlling the intrastream temporal
requirements consists of observing jitters in the stream, and
keeping them under an acceptable maximal value. Ensuring
time interstream synchronization consists of keeping under a
maximum value the possible drifts that may appear between
the different streams due to the cumulative effect of the jitters
(as in lip synchronization, for example).

These requirements prove to be difficult to fulfill because the
available distributed systems are asynchronous, from operating
systems to wide area networks. As users and systems see
synchronization problems in a different way, it is necessary
to perfectly specify the time requirements that have to be
maintained by the system. The solution we have followed
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is to use a formal model of the user-perceived requirements
using explicit values of time, and to have the system main-
tain the corresponding temporal synchronization down to the
communication layer.

To specify the perceptual temporal synchronization as seen
from the user, i.e., the presentation behavior at the user
interface, a TStreamPN (time streams Petri nets) model has
been used to define a presentation model. From the properties
of asynchronous operating systems, we will show that an
application model, the applicative view, which isdifferent
and derived fromthe presentation model, is needed to infer
a temporal scheduling of the presentation processes.

This paper will also show how user quality of service
can be improved using a new multimedia transport protocol,
taking into account the network problems and ensuring a well-
defined time delivery of the data: such a transport protocol
uses a partial order concept. In particular, the representation
of the logical order of the delivered objects will be derived
from the application model. The remainder of this paper
is as follows. First, the important quality of service (QoS)
parameters related to time are presented in Section II, which
also shows the difficulties related to the use of asynchronous
distributed systems.

Section III gives the general protocol architecture, from the
transport layer to the user interface, and presents how it is
possible to enforce the needed temporal requirements using
mechanisms existing in the Sun Solaris 2 operating system.
Note that all problems reported and solved have been observed
on Sun Solaris 2.x workstations. As the proposed solutions use
POSIX advanced system mechanisms, they should be portable
on the hardware and software of several constructors. Finally,
Section IV develops an example implementation, the PNSVS
system. This is a videoconferencing system that first takes
advantage of a multimedia partial order transport layer to
improve the applicative QoS, and second fulfills at the user
interface the adequate temporal synchronization requirements.
Finally, some remarks and perspectives conclude this paper.

II. THE QoS PROBLEMS

The QoS parameters of a multimedia application can be
classified into two groups, i.e., as static and dynamic. The
static parameters (page of text, image size and compression,
audio encoding, etc.) directly impact the amount of resources
required by the applications, but have no influence on the
applicative algorithms. The dynamic parameters, which will be
emphasized here because of their importance, greatly impact
the amount of resources needed because programmers have
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to design the applications and fulfill their QoS requirements.
The main QoS parameters are multimedia synchronization,
dynamic presentation quality, and presentation end-to-end
delay.

• The multimedia synchronization parameters define the
intra- and interstream requirements of multimedia objects.
These parameters are temporal: they define the maximum
jitter acceptable on each stream, and the maximum drift
that can appear between two or more streams.

• The presentation quality parameters are essentially static
parameters (image size and quality). However, the max-
imum admissible number of discontinuities during the
presentation of the media is a dynamic parameter. In fact,
it appears that one lost data packet causes a synchroniza-
tion discontinuity that can be difficult to handle. To solve
this problem, the lost data are usually replaced by other
data temporally equivalent (generally, the preceding data
are presented twice), but this does not prevent a discon-
tinuity in the video stream presentation. Discontinuities
are harmful to QoS, and their number has to be reduced
as much as possible.

• The end-to-end delay defines the time between the grab-
bing of one object on the sending workstation and its
display on the receiving one. This delay has to be
controlled, and must not be greater than a given value
to provide good interactivity between the users.

Asynchronism of Supports

All QoS parameters have to be taken into account by
the application which has to include adequate mechanisms
to ensure that user requirements are fulfilled. In the general
case, the corresponding design and implementation should use
asynchronous distributed systems for two reasons.

• Almost all computer systems available, such as LAN’s,
Internet, and operating systems on workstations (UNIX,
DOS, etc.), are asynchronous.

• With real-time scheduling classes appearing in UNIX sys-
tems (like in Solaris 2), it becomes possible to implement
real-time requirements, which was not the case before
[1], [2]. Also, [3] has showed that high-speed wide-area
synchronous systems cannot be realized.

Using asynchronous support to process isochronous multi-
media data introduces several problems. The most important
one comes from the temporal variability of computing: an
operation has no upper bound. This variability or asynchronism
appears at different levels in distributed systems as communi-
cation supports and protocols (no upper bound of the transit
delay, etc.), nonreal-time operating systems such as UNIX
(time-shared scheduling, memory pages swapping, etc), and
the application itself.

Model of the Synchronization

Such asynchronous support means that the implementation
of synchronized multimedia applications needs to consider all
problems due to temporal variability, such as jitter and drifts,
and to link them to the requirements of multimedia objects.

To define the synchronization properties of the multimedia
objects themselves, a model allowing the author of a multi-
media application to define the synchronization requirements
is needed. Several studies have already been realized in this
domain, and some models have been proposed. The first of
them uses a formal approach based on timed Petri nets. In
particular, the OCPN (object composition Petri net) model [4]
and its extensions [5], [6] only consider nominal computing
times, and do not address the computing time variability
of asynchronous systems. Using the TPN (time Petri net)
model [7] does not allow an easy modeling of interstream
synchronization between parallel streams.

The limitations of these models has led us to a new model
[8], called time stream Petri nets (TStreamPN), providing good
expression and modeling powers. TStreamPN’s use temporal
intervals that are located on the arcs leaving places (allowing
us to compute each stream apart from the others). This allows
the users to take into account both the temporal nondetermin-
ism of distributed asynchronous systems and the presentation
time variability of multimedia objects. The temporal intervals
are triplets called validity time intervals, where

and are, respectively, the minimum, nominal, and
maximum presentation values.

The TStreamPN model is very well adapted to model mul-
timedia stream requirements in asynchronous environments.
Because of its high modeling and expressive power, this model
easily expresses complex synchronization scenarios.

For instance, the TStreamPN model has been used to de-
scribe the synchronization requirements of a videoconference
application called PNSVS (Petri nets synchronized videocon-
ferencing system). Fig. 1 describes the user requirements of
the videoconference application which provides a 10 image/s
throughput with acceptable audio and video jitters of 10
ms/object (per unit of presentation). It can be seen that

• 10 images/s defines the nominal presentation time of a
video object, i.e., 100 ms;

• the maximum intrastream jitter determines the temporal
validity intervals [90, 100, 110]; this interval appears in
Fig. 1 on all arcs leaving a place (for all objects of both
streams).

In TStreamPN’s, interstreams temporal drifts can be con-
trolled in a very precise way using nine different interstream
transition rules. They have well-defined interval semantics
depending on the position of the time intervals on the arcs
leaving the places and entering the transition. Using these
transition rules, it is possible to specify synchronization mech-
anisms driven by the earliest stream (“or” synchronization
rules), the latest stream (“and” synchronization rules), or
by a given stream (“master” synchronization rules). These
synchronization semantics define synchronization instants led
by an arc statically or dynamically chosen. For more details,
[9] gives a formal definition of the model and the different
firing semantics.

Let us return to the example of Fig. 1, and assume: 1) that
the audio medium is the most important one, and 2) that the
interstream drift must remain under 100 ms, as less than 100
ms [10] of temporal gap between audio and video cannot be
perceived by a human being.
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Fig. 1. Videoconference TStreamPN example.

These QoS parameters determine the complete TStreamPN
of Fig. 1.

• The interstream synchronization is of “and-master”: a)
the sound is more important than the video (is the
master), and b) this rule tries as much as possible to
respect the requirements of the video stream to reduce
its discontinuities (and-master).

• The interstream drift must be less than 100 ms; the
maximum drift on five objects being 50 ms for each
stream, the interstreams drift cannot be greater than 100
ms.

The TStreamPN of Fig. 1 allows the user (author) to pre-
cisely describe the (perceived) presentation requirements of
one period of the videoconference application. Note that the
formalism can be judged to be complex, but we feel that
using such an approach is the only possible way to derive
a general, generic, and coherent architecture. Also, a general
model for hypermedia objects is still more sophisticated [9],
but its relationship to a general architecture has not yet been
proposed.

From the Model to the Architecture

Since a global architecture must be defined in order to
enforce these QoS parameters, the next section presents the
mechanisms used to fulfill the QoS requirements, and shows
the original contribution of the paper in terms of layering,
design, and implementation. In particular, it emphasizes the
respective functions of the transport and application layers,
and the way they share the constraints resulting from the time
parameter. It will be seen that, as the advanced transport layer
is able to deliver SDU’s to the application layer as early as
possible, it strongly supports the application layer to achieve
the required jitter QoS. The videoconferencing system that has
been implemented on top of different LAN’s and WAN’s will
illustrate the complete design.

A similar approach has been presented in [5] and in [6],
but these approaches do not use an interval semantic for the
time parameters, and are based on a general, not fully defined,
architecture. In particular, no precise definition of the transport
layer is given, and it is not related to the present transport
implementations, such as UDP and TCP. Furthermore, the
approach presented here models and precisely defines by
different TStreamPN’s the different layers and sublayers. As
a consequence, it makes explicit for the first time the formal
temporal semantics of a global layered architecture.

III. A N EW DISTRIBUTED MULTIMEDIA ARCHITECTURE

Section II has shown that the purpose of the architecture
currently under study is to implement a distributed multimedia
application having well-defined synchronization requirements.
It appeared that formal appropriate models as TStreamPN’s
can be used for that purpose. Let us now discuss the corre-
sponding communication software.

Current Transport Solutions and Their Limits

The emergent generation of high-speed networks now cor-
rectly address high throughputs. Recently, many studies have
been performed around the design of lightweight transport
protocols, such as NETBLT [11], VMTP [12], or XTP [13],
[14]. These are more suited to support multimedia data trans-
fers than TCP or TP4 protocols; however, these proposals do
not provide a sufficient solution to multimedia requirements.
In particular, multimedia synchronization issues (both spatial
and temporal ones) are not addressed, and temporal constraint
management mechanisms remain implementation dependent: a
new generation of high-speed, multimedia, and cooperative ar-
chitectures then has to be designed on top of high-speed links.
More recently, several communication architectures have been
envisaged within different projects which may be classified as
follows.

QoS Architectures

Two main approaches have been proposed to design future
advanced multimedia communication systems.

• The first one, called ALF/ILP [15], is based on the use
of a network as simple as possible. The designer of the
new protocols implements the software of the high-speed
multimedia applications at the user level, that is in the user
space, on top of a simple network, such as IP. Therefore,
the user is able to tune the software and develop the most
appropriate solutions, these solutions depending on the
application characteristics [16]; nevertheless, each user
who develops a new application has to develop its own
software. Even using high-level languages [17], this needs
a high global investment. This type of approach can be
called “network-aware application” (NAA) because the
application must have the ability to adapt itself to actual
network performance.

• The second solution explores the opposite view, i.e.,
aims at building an advanced communication system able
to handle the requirements of sophisticated multimedia
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Fig. 2. Partial order deduced from a TStreamPN model of a multimedia object.

applications. This approach, of course more complex,
leads to network support software that is more advanced
and more general than existing platforms. The fundamen-
tal advantage is that the user software becomes much
simpler, as the communication system provides some re-
quired functionalities; also, any new user does not need to
again develop these functionalities. This approach, which
can be called “application-aware networking” (AAN),
has been and is still currently performed within several
projects and architecture proposals, particularly OSI 95
[18], RACE CIO [19], BERKOM [20], TENET [21],
QoS-A architecture [22], OMEGA [23], function-based
communication subsystem [24], end system architecture
[25], or CESAME [26].

This paper presents a global multimedia architecture that
integrates the advanced transport AAN approach initiated in
[27]–[31] and gives the corresponding implementation and
experiments. In the following sections, we will show that the
AAN approach is quite appropriate to build an architecture
where the time requirements are of the utmost importance.
For this, a new multimedia communication architecture will be
derived from the synchronization requirements, and a transport
service and protocol will be designed to be able to indicate
as soon as possible any loss of data in the network. How a
distributed multimedia application can take advantage of such
a communication service will then be presented.

A. A Partial-Order-Based Transport Service and Protocol

1) The Partial Order Connection Concept:Currently, trans-
port protocols are either based on the connection-oriented (CO)
paradigm or on the connectionless (CL) one:

• on the one hand, TCP-like protocols provide their users
with full reliability and sequential order,

• on the other hand, UDP-like protocols introduce much
less increase in transit delay or reduction in through-
put, but provide independent PDU’s and no reliability
guarantees.

The classification of these protocols using two axes, order
and reliability, suggests that a conceptual family of transport
layer protocols should exist between TCP and UDP. This
extension, thepartial order connection (POC), for which TCP
and UDP appear to be special cases, has been introduced and
theoretically investigated in [29], [30]. The basic principles of
this new concept are as follows.

A conceptual extension of the connection concept:A
POC is an end-to-end connection that allows its users to define

and use for transferring data any partially ordered/partially
reliable services from no order/no reliability (typically a UDP-
like service) to total order/total reliability (typically a TCP-
like service). In a POC, order and reliability appear as two
specific QoS parameters specified by the service user during
the connection setup. Once known by both sending and
receiving POC entities, order and reliability are translated into
protocol parameters used to run the corresponding protocol
mechanisms. In a POC, service data units (SDU’s) can be
delivered to the receiving user in an order that is different
from the sending order: the acceptable difference between the
submission sequence and the different but acceptable delivery
sequences precisely results from the definition of the selected
partial order.

A suitable concept with regard to multimedia applications
features: It has been seen in Section II that the TStreamPN
model formally describes multimedia synchronization scenar-
ios in asynchronous distributed systems. The underlying Petri
net, i.e., the Petri net deduced from a TStreamPN model by
removing all time values, provides a logical representation of
a set of temporal synchronization requirements. Furthermore,
a Petri net represents a partial order.

Consider, for instance, themultimedia objectpictured on
the left part of Fig. 2, composed of differentmonomedia
objects(a logo, two fixed images, and two video sequences)
numbered from 1 to 99. The picture provides the expected
object display at the receiving side. The right part of the figure
gives the partial order deduced from the application-defined
TStreamPN model that illustrates (among other things) that
logo 1 and images 2 and 3 may be displayed at the receiving
user side independently (in any order) as they are in parallel
between the first and the last transitions. For objects 4–99, the
logical synchronization requirements between the two video
sequences are expressed by the intermediate transitions linking
objects 4 and 5 to objects 6 and 7, etc.

In a partial order transport connection, objects (typically
transport SDU’s) may be delivered to the service user in any
sequence consistent with both spatial and temporal synchro-
nization requirements; these different delivery sequences lead
to transfer speed-up and save resources at both the sending
and receiving sides. References [27]–[30] illustrate this last
point through multiple examples and two different theoretical
analyses.

Reference [32] considers a system where a multimedia
document (describing routine maintenance procedures per-
formed on a car) is being retrieved from a remote server
over the Internet, and displayed in real time as the content
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Fig. 3. Multimedia partial order transport architecture.

arrives at a user workstation. Particularly, it shows that using
a network layer service whose loss rate is high, a partially
ordered/partially reliable protocol provides for graceful degra-
dation and simplifies application development by providing
appropriate mechanisms for synchronization, reordering, and
reliability. Reference [33] presents an analytical study of a
partially reliable transport service provided by sender-based
loss detection and recovery. It is shown that such a service
provides considerable throughput, admission rate, and delay
improvement over reliable transport service when the under-
lying network service is lossy and the application has a high
loss tolerance.

2) The MM-POC Architecture:As multimedia application
requirements are multiple and diversified with respect to the
data they imply, it is necessary to define different transfer
characteristics for each of their flows. For instance, assume an
application to be composed of partially synchronized text and
video: the transport service has to guarantee both a perfect reli-
ability with respect to the text transfer, and a sufficient enough
throughput with respect to the video. However, a totally reli-
able transport connection is not needed for the video flow, and
a high-speed transfer is not a major requirement for text-like
communication. Moreover, one can mention that the use of a
reliable service would imply transmission latency, inconsistent
with an acceptable high-speed video-distributed application.

Addressing this point, most recent research led to either an
extension of the QoS concept [18], [34] or to the proposal
of new communication architectures [19]–[25]. As far as this
latter point is concerned, two kinds of architecture have been
developed.

• The first provides its users with a given set of service
profiles, each of them being able to handle requirements
of a specific data flow. For instance, [21] defines two
service profiles,real timeandnonreal time, respectively,
dedicated to (temporally) constrained data transfers and
unconstrained data transfers.

• The second defines a transport interface whose parame-
ters (throughput, transit delay, or transit delay jitter, for
instance) have to be specified and then negotiated for
each flow between service users and providers [19], [22].
Note that these works use investigations around the QoS
concept of [18].

Although pursuing the AAN philosophy, these two ap-
proaches do not tackle interflow synchronization issues at
the transport level; indeed, QoS parameters are defined for

each flow, but none of them takes into account dependency
relationshipsbetweenthese flows.

The transport architecture which is presented here differs
from the previous ones on this specific point: it integrates
the dependency between the flows at the transport layer. It is
based on the use of the TStreamPN model at different levels
of the communication system, and particularly at the transport
level, where a multimedia synchronization management is
introduced. The resulting multimedia transport architecture is
detailed in the following [Section III-A2a].

Let us note that interflow synchronization issues have also
been tackled at the transport level in other work, using the
multimedia connection concept. From a Petri-net-based syn-
chronization model (RTSM: real time synchronization model),
[5] proposes a transport architecture providing a multimedia
synchronization service; this architecture, older than ours,
differs on several points. First, synchronization relationships
are not transmitted to the receiving transport entity at con-
nection setup; as a result, the receiving entity has to deal
with synchronization control according to a great deal of
protocol control information. The second and major point
concerns time management. Our architecture does not tackle
temporal constraints because of the asynchrony of systems, but
provides its users with a logical multimedia synchronization
service, temporal constraints being managed at the service user
level. Let us now detail the design principles of the transport
architecture proposed in this paper.

a) Design principles of an MM-POC:In order to tackle
the “multiflow” aspect of a multimedia application, a multi-
media transport architecture providing a set of QoS is needed,
each of them being dedicated to one of the different flows of
the application.

Our transport architecture (called MM-POC formultimedia
partial order connection) is based on a multimedia connection
concept, implying the setup and then a specific coordination,
at the transport level, of several monomedia connections, each
of them providing a specific QoS. As an example, consider
the MM-POC given Fig. 3; in this example, three monomedia
connections (in fact, partial order transport connections) with
a given QoS have been established, each of them being able to
provide transport support for a specific data flow (for instance,
a video, an audio, and a text-like data flow). The coordination
of the different POC’s (illustrated in the figure by a dotted line)
is based on the management at the transport level of “order”
and “reliability” between the connections.
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Fig. 4. Multimedia partial order.

Order management:The “order” parameter is man-
aged at two different conceptual levels: 1) within each of the
monomedia connections (being then a monomedia POC), and
2) between these connections. This management takes into
account at the transport levelboth intra- and interflowlogical
synchronization requirements, which can be deduced from a
TStreamPN model of the application.

Consider, for instance, the partial order given on the right
part of Fig. 4, deduced from a TStreamPN model of the
object illustrated on the left part. If one color is used to
indicate a specific QoS requirement, the associated MM-
POC will be made of four monomedia POC’s, each of them
providing a transport support of the corresponding colored
objects (SDU’s). In this example:

• “SDU 6 has to be delivered after SDU 4” is an example of
an intraflow dependency relationship; such requirements
are managed within the corresponding monomedia POC
(here the one providing the white QoS);

• “SDU 6 has to be delivered after SDU 5” is another
example of an interflow dependency relationship; such
requirements have to be managed at a higher conceptual
level than the POC one, butstill within the MM-POC.

We also define an application programming interface (API)
allowing service users to set up, use, and release a multimedia
partial order transport connection. The defined service prim-
itives include “order” (among others) as service parameters.
Service users may then select the most suitable multimedia
partial order service with respect to temporal synchronization
requirements expressed by the application, which is the one
whose “order” parameter is deduced from a TStreamPN model
of the application.

Reliability management:In a monomedia POC, the
protocol does not need to recover all PDU losses when the
resulting lost SDU’s do not generate adegradationof the
selected reliability (degradation meaning that the required
reliability is out of the requested boundaries). Reference [30]
shows how reliability may be managed in two different man-
ners, resulting in each case in a transit delay improvement at
the cost of an acceptable reliability decrease.

Both error control mechanisms are based on the following
rule: “delivery of a given SDU makes obsolete all SDU’s that
are not yet delivered (they can be lost or not) preceding it in
the multimedia partial order.”

When processing an out of partial order SDU (i.e., not
deliverable with respect to the multimedia partial order), the

delivery order mechanism delivers it to the transport service
user if the number of SDU’s made obsolete does not exceed
the maximum loss level on each POC. Such a process allows
the service provider to deliver user data as soon as possible,
at the potential cost of an acceptable loss level. In other
words, transit delay is decreased at the cost of an acceptable
reliability degradation, still respecting order constraints as they
are expressed through a TStreamPN model of the application.
To control the maximum acceptable loss level, two reliability
management mechanisms have been proposed:media per
media and per group of media; these two mechanisms are now
described and analyzed.

First, assume a multimedia partial order connection to
be composed of monomedia POC’s, each of them being
identified by an index ( varying from 1 to ). Suppose, now,
that reliability QoS is expressed by the maximum number of
consecutive SDU losses, say, the service user may tolerate
on POC.

“Media per media” reliability management:When pro-
cessing delivery of an out of partial order SDU, say, on
POC, the protocol will deliver if PDU’s made obsolete
on POC still fulfill reliability requirements, that is, with our
reliability definition assumption, if the number of consecutive
SDU’s made obsolete does not exceed. However, it cannot
deliver it if this delivery would need the loss declaration of
one or more SDU’s on any of the other POC’s. Amedia per
media reliability is thus defined.

“Per group of media” reliability management:Gener-
alizing the previous approach, the second mechanism may now
deliver SDU even if it generates a tolerable number of losses
of one or more valid SDU’s onanyPOC, that is, still with our
reliability definition, when the number of valid consecutive
SDU’s made obsolete on POCdoes not exceed for from
1 to . This reliability management is said to beper group of
media, the group including here the monomedia POC’s.

Independently of their implementation complexity and the
processing time overhead they generate, both mechanisms may
be compared as follows.

• When aper group of mediaerror control is applied, transit
delay is optimized on each POC at the cost of a maximal
but acceptable reliability degradation.

• Differently, amedia per mediaerror control does not fully
benefit from the partial reliability concept (transit delay
is not optimized), but independence between POC’s is
preserved.
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Fig. 5. Transit of multimedia data in the operating system.

In conclusion, both mechanisms induce transit delay im-
provement while enforcing the reliability QoS on each POC.
Allowing service users to be notified of (acceptable) losses
as soon as possible, the MM-POC multimedia transport ar-
chitecture makes possible a new management of temporal
synchronization requirements at the application layer. This
point is developed in Section III-B and then illustrated through
an example in Section IV.

b) Implementation of an MM-POC:The MM-POC pro-
tocol has been implemented in kernel space using the SUN
SOLARIS stream concept. A minimal service interface allows
the users to select a given partial order/partial reliability for
each application data flow. In order to provide continuous
media transport support, protocol mechanisms ensure flow
continuity preservation, fast retransmissions, and bandwidth
saving, while enforcing both order and reliability QoS param-
eters. Major algorithms and experimental results comparing
the respective impact ofmedia per mediaand per group of
media reliability management on transit delay may be found
in [35].

B. Global Architecture of Multimedia Applications

After having discussed the transport layer, let us now con-
sider a methodology aiming to build a multimedia application
on top of a multimedia partial order connection, particularly
with respect to the QoS and temporal synchronization require-
ments.

1) The Temporal Synchronization Task in the Multimedia
Architecture: In asynchronous distributed systems, temporal
synchronization operations have to be performed at the top
level of the architecture, i.e., at the application level of the
receiving machine. In fact, enforcing final temporal synchro-
nization operations at a lower level, for instance in the commu-
nication layer, is not useful. This is because such synchronized
data will be desynchronized when passing in the operating
system and in the multimedia presentation subsystems (e.g.,
an interface board). Moreover, the application layer is the only
place where developers can master process scheduling (in the
kernel, developers cannot control the scheduling of threads).
However, after having been synchronized, data are sent to
the multimedia subsystems through the kernel, and are again
impacted by asynchronism (Fig. 5).

In fact, it is impossible to control the behavior of data in
the kernel and in multimedia subsystems: data are computed

by separate subsystems, and managed in independent ways.
Nevertheless, as these subsystems are managed by the kernel
with high priority level interrupts (a higher priority than the
time-sharing applications and system tasks), it is possible to
assume that multimedia subsystems latency times are constant.
This hypothesis has been verified on all hardware we have
tested. As long as hardware solutions for display are not com-
pletely synchronous, the result of applicative synchronization
will depend on the truth of this hypothesis.

This assumption about multimedia subsystems latency re-
duces temporal synchronization tasks to operations processed
at the application level. Nevertheless, the application in user
space has to be “weak synchronous.” It is required to use
(in user space) a real-time class (existing in recent operat-
ing system versions like Solaris 2). Using such a real-time
(RT) scheduling class and the hypothesis about multimedia
latencies, it is possible to design synchronization mechanisms
enforcing the temporal requirements of multimedia applica-
tions. This point will be detailed in the implementation part
(Section IV-C) of the case study discussed in Section IV.

As a result of these asynchronous system characteristics,
the behavior of the applicative synchronization task can be
different from the presentation one modeled in Section II.
Indeed, if latency times are different, the synchronization
scenario implemented at the application level can differ from
the one existing at the interface between the user and the
machine. The media processing times can be different, the
interstream synchronization can change, etc. It follows that
the presentation synchronization scenario modeled by a pre-
sentation TStreamPN will induce, at the application level, two
different applicative synchronizations, and so two TStreamPN
models. One models the synchronization on the sending site,
and the other on the receiving site [36].

Let us now consider the transport layer. Using a classical
transport service such as UDP can lead to many applicative
discontinuities when losses occur through the network. When
data are missing, the normal protocol behavior consists of
waiting for the lost PDU, the waiting time being bounded
by the maximum presentation time of the object. When the
presentation time reaches its maximum, the data are considered
as lost, and exception handling is started, which consists
of presenting substitution data. However, the time equal to
the maximum jitter allowed has been lost, and the end-to-
end delay has grown. Consequently (and this is bad), the
corresponding delay can provoke losses on its stream when
performing interstream synchronizations or when handling
end-to-end delay control mechanisms.

It follows that multimedia distributed applications require a
transport service that indicates the lost data as soon as possible.
It is shown in the next section how a partial-order-based
transport service can fulfill this requirement.

2) Distributed Multimedia Applications and Partial Order
Transport Protocols:The architecture developed to run mul-
timedia applications on top of partial order transport protocols
is given in Fig. 6. Note that it does not directly interface the
synchronization layer on top of the partial order transport. The
reason for this is that the transport service is not precise enough
for handling the temporal requirements. A presynchronization
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Fig. 6. Architecture of a multimedia application on top of a partial order
transport.

layer is required to compensate for the temporal deficiencies
of the partial order transport.

The architecture has three conceptual layers: transport,
presynchonization, and synchronization.

• The partial order transport opens high-speed connections
for communicating multimedia objects, and provides ear-
liest delivery, as has been explained in Section III-A.
Nevertheless, as it does not explicitly manage time, a
partial order transport service does not provide users with
temporal guarantees. Moreover, long sequences of losses
are detected very late (when receiving the first PDU
following the sequence of losses), potentially generating
important and unacceptable jitter.

• The presynchronization layer has been added between
the transport and the synchronization layers to perform
the temporal functionalities the transport layer does not
ensure. This layer provides a temporal control on the data
delivered or lost by the transport. It checks the maximum
time between two transport indications (delivery or loss),
and is able to detect long sequences of losses.

• The third level consists of the synchronization task that
has to present the flows by respecting the temporal
requirements defined by the user, and modeled by an
applicative TStreamPN.

Benefits of This Architecture:Because of asynchronous
systems, temporal synchronization has to be performed at the
top level of the application, and some real-time provisions
have to be used. Such an approach allows three major
improvements: 1) the nonsynchronizable data are discarded,
and exception handling is started as soon as possible; 2)
processing is performed once, and as early as possible (i.e.,
such that their effects will not be annihilated at the higher
levels), in order to minimize time and ensure a maximum
QoS; and 3) storage is reduced: only the presynchronization
layer manages buffers in the user space.

In the next section, we show how a point-to-point video-
conference application can take advantage of this architecture,
and what benefits can be derived from it.

IV. CASE STUDY: THE PNSVS
VIDEOCONFERENCEAPPLICATION

PNSVS is a point-to-point videoconference application en-
suring synchronization requirements as modeled by a presen-

tation TStreamPN and using the architecture proposed in the
preceding section.

The application TStreamPN model has been given in Fig. 1
for 10 images/s, 10 ms maximum of jitter, and an interstream
drift of less than 100 ms.

A. Behavior Modeling of the Synchronization Layer

In this TStreamPN, for a normal interstream synchroniza-
tion, any audio object must be synchronized with image
. Nevertheless, the two multimedia boards do not have the

same latency time: 50 ms for a video board and 250 ms for an
audio board. Consequently, if the application process followed
the presentation of Fig. 1, the final presentation would not be
synchronized: the audio part would be 200 ms late with respect
to the video part, i.e., audio objectwould be synchronized
with image .

Latency Times:To solve this problem, an artificial drift
has to be introduced in the rendezvous. The difference between
the audio and the video board latency times being 200 ms,
it is sufficient to synchronize the audio objectwith the
image : after having been handled by the presentation
boards, the audio objectwill be synchronized with the image
. In this example, the applicative TStreamPN modeling the

synchronization of the application, with the drifted rendezvous,
is given in Fig. 7.

However, this example is a particular case as the difference
between the latency times is a multiple of the presentation
time. In the general case, for instance, if the audio and video
latency times equal, respectively, 230 and 50 ms, the difference
between the given latency times is 180 ms. In fact, the drift
that can be modeled in the rendezvous corresponds to two
“drift objects,” i.e., a 200 ms drift. After this 200 ms drift, a
20 ms drift remains between the audio and video streams. To
ensure that the maximum interstream drift remains under 100
ms (cf. Fig. 1), the TStreamPN interstream synchronization
period has to be modified. If the interstream synchronization
is enforced each five images, because of the 20 ms remaining
drift, the interstream drift of the audio/video streams would be
in the interval [ 80 ms, 120 ms], outside the allowed 100 ms.
The interstream synchronization must be enforced every four
images in order to keep the interstream drift in the interval
[ 60 ms, 100 ms].

The presentation TStreamPN modeling the multimedia syn-
chronization scenario and the applicative TStreamPN model-
ing the applicative processes behavior have different shapes
because of the drifted rendezvous. Moreover, the interstream
synchronization period can be modified.

End-to-End Delay Control:To solve the jitter problem,
PNSVS stores incoming data in buffers before presentation.
However, storing the data increases the end-to-end presen-
tation delay. This delay is the QoS parameter impacting the
interactivity between the communicating users, and implies
the reception buffer sizes associated to each stream [10].
During the videoconference, the receiver controls that the
number of objects stored in its buffers does not overrun
a maximum bound, in order to control the end-to-end
presentation delay.
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Fig. 7. Applicative TStreamPN taking into account the hardware latency times.

Fig. 8. Applicative TStreamPN taking into account the end-to-end delay improvements.

Note that if the receiver becomes late, the new incoming
data cannot be stored, and it has to reduce its delay.

The end-to-end presentation delay is quite hard to control,
and it must be kept as short as possible. Studies [10] have
shown this delay must be under 250 ms, and computing times
must be reduced to their minimum values.

• Multimedia board latency times cannot be reduced by the
application; neither can communication system delays.

• Reception computing times cannot be substantially re-
duced. Images are atomic data: it is not possible to reduce
the decompression/presentation time. For audio streams,
the atomic element is a sample of 8 or 16 bits, and
segmenting each sample packet does not significantly
reduce the reception computing time.

• It is possible, however, to reduce the sender computing
times: not the grabbing/compression time of an image,
but the preparation time of an audio packet as it depends
on the packet size as follows: “the larger the packet is, the
more time it requires to be produced.” For instance, on the
applicative TStreamPN of Fig. 7 for which an interstream
synchronization period modification has been applied, the
100 ms audio packets (800 bytes) require 100 ms to be
produced and 2 or 3 ms to be packetized and sent. On the
other hand, if the computing time of one image (grabbing,
compression, packetization, and sending) requires only 55
ms, the delay comes from the audio stream. As audio
packets are nonatomic, they can be divided. Dividing the
100 ms audio packet by two makes the audio computing
time 52 ms, and the one on an image 55 ms. It is possible
to gain almost 50 ms on the end-to-end presentation delay

(Fig. 8). Note that as this delay is induced by the atomic
video stream, it cannot be reduced any further.

Finally, the applicative TStreamPN given in Fig. 8 models
the behavior of the synchronization layer on the receiving
workstation. Because of asynchronous behavior of the oper-
ating system and multimedia, implementing synchronization
mechanisms respecting this applicative TStreamPN will in-
duce, at the user interface level, the presentation scenario
modeled in Fig. 1.

To define the partial order transport behavior, it is required
to express the partial order the transport layer has to respect
and its minimum QoS in term of reliability. To obtain the
partial order requirements, a partial order determined from
the previous TStreamPN has to be used. It is the one that
defines the periodic part of the synchronization between the
two media. The reliability requirements are associated with the
connections in the same way as the required throughput.

B. PNSVS Architecture Using a Partial Order Transport

Because of operating system asynchronism, the required
architecture to run PNSVS over a partial order transport
integrates a presynchronization sublayer between the synchro-
nization and transport layers.

Given this synchronization architecture, the modeling
TStreamPN architecture has been extended in order to take
into account the functionalities of these new layers.

The presynchronization sublayer has to detect late or lost
data and control end-to-end delay. To model the presyn-
chronization sublayer, a new TStreamPN is required: the
presynchronization TStreamPN. This new TStreamPN has
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Fig. 9. TStreamPN architecture.

the same shape as the receiving applicative TStreamPN, and
contains the required parameters to be able to detect the late
data and control the end-to-end delay.

To model the partial order transport behavior, we must
express the partial order the transport service has to respect,
and its minimum QoS in terms of reliability. To model
partial order constraints, a Petri net determined from the
presynchronization TStreamPN is used. Reliability constraints
are associated with the connections in the same way as the
required throughput.

Fig. 9 shows an entire example of the PNSVS modeling
with the related TStreamPN’s: applicative, presynchronization,
and transport. For readability, not all parameters are given in
the figure.

C. PNSVS Implementation

The PNSVS application has been implemented on Sun
Workstations (Sun SparcStation 10) running the Solaris 2.5
operating system, with Parallax video boards, and using an
Ethernet and a 155-Mbit/s ATM network.

The synchronization mechanisms aim to present audio and
video objects while fulfilling their synchronization require-
ments. In fact, the goal consists of respecting the QoS re-
quirements defined by the presentation TStreamPN, which is
the same as the one given in Fig. 1. The operating system
is asynchronous, as no bound on computing times is ensured
via the time-shared scheduling. It is required to use processes
whose priorities are greater than the ones of system tasks, and
to use a fully preemptive operating system. With the Solaris
2 operating system, such a scheduling class is called real time
(RT). Nevertheless, even when they run with the RT priorities,
the processes only own a few real-time characteristics: their
essential feature is that their priority class is greater than the
one of system tasks.

On the other hand, using the RT scheduling class can disturb
the operating system because system tasks are deferred when
an RT process runs. RT processing must therefore be kept
short. For instance, if the workstation is overload by RT
tasks, communications (in system class) will not be processed.
Also, if an RT process makes a system call, it loses its RT
feature, and gets the SYS scheduling class. The RT scheduling
class is essential for respecting the temporal synchronization
requirements, but it has to be handled with care.

The architecture of PNSVS has been divided into subtasks,
where the following hold.

• The audio and video stockers receive data from the
network. Buffers are used to temporarily store the desyn-
chronized received data to solve the jitter problem.

• The presentation audio and video processes realize the re-
quired operations for the sound and picture presentations.

• The real-time orchestration processes realize the synchro-
nization scenario modeled by the TStreamPN, and control
the presentation processes to respect the presentation
temporal requirements.

• The presynchronization processes perform a temporal
control of the stockers, and ensure that the time between
two transport indications does not overstep a maximum
value; in fact, presynchronization processes realize a
temporal control of the stocker, while the orchestration
processes do the same on the presentation ones.

Intrastream Synchronization:The proposed synchroniza-
tion approach gives a solution different from the ones used in
real-time systems [1], [2], [10]. In an asynchronous system,
upper bounds do not exist. In order to respect its maximum
presentation time, the presentation process needs a real-time
timer with a maximal priority, thus overcoming the system
asynchronism. As the orchestration process computing time



OWEZARSKI et al.: ARCHITECTURE FOR MULTIMEDIA APPLICATIONS 393

Fig. 10. Measurement of the jitter on the PNSVS images.

and the timer expiration time are known and made equal to
their physical lower bounds, it is not possible to overstep the
maximum presentation time of multimedia objects.

Interstream Synchronization:The interstream synchroniza-
tion algorithm is based on a rendezvous between the audio and
video orchestration processes, with the semantic of the “and-
master” firing rule. The principle of the temporal control is the
same as the one described for the intrastream synchronization,
except that only the audio orchestration process uses a real-
time timer (because only the presentation requirements on
the audio object must be respected). The audio orchestration
process has to wait until the end of the audio presentation
process, and until the rendezvous of the video orchestration
process (meaning that the video presentation process is com-
pleted): then, it can fire the interstream transition to start the
next period. Nevertheless, if the real-time time-out occurs,
the audio orchestration process has to kill the audio and/or
video presentation processes, and has to inform the video
orchestration process to jump to the first object of the next
synchronization period.

D. Performance Measurements

1) Synchronization Mechanisms Evaluation:PNSVS is a
videoconferencing application that can process 20 images/s
(320 240 pixels and 24-bit coded colors) in one direction.
The minimum end-to-end presentation delay obtained is
around 400 ms, and cannot be reduced because of the audio
board latency time, of around 250 ms.

It is important to verify that all synchronization mechanisms
respect the temporal presentation requirements, and in particu-
lar, the quality of the intra- and interstreams synchronization.
The measurements have been realized in the case of a 10
image/s videoconference application where synchronization
requirements are modeled by the presentation TStreamPN of
Fig. 1. Fig. 10 shows, for the 100 first images, the jitter that
appears on the presentation of each image. The measured jitter
is the difference between the effective presentation duration
and the nominal presentation time. This figure shows that the
maximum jitter of 10 ms is never overstepped, but the jitter is
always negative. In fact, in this experiment, there is no network
problem (no loss and jitter), and data are available when
the presentation process needs them. Thus, the anticipation
mechanism, which makes it possible to stop the presentation

Fig. 11. Measurement of the jitter on the PNSVS audio objects.

Fig. 12. Measurement of the PNSVS interstream drift.

of an object as soon as its minimal presentation time has been
reached, always works. Variations are due to the real-time
scheduler of Solaris 2.

Fig. 11 shows the same experiment applied to the audio
stream of PNSVS. As for the video, the intrastream syn-
chronization requirements are always respected, but the jitter
is always positive. In fact, in this case, the firing of the
intrastream transition is caused by the audio port signal. With
a time scale expressed in milliseconds, this consumption is
always equal to 100 ms. Variations are due to the time required
by the system to take into account this information.

Fig. 12 shows the curve representing the interstream drift
for the audio and video sequence numbers. Fig. 10 shows that
the video jitter is always negative, and Fig. 11 shows that
the audio jitter is always positive. Thus, the interstream drift
(difference between the audio and video objects presentation
dates) is positive. This drift increases during each period of
five objects (due to the cumulative effect of jitter), and it
is eliminated at each interstream synchronization. The inter-
stream synchronization requirements are perfectly respected
because the drift never exceeds 50 ms, the maximum allowed
value being less than 100 ms.

2) Overall Architecture Benefits Evaluation:The temporal
synchronization mechanisms having been measured, it remains
to evaluate the benefits of the overall architecture that includes
the partial order transport, the presynchronization, and the
temporal synchronization layers. As previously stated, the use
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Fig. 13. Overall architecture benefits evaluation.

of a partial order transport (thanks to its earliest deliveries
and losses mechanisms) avoids time losses at the application
level. These time losses are really harmful to QoS because the
application has to discard some presentation objects (images
or sounds) when it does not have enough time to compute
them (end-to-end delay control mechanisms, “and-master” in-
terstream synchronization schemes, etc.). Thus, in this section,
the losses created by the synchronization application will be
measured in two cases: 1) when a partial order transport
is used, and 2) when a classical connectionless transport
service (UDP) is used. To perform this evaluation, a network
simulator allowing us to simulate losses on the network has
been used. This simulator is a Solaris 2 stream module, put
on the sending machine (between the sending process and
the ATM driver) that discards some packets. The PNSVS
application evaluated is the one with the temporal constraints
expressed by the TSPN of Fig. 1. The other parameters are:
maximum end-to-end delay 1 s, audio latency 400 ms, and
video latency 50 ms. With these values, the audio and video
buffers can contain, respectively, five audio frames and ten
images. Results of measurements are described in Fig. 13. It
shows the applicative loss average in the two cases (using
UDP and POC), depending on the network loss level.

Fig. 13 shows that the QoS obtained by using POC is better
than the one using UDP. In fact, when the application receives
a loss indication from the partial order transport, it does not
wait, and it fires the TSPN transition as soon as possible (when
the minimum presentation time is reached). While using UDP,
it has to wait for the expiration of the timer associated with
the maximum presentation duration. Using POC, each loss
detection allows the application to “recover” the maximum
allowed negative jitter , while using UDP, it provokes
a new time loss (equal to ).

Thus, the curve presenting the results of PNSVS using UDP
grows linearly. The more network losses, the more time losses
there are, and the more the application has to discard data to
reduce the end-to-end delay.

Four comments can be made about the POC curve.

1) If the network is reliable, results using POC or UDP are
equivalent.

2) The applicative loss level decreases between 0 and 10%
of network losses. To explain this phenomenon, let us

remember the results on audio and video jitter that are,
respectively, 1 ms and 4 ms (on average). With such
jitter values and a network loss level less than 10%, the
drift in a synchronization period is positive (there are not
enough network losses to make the application recover
from the audio drift), and some applicative losses are
created by the end-to-end delay control mechanism.

3) The applicative loss level grows between 10 and 50% of
network losses. In this case, there are enough network
losses to make the drift on a synchronization period
negative. However, losses appear because of a famine
problem: each time a network loss appears, using POC,
the end-to-end delay decreases, and this progressively
frees buffers. When buffers are empty, even if the
application is waiting as much as possible for the next
object, this will not arrive before the application replaces
it by a substitution one (the last image for video, or an
empty sound for audio stream).

4) Finally, if the network loss level is greater than 50%,
long sequences (with more than five objects consec-
utively lost, five being the number of audio packets
that can be stored in audio buffer) can appear. In this
case, POC cannot detect all losses early enough, and
the presynchronization layer detects them. The principle
of the presynchronization mechanism is the same as the
applicative synchronization one. Presynchronization is,
nevertheless, more effective because it computes data
earlier than the synchronization layer. However, the
drift on a synchronization period can be positive, and
applicative losses are then provoked by the end-to-end
delay control scheme.

Another test for the effect of network jitter on PNSVS has
also been made (thanks to the network simulator). This test
proves that PNSVS can always recover from jitter less than
100 ms. This result is quite interesting because, using ATM
networks, such jitter is impossible.

V. CONCLUSION

This paper has presented adequate architectures and mech-
anisms to fulfill important synchronization requirements for
multimedia applications in asynchronous environments. To
obtain the best possible QoS, the synchronization architecture
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consists of two extreme layers: an applicative synchronization
layer that ensures the multimedia objects’ temporal require-
ments, and a new multimedia advanced partial order transport
layer. However, to interface the partial order transport ser-
vice with the application needs, a presynchronization level
has been located between the application and the transport
layers.

This architecture has been derived after considering a formal
representation of the multimedia information. It has been
shown that it is possible to model the behavior of all layers of
such a synchronization architecture. The model that has been
used here is a time Petri-nets-based model, the TStreamPN. A
presentation TStreamPN, deduced from the user QoS, is used
to model the presentation level multimedia synchronization
scenarios at the interface between the application and the user.
Then, in the general case, a modified applicative representation
(for the sender and the receiver) is deduced from it to model
the synchronization application behavior. Finally, the receiver
applicative model leads to the design of the partial order
transport.

This concept has been used to build a videoconferencing
system, PNSVS. Its implementation has been based on ad-
vanced system mechanisms, such as the real-time scheduling
class of Solaris 2, and the threads mechanisms. The new trans-
port architecture, service, and protocol based on partial orders,
running on the Solaris 2 streams mechanisms, provides the
basis of the global architecture. PNSVS has been implemented
on Sun Workstations (Sun SparcStation 10) with Parallax video
boards, on top of an Ethernet and a 155-Mbit/s ATM network.
This videoconferencing tool allows users to create conferences
having up to 20 images/s, an audio stream at 64 kbits/s, and
perfectly fulfills the synchronization requirements.

Future work concerns the theoretical and practical extension
of PNSVS toward a multiuser videoconference application
allowing many users to communicate with a guaranteed QoS.
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