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A Simple Upper Bound on the Redundancy
of Huffman Codes

Chunxuan Ye and Raymond W. Yeung, Senior Member, IEEE

Abstract—Upper bounds on the redundancy of Huffman codes have been
extensively studied in the literature. Almost all of these bounds are in terms
of the probability of either the most likely or the least likely source symbol.
In this correspondence, we prove a simple upper bound in terms of the
probability of any source symbol.

Index Terms—Huffman code, prefix code, redundancy.

I. INTRODUCTION

Let fp1; . . . ; png be the probability distribution of a source, and
let C be a prefix code for the source. The redundancy of a codeC

is defined as the difference between the average codeword lengthL

of the code andH = �
i
pi log pi, the entropy of the source. (In

this correspondence, all logarithms are of base2.) We defineR as the
redundancy of a Huffman code. It is well known that0 � R < 1. These
bounds onR are the tightest possible when nothing is known about the
source distribution. However, when partial knowledge about the source
distribution is available, these bounds can be improved. Gallager [5]
proved that ifp1, the probability of the most likely source symbol, is
given, the upper bound onR can be improved. His result is summarized
as

R �
p1 + �; if p1 < 1

2

2� p1 �Hb(p1); if p1 � 1

2

(1)

where

Hb(x) = �x log
2
x � (1� x) log

2
(1� x)

and

� = 1� log
2
e+ log

2
(log

2
e) � 0:086:

This upper bound is tight forp1 � 1

2
, but it is not tight forp1 < 1

2
.

Subsequently, a number of improvements on the upper bound onR in

Manuscript received May 30, 2000; revised May 4, 2001.
C. Ye was with the Department of Information Engineering, The Chinese

University of Hong Kong. He is now with the Institute for Systems Research,
University of Maryland, College Park, MD 20742 USA (e-mail: cxye@Glue.
umd.edu).

R. W. Yeung is with the Department of Information Engineering, The Chi-
nese University of Hong Kong, Shatin, N. T., Hong Kong (e-mail: whyeung@
ie.cuhk.edu.hk).

Communicated by M. Weinberger, Associate Editor for Source Coding.
Publisher Item Identifier S 0018-9448(02)05164-7.

terms ofp1 with p1 <
1

2
have been obtained [1]–[4], [6]–[9]. On the

other hand, upper bounds onR in terms ofpn, the probability of the
least likely source symbol, have also been obtained [1], [4], [10], [12].

Johnsen [6] obtained a tight lower bound onR in terms ofp1. His
result is that forp1 � 0:4, R � 1 � Hb(p1). However, Johnsen’s
work does not give lower bounds onR in terms ofp1 with p1 < 0:4.
Such lower bounds were subsequently obtained by Montgomery and
Abrahams in [8]. The lower bounds onR in [6] and [8] are for binary
Huffman codes, and generalizations of these bounds to arbitrary code
alphabets have been obtained in [3] and [7]. Furthermore, lower bounds
onR in terms ofpn andpn�1 have also been obtained in [4] and [12].

In some cases, the probability of a source symbol is given, but the
“rank” of this source symbol in the source distribution is not known.
In other words, there is no explicit information on how large the prob-
ability of this symbol is compared with those of other symbols. For
example, if we are given thatp1 = 0:2, we not only know that there
is a source symbol whose probability of occurrence is0:2, but we also
know that the probability of any other source symbol is at most0:2.
However, if we are given that the probability of a source symbol is0:2,
we can only deduce that the probability of any other source symbol is
less than0:8 (one minus the probability of the given source symbol).

The main result in this correspondence is an upper bound onR in
terms of the probability of any source symbol. This result is proved in
Section III after the preliminaries are presented in Section II.

II. PRELIMINARIES

Much work [1]–[10], [12] has been devoted to the study of better
bounds on the redundancy when some partial knowledge about the
source is available. In particular, it is obtained in [7] thatR � f(p1),
where

f(p1) =

2�p1�Hb(p1); if 0:5�p1<1

3�5p1�Hb(2p1); if 0:4505�p1<0:5

1+0:5(1�p1)�Hb(p1); if 1

3
�p1<0:4505

3�7:7548p1�Hb(3p1); if 0:3138�p1< 1

3

2�1:25(1�p1)�Hb(p1); if 0:2�p1<0:3138

4�18:6096p1�Hb(5p1); if 0:1971�p1<0:2

2�1:3219(1�p1)

�Hb(p1); if 1

6
�p1<0:1971

p1 + 0:086; if p1< 1

6
.

(2)

This upper bound is tight whenp1 � 1

6
. We note that upper bounds

tighter than the one given in (2) forp1 < 1

6
have been reported in

[7], but we do not need to invoke this result in the current work. Fig. 1
shows the upper bound given by (2). We can immediately obtain the
following facts from this figure.

Fact 1: The upper bound onR for a source approaches1 if and only
if the probability of the most likely source symbol,p1, tends to1.

If p1 tends to1, the entropy of the source tends to0 and the average
codeword length of a Huffman code for this source tends to1. Hence,
R tends to1. On the other hand, ifp1 does not tend to1, from Fig. 1,
the upper bound onR for this source is bounded away from1.

For a source with alphabet sizen, Fact 1 asserts that

f1� �2 � � � � � �n; �2; �3; . . . ; �ng

with �2; . . . ; �n tending to zero, is the unique form for a sequence
of source distributions for which the redundancy of a Huffman code
approaches1.

0018-9448/02$17.00 © 2002 IEEE
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Fig. 1. Upper bound onR whenp is known.

LetA be a constant. A simple analysis of Fig. 1 gives the following
two facts.

Fact 2: If p1 � A andA � 0:82, thenR � 0:5, with equality if
and only ifp1 = 0:5 or 0:82.

Fact 3: If p1 � A and0:82 < A � 1, thenR � 2� A�Hb(A),
with equality if and only ifp1 = A.

Now we can easily obtain the following theorem.

Theorem 1: Let q be the probability of any source symbol. Then

R �

2� q �Hb(q); if 0:5 � q < 1

0:5; if 0:18 � q < 0:5

1 + q �Hb(q); if q < 0:18.

(3)

Proof: If q � 0:5, thenq must be equal top1. It is obvious from
(1) that

R � 2� q �Hb(q):

If q < 0:5, thenq � p1 � 1 � q, which means thatp1 can be any
value betweenq and1 � q. We can then obtain an upper bound onR

by (2) for each possiblep1. Since no further information aboutp1 is
available, we take the maximum of all these upper bounds. Hence,

R � max
q�p �1�q

f(p1):

Furthermore, if0:18 � q < 0:5, thenp1 � 1�q � 0:82. By regarding
1� q as the constantA in Fact 2, we see thatR � 0:5. The equality is
satisfied ifp1 is equal to0:5 or0:82. If 0 � q < 0:18, thenp1 � 1�q,
where0:82 < 1� q � 1. Hence, from Fact 3, we have

R � 2� (1� q)�Hb(1� q)

= 1 + q �Hb(q):

This equality is satisfied if and only ifp1 = 1 � q. Therefore, the
theorem is proved.

Fig. 2 shows this upper bound onR as a function ofq. It is obviously
tight whenq � 0:5. For any givenq with q < 0:18, consider the source
distributionfq; 1� q � �; �g, where� tends to zero. The redundancy
of a Huffman code for this source tends to1 + q �Hb(q). Hence, the
upper bound onR in (3) with q < 0:18 is also tight. In next section,
we will obtain a tighter upper bound onR for 0:18 � q < 0:5.

III. M AIN RESULT

Lemma 1: For a source with at least two symbols, letq be the prob-
ability of any source symbol. Then

R<1�Hb(q)�(1�q)log 1�2�d� log qe � q(1�d� log qe): (4)

Proof: We prove this lemma by showing a particular prefix code
C whose redundancyRc is upper-bounded by the right-hand side
(RHS) of (4). This will establish the lemma since the redundancy of a
Huffman code must be less than that of any prefix code, in particular
that ofC.

Let q = pj for somej, where1 � j � n. Define the length of the
codeC as

li =

d� log pje; if i = j

� log pi
1� 2�d� log p e

1� pj
; if 1 � i � n

andi 6= j.

(5)

We obtain the above definition ofli by using the Lagrange multipliers
in order to minimize the upper bound onR. The details are given in the
Appendix. It is obvious thatlj � 1. For1 � i � n andi 6= j, since

pi
1� 2�d� log p e

1� pj
� 1� 2�d� log p e

< 1
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Fig. 2. Upper bound onR when the probability of a symbol is known.

we see thatli � 1. Hence,li � 1 for 1 � i � n, so they are valid
lengths for codewords. From (5), we have

1�i�n

2�l =2�l + 2�l

� 2�d� log p e + pi
1� 2�d� log p e

1� pj

=2�d� log p e + 1� 2�d� log p e

=1:

By the Kraft inequality, there exists a prefix code with these codeword
lengths. Then the redundancy of this code is upper-bounded as

Rc =L�H

= pj(lj+log pj)+ pi(li+log pi)

<pj(d� log pje+log pj)

+ pi � log pi
1� 2�d� log p e

1� pj
+1+log pi

= pj(d� log pje+log pj)

+ pi � log pi�log
1� 2�d� log p e

1� pj
+1+log pi

= pj(d� log pje+ log pj)

+ pi � log
1� 2�d� log p e

1�pj
+1

=1�(1�pj) log
1�2�d� log p e

1�pj

�pj(1�log pj�d� log pje)

= 1�Hb(pj)�(1� pj) log 1� 2�d� log p e

�pj(1�d� log pje)

= 1�Hb(q)�(1�q) log 1� 2�d� log qe �q(1� d� log qe):

Hence,

R < 1�Hb(q)� (1� q) log 1� 2�d� log qe � q(1� d� log qe);

and the lemma is proved.

Note that unlike most other upper bounds onR which depends on
partial knowledge of the source distribution, this upper bound does not
result from exploitation of the structure of Huffman codes. The code
defined in (5) can be regarded as a modified Shannon code.

Fig. 3 shows this upper bound onR as a function ofq. It is not diffi-
cult to prove that the RHS of (4) is not less than the RHS of (3), which
implies the upper bound in Lemma 1 is looser than that in Theorem 1.
This is not unexpected because the upper bound in (4) depends on less
knowledge about the source distribution than the upper bound in (3).
Although the upper bound in Lemma 1 is not the tightest possible, it
can readily be generalized to the case when the probabilities of anyk

source symbols,k � 2, are known. In the next lemma, we illustrate
how this can be done fork = 2.

Lemma 2: For a source with at least three symbols, letq1 andq2
be the probabilities of any two source symbols. ThenR < g(q1; q2),
where

g(q1; q2) = 1� (1� q1 � q2) log
1� 2�d� log q e � 2�d� log q e

1� q1 � q2

� q1(1� log q1 � d� log q1e)

� q2(1� log q2 � d� log q2e): (6)

Proof: Let q1 = pj andq2 = pk for somej andk, where1� j;

k�n; andj 6=k. Define (7) as shown at the bottom of the next page.
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Fig. 3. Upper bound onR when the probability of a symbol is known.

Following arguments, similar to those in Lemma 1, we see that there
exists a prefix code with codeword lengths defined in (7). Now the
redundancy of this code is upper-bounded as

L�H = pj(lj+log pj)+pk(lk+log pk)+ pi(li+log pi)

< pj(d�log pje+log pj)+pk(d�log pke+log pk)

+ pi �log
1�2�d�log p e�2�d�log p e

1�pj�pk
+1

= 1�(1�pj�pk) log
1�2�d�log p e�2�d�log p e

1�pj�pk

� pj(1�log pj�d�log pje)�pk(1�logpk�d�log pke)

= 1�(1�q1�q2) log
1�2�d�log q e�2�d�log q e

1�q1�q2

� q1(1�log q1�d�log q1e)�q2(1�log q2�d�log q2e):

Hence,

R < 1�(1�q1�q2) log
1�2�d�log q e�2�d�log q e

1�q1�q2

� q1(1�log q1�d�log q1e)�q2(1�log q2�d�log q2e)

and the lemma is proved.

In the next lemma, we prove an alternative upper bound onR in
terms ofq1 andq2.

Lemma 3: For a source with at least three symbols, letq1 andq2 be
the probabilities of any two source symbols such thatq1 � q2. Then
R < g0(q1; q2), where

g
0(q1; q2) = 3 + (1� q1 � q2) log(1� q1 � q2)

+q1(log q1 � 2) + q2(log q2 � 1): (8)

Proof: Let q1 = pj andq2 = pk for somej andk, where1� j;

k� n andj 6= k. Define

li =

1; if i = j

2; if i = k

� log pi
0:25

1�p �p
; if 1 � i � n

andi 6= j; k.

(9)

Following arguments similar to those in Lemma 1, we see that there
exists a prefix code with codeword lengths defined in (9). Now the
redundancy of this code is upper-bounded as

L�H = pj(lj + log pj) + pk(lk + log pk)

+ pi(li + log pi)

<pj(1 + log pj) + pk(2 + log pk)

+ pi � log
0:25

1� pj � pk
+ 1

=1 + (1� q1 � q2)[2 + log(1� q1 � q2)]

li =

d� log pje; if i = j

d� log pke; if i = k

� log pi
1� 2�d� log p e � 2�d� log p e

1� pj � pk
; if 1 � i � n andi 6= j; k:

(7)
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+ q1 log q1 + q2(1 + log q2)

= 3 + (1� q1 � q2) log(1� q1 � q2)

+ q1(log q1 � 2) + q2(log q2 � 1):

Hence,

R < 3 + (1� q1 � q2) log(1� q1 � q2)

+q1(log q1 � 2) + q2(log q2 � 1)

and the lemma is proved.

We now compareg(q1; q2) in (6) andg0(q1; q2) in (8). For some
values ofq1 andq2, g(q1; q2) is greater thang0(q1; q2), while for other
values ofq1 andq2, g0(q1; q2) is greater thang(q1; q2). This can be
seen from two examples. Forq1 = 0:5, q2 = 0:2, g(q1; q2)= 0:339,
andg0(q1; q2)=0:3145. Hence,g(q1; q2)>g0(q1; q2). Forq1=0:3;
q2 = 0:2, g(q1; q2) = 0:5536 and g0(q1; q2) = 0:7145. Hence,
g(q1; q2)< g0(q1; q2).

We now prove an enhancement of Theorem 1, which is the main
result in this correspondence.

Theorem 2: Letq be the probability of any source symbol. If0:18 �
q < 0:5, then

R(q) � max
q<p <1�q

min[f(p1); g(p1; q); g
0(p1; q)] (10)

where the functionsf , g, andg0 are defined in (2), (6), and (8), respec-
tively.

Proof: We distinguish three mutually exclusive cases for which
one of them must be true, but we do not know which one it is.

Case 1: If the source has only two symbols, thenR is unambigu-
ously determined as1 � Hb(q).

Case 2: If the source has at least three symbols and the givenq is the
probability of the most likely source symbol, thenR is upper-bounded
by (2), wherep1 = q.

Case 3: If the source has at least three symbols and the givenq is
not the probability of the most likely source symbol, then we letp1 be
this probability, wherep1 > q. Now the redundancy of this code is
upper-bounded by (6) and (8), whereq1 = p1 andq2 = q, and it is
also upper-bounded by (2). Thus, it is upper-bounded by the minimum
of these three upper bounds. However,p1 can take any value between
q and1 � q. Since we have no further information aboutp1, we take
the maximum of these upper bounds over allq < p1 < 1� q.

Finally, since we do not know which of the three cases is true, we
take the maximum of the upper bounds given in all three cases. Hence,

R(q) � max 1�Hb(q); f(q);

max
q<p <1�q

min[f(p1); g(p1; q); g
0(p1; q)] : (11)

The remaining task is to simplify the RHS of (11), i.e., we will show
that1�Hb(q) andf(q) do not contribute to the final upper bound on
R(q).

For any givenq between0:18 and0:5, we takep1 = 1�q��, where
� tends to zero. Note thatp1 is within the open set(q; 1� q). Hence,

max
q<p <1�q

min[f(p1); g(p1; q); g
0(p1; q)]

� min[f(1� q � �); g(1� q � �; q); g0(1� q � �; q)]:

In the following, we will calculatef(1� q � �), g(1� q � �; q), and
g0(1 � q � �; q), respectively. First

f(1� q � �) = 2� (1� q � �)�Hb(1� q � �)

� 1 + q �Hb(q): (12)

Since0:18 � q < 0:5, p1 = 1 � q � � > 0:5 andd� log p1e = 1.
From (6), we have

g(1� q � �; q) = 1� � log
1
2
� 2�d� log qe

�

+ (1� q � �) log(1� q � �)

� q(1� log q � d� log qe)

= 1� � log 1
2
� 2�d� log qe � q(1� d� log qe)

�H(q; 1� q � �; �)

whereH(q; 1 � q � �; �) is the entropy of a source with distribution
fq; 1� q� �; �g. It is obvious thatH(q; 1� q� �; �) � Hb(q). Also
considering

d� log qe =
2; if 0:25 � q < 0:5

3; if 0:18 � q < 0:25

we have

g(1� q � �; q)

� 1� � log
1

2
� 2�d� log qe � q(1� d� log qe)�Hb(q)

=
1 + 2�+ q �Hb(q); if 0:25 � q < 0:5

1 + � log 8
3
+ 2q �Hb(q); if 0:18 � q < 0:25

�
1 + q �Hb(q); if 0:25 � q < 0:5

1 + 2q �Hb(q); if 0:18 � q < 0:25.
(13)

Similarly, from (8), we have

g
0(1� q � �; q) = 3 + � log �+ (1� q � �) log(1� q � �)

� 2(1� q � �) + q log q � q

= 1 + q + 2�+ � log �+ q log q

+ (1� q � �) log(1� q � �)

= 1 + q + 2��H(q; 1� q � �; �)

� 1 + q �Hb(q): (14)

Finally, from (12)–(14), we obtain

max
q<p <1�q

min[f(p1); g(p1; q); g
0(p1; q)] � 1 + q �Hb(q):

Now1+q�Hb(q) is always greater than1�Hb(q) for positive value
q. Also for0:18 � q < 0:5, it is not difficult to prove that1+q�Hb(q)
is greater thanf(q), where the functionf is given by (2).

Therefore, the terms1�Hb(q) andf(q) on the RHS of (11) do not
contribute to the final upper bound onR(q), and thus the theorem is
proved.

Using Theorem 2, we can improve the upper bound in Theorem 1 for
0:18 � q < 0:5. The resulting upper bound is shown in Fig. 4. From
this figure, we can obtain the following fact which is readily seen to be
equivalent to Fact 1.

Fact 4: The upper bound onR for a source approaches1 if and only
if the probability of every source symbol tends to1 or 0.

From Fig. 4, it looks as though the upper bound onR in terms ofq is
symmetric aboutq = 0:5. Hence, we conjecture that the upper bound
onR in terms ofq with 0:18 � q < 0:5, is also1 + q �Hb(q). This
conjecture can be verified if we can prove that

max
q<p <1�q

min[f(p1); g(p1; q); g
0(p1; q)] � 1 + q �Hb(q):
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Fig. 4. Enhanced upper bound onR when the probability of a symbol is known.

IV. CONCLUSION

In this correspondence, we have obtained an upper bound onR in
terms of the probability of any given source symbol. An upper bound on
R in terms of the probabilities of any two given source symbols is also
obtained. To obtain a lower bound onR in terms of the probability of
any given symbol would be an interesting problem for further research.

We mention that the technique used in the proof of Lemma 1 has
been modified in [11] to obtain upper bounds on the redundancy of an
optimal fix-free code.

APPENDIX

OPTIMIZATION OF AN UPPERBOUND ONR FOR A GIVEN pj

In this appendix, we show how to optimize an upper bound onR for
a givenpj . First, we letlj = d� log pje. Now suppose

li = d� log(pi + xi)e; for i 6= j

where0 � xi < 1� pi. Herexi < 1� pi guarantees thatli � 1, so
that it is a valid length for a codeword. Then

L�H = pj(lj + log pj) + pi(li + log pi)

<pj(d� log pje + log pj)

+ pi � log pi � 1 +
xi

pi
+ 1+ log pi

= pj(d� log pje + log pj)

+ pi � log 1 +
xi

pi
+ 1

=1� pj(1� d� log pje � log pj)

� pi log 1 +
xi

pi
: (15)

Sincepj is fixed, to minimize the upper bound on the redundancy of
this code is to maximize pi log(1 +

x

p
). On the other hand

1�i�n

2�l =2�l + 2�l

� 2�d� log p e + (pi + xi)

= 2�d� log p e + 1� pj + xi: (16)

By the Kraft inequality, the RHS of (16) must be less than1 in order to
guarantee the existence of a prefix code. Hence,

xi � pj � 2�d� log p e
: (17)

Let us, for the time being, ignore the constraints0 � xi < 1� pi for
i 6= j. To maximize pi log(1 +

x

p
) under the constraint in

(17), we define

J = pi log 1 +
xi

pi
+ � xi :

From @J

@x
= 0, we have

xi = �pi � 1 +
1

�0
(18)

where�0 = � � (ln 2). Putting (18) into (17), we obtain

� 1 +
1

�0
�

pj � 2�d� log p e

1� pj
:

Then from (18), for1 � i � n, i 6= j

xi � pi
pj � 2�d� log p e

1� pj
:
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Since the upper bound in (15) is a decreasing function ofxi for eachi,
in order to minimize this upper bound, we take the upper bound

xi = pi
pj � 2�d� log p e

1� pj
: (19)

With this choice ofxi, sincepj � 2�d� log p e, xi � 0. On the other
hand,

pi + xi =
pi

1� pj
1� 2�d� log p e

< 1:

Hence we conclude that0 � xi < 1� pi, as required.
Finally, for 1 � i � n andi 6= j, xi � 0 implies

li = d� log(pi + xi)e

� d� log pie:

This explains why the code defined byfli; 1 � i � ng as above gives
a tighter upper bound onR than the Shannon code.
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An Axiomatization of Partition Entropy

Dan A. Simovici, Member, IEEE,and Szymon Jaroszewicz

Abstract—The aim of this correspondence is to present an axiomati-
zation of a generalization of Shannon’s entropy starting from partitions
of finite sets. The proposed axiomatization defines a family of entropies
depending on a real positive parameter that contains as a special case
the Havrda–Charvat entropy, and thus, provides axiomatizations for the
Shannon entropy, the Gini index, and for other types of entropy used in
classification and data mining.

Index Terms—Gini index, Havrda–Charvat entropy, non-Shannon en-
tropy, Shannon entropy.

I. INTRODUCTION AND BASIC NOTATIONS

The notion of partition of a finite set is naturally linked to the no-
tion of probability distribution. Namely, ifA is a finite set and� =

fB1; . . . ; Bng is a partition ofA, then the probability distribution at-
tached to� is (p1; . . . ; pn), wherepi =

jB j
jAj

for 1 � i � n. Thus, it is
natural to consider the notion of entropy of a partition via the entropy of
the corresponding probability distribution. Axiomatizations for entropy
and entropy-like characteristics of probability distributions represent a
problem with a rich history in information theory. Previous relevant
work includes the results of Khinchin [12], Faddeev [6], Ingarden and
Urbanik [9], Rényi [15] who investigated various axiomatizations of
entropy, and Daróczy who presented in [5] an unified treatment of en-
tropy-like characteristics of probability distributions using the notion
of information function.

In our previous work (see [16], [10]), we introduced an axiomatiza-
tion for the notion of functional entropy. This numerical characteristic
of functions is related to the complexity of circuits that realize func-
tions (cf. [1]) and serves as an estimate for power dissipation of a cir-
cuit realizing a function (cf. [8]) and is linked to the notion of entropy
for partitions, since every functionf : A �! B between the finite sets
A; B defines a partition on its definition domainA whose blocks are
ff�1(b) j b 2 Ran(f)g, whereRan(f) is the range of the functionf .

Information measures, especially conditional entropy of a logic
function and its variables, have been used for minimization of logic
functions (see [13] and [2]).

In a different direction, starting from the notion of impurity of a set
relative to a partition, we found a common generalization of Shannon
entropy and of Gini index and we used this generalization in clustering
of noncategorial data (see [17]). Devijer used the Gini index in pattern
recognition in [4].

Our main result is an axiomatization of this generalization that illu-
minates the common nature of several known ways of evaluating con-
centrations of values of functions.

The set of reals, the set of nonnegative reals, the set of rational num-
bers, the set of natural numbers, and the set of positive natural numbers
are denoted by ; �0; ; ; 1, respectively. All other sets consid-
ered in the following discussion are nonempty and finite.
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