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“rank” of this source symbol in the source distribution is not known.
In other words, there is no explicit information on how large the prob-
ability of this symbol is compared with those of other symbols. For
A Simple Upper Bound on the Redundancy example, if we are given that = 0.2, we not only know that there
of Huffman Codes is a source symbol whose probability of occurrendé 25 but we also
know that the probability of any other source symbol is at nfot
Chunxuan Ye and Raymond W. Yeurenior Member, IEEE However, if we are given that the probability of a source symbolds
we can only deduce that the probability of any other source symbol is

Abstract—Upper bounds on the redundancy of Huffman codes have been less thar0.8 (one minus the probability of the given source symbol).

extensively studied in the literature. Almost all of these bounds are in terms The main result |r.1.th|s correspondence is an EJIOPer bo.unB on )
of the probability of either the most likely or the least likely source symbol.  terms of the probability of any source symbol. This result is proved in
In this correspondence, we prove a simple upper bound in terms of the Section Ill after the preliminaries are presented in Section 1.
probability of any source symbol.

Index Terms—Huffman code, prefix code, redundancy. Il. PRELIMINARIES

Much work [1]-[10], [12] has been devoted to the study of better
|. INTRODUCTION bounds on the redundancy when some partial knowledge about the
gsource is available. In particular, it is obtained in [7] tHa& f(p1),

Let , ..., pn} be the probability distribution of a source, an
{prs oo pn} p y ! here

let C' be a prefix code for the source. The redundancy of a ¢dde
is defined as the difference between the average codeword léngth 2—p1—Hy(p1), if0.5<p1 <1

of the code andd = — >, p:log p:, the entropy of the source. (In 3—5p1—Hy(2p1), if 0.4505<p; <0.5
this correspondence, all logarithms are of bagaVe defineR as the . - .
redundancy of a Huffman code. Itis well known that R < 1. These 1+0.5(1=p1) = Hp(p1), if 5<p1 <0450
bounds onRk are the tightest possible when nothing is known about the 3—7.7548p1 — Hy(3p1), if 0.3138<p1 < %
source distribution. However, when partial knowledge about the sourc _ . .

distribution is available, these bounpds can be imp?oved. Gallager [ ](pl) =\ 2-125(-p)—Hi(p), 02<p1<03138 ()

proved that ifp,, the probability of the most likely source symbol, is 4—-18.6096p, — Hy(5p1), if 0.1971<p; <0.2
gg/en, the upper bound di can be improved. His result is summarized 9-1.3219(1—p1)
—Hy(p1), if £<p1<0.1971
, if pr < £ )
R< mte P 1) p1 + 0.086, if pr < L.
2—p1— Ho(pr), if p1 > 1 .

This upper bound is tight whem, > =. We note that upper bounds
where tighter than the one given in (2) for, < é have been reported in
Hi(x) — , § , [7], but we do not need to invoke this result in the current work. Fig. 1
p(z) = —zlog, r — (1 — z)log, (1 — ) . . ) .
shows the upper bound given by (2). We can immediately obtain the
following facts from this figure.

@l

and

=1 —log, e 4+ log,(log, e) = 0.086. .
7 08, ¢ +10gy(logy ) Fact1: The upperbound oR for a source approachésf and only

This upper bound is tight fop: > 3 if the probability of the most likely source symbgl,, tends tal .

> L, butitis not tight forp, < 1.
Subsequently, a number of improvements on the upper bourdtiion

If p1 tends tol, the entropy of the source tendsitand the average
codeword length of a Huffman code for this source tends tdence,
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Fig. 1. Upper bound o whenp; is known.

Let A be a constant. A simple analysis of Fig. 1 gives the following Fig. 2 shows this upper bound éhas a function of. It is obviously
two facts. tightwheng > 0.5. For any givery with ¢ < 0.18, consider the source
Fact2 If p1 < A andA < 0.82, thenR? < 0.5, with equality if d:cstrlbutlon{q. 1—¢-— ) €}, wheree tends to zero. The redundancy
and only ifp; = 0.5 or 0.82. of a Huffman code_ for thls_ source tend;lte{— q- H,(q). Hence, t_he
upper bound oz in (3) with ¢ < 0.18 is also tight. In next section,
Fact3 If p; < Aand0.82 < A < 1,thenR <2 - A — H,(A), we will obtain a tighter upper bound d# for 0.18 < ¢ < 0.5.
with equality if and only ifp; = A.

Now we can easily obtain the following theorem. Ill. MAIN RESULT
Theorem 1: Let ¢ be the probability of any source symbol. Then ~ Lemma 1: For a source with at least two symbols, ddie the prob-
2 —q— Hy(q), if0.5<qg<1 ability of any source symbol. Then
14 q¢— Hy(q), if ¢ < 0.18.
Proof: If ¢ > 0.5, theng must be equal tg . It is obvious from Proof: We prove this lemma by showing a particular prefix code
(1) that C' whose redundancyi. is upper-bounded by the right-hand side
(RHS) of (4). This will establish the lemma since the redundancy of a
R<2—q— Hy(q). Huffman code must be less than that of any prefix code, in particular
that of C'.

If ¢ < 0.5, theng < p1 < 1 - g, which means that; can be any ety = p; for somej, wherel < j < n. Define the length of the
value betweer and1 — ¢. We can then obtain an upper bound®n codeC as
by (2) for each possiblg; . Since no further information aboyt is

available, we take the maximum of all these upper bounds. Hence, [—logp;]. ifi=j
—[—logp;]
R < ax . l; = o | 1-2 ’ i ; 5
- qgéli(é}leq f(pl) ’V_ 100 <p‘z 1 ;i R if 1 S ) S n ( )
Furthermore, i0.18 < ¢ < 0.5,thenp; < 1—¢ < 0.82.Byregarding andi # j.

1 — ¢ as the constamt in Fact 2, we see thdt < 0.5. The equality is ) L i o
satisfied ifp; is equal ta).5 or0.82. 10 < ¢ < 0.18, thenp; < 1—gq, We obtain the above definition &f by using the Lagrange multipliers
where0.82 < 1 — ¢ < 1. Hence from Fact 3. we have in order to minimize the upper bound éh The details are given in the
- Appendix. It is obvious that; > 1. Forl < i < n andi # j, since
R<2-(1-¢q)-Hy(1-q)
=14q— Hy(q). pvl—Q’T’Ingﬂ
This equality is satisfied if and only i#;, = 1 — ¢. Therefore, the 1—p;

theorem is proved. O <1

<1-— 2*[*10F§Pj-|
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Fig. 2. Upper bound o when the probability of a symbol is known.

we see that; > 1. Hence/; > 1forl < i < n, so they are valid

lengths for codewords. From (5), we have

Z o—li —9=1;

1<:i<n

SQf(flogpﬂ_i_ Z <pz

+ > 27"

1<i<n
B

1<i<
i

n

—o~[=Tlegr;l 4 | _ 9= [—Tlozpr;]

=1.

1 — 9—[—logp;l
L=pj )

0.5 0.6 0.7 0.8 0.9 1

—pj(1-logp;—[—logp;])
=1-Hy(p;)—(1—p;)log (1 - 2‘““’*“"“)
—p;(1=T=logp;])
=1-Hi(q)—(1—q)log (1 - 2_F_1°51ﬂ>—q(1 — [—logq]).
Hence,
R<1—Hy(g)—(1-gq)log (1 - Q_F_l‘)g‘ﬂ) —q(1—=[—=logq]),

and the lemma is proved. O
Note that unlike most other upper bounds Brwhich depends on

By the Kraft inequality, there exists a prefix code with these codewoR#rtial knowledge of the source distribution, this upper bound does not

lengths. Then the redundancy of this code is upper-bounded as

R.=L-H

=p;(lj+logp;)+ Z pi(li+log p;)

1<i<n

5

<p;([—logp;1+logp;)

+ Z Di {—log <Pi1

1<i<n
i

=p;([—logp;1+logp;)

+ Z Di —108‘]%—10%(1

1<i<n L
i#]

=p;([—Tlogp;1 +logp;)

1<i<n
i

=1—(1—p¢)10g<

—D;

1—9—[—lesp;l

1-yp;

_ g T—losp;]

1—pj;

)

— 9—[=logp;]

1—p;

— 9—[—logp;]
1-2 J )_'_1}

+ Z pi —10g< 1

>+1+logpi}

) —|—1+10gpi:|

result from exploitation of the structure of Huffman codes. The code
defined in (5) can be regarded as a modified Shannon code.

Fig. 3 shows this upper bound dhas a function of;. It is not diffi-
cult to prove that the RHS of (4) is not less than the RHS of (3), which
implies the upper bound in Lemma 1 is looser than that in Theorem 1.
This is not unexpected because the upper bound in (4) depends on less
knowledge about the source distribution than the upper bound in (3).
Although the upper bound in Lemma 1 is not the tightest possible, it
can readily be generalized to the case when the probabilities of any
source symbolsi > 2, are known. In the next lemma, we illustrate
how this can be done fdr = 2.

Lemma 2: For a source with at least three symbols,detand ¢
be the probabilities of any two source symbols. THER: g(q1, g2),
where

1 =92~ [—legai] _ 9—[—logaz]

9(q1, 2) =1~ (1-q1 — ¢q2)log [pm——

—q1(1—loggs — [—1logqi])
— q2(1 =log g2 — [—1log ¢z2]). (6)

Proof: Let g, =p; andg, = pi. for somej andk, wherel < j,
k <n, andj # k. Define (7) as shown at the bottom of the next page.
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Fig. 3. Upper bound o when the probability of a symbol is known.

Following arguments, similar to those in Lemma 1, we see that thereLemma 3: For a source with at least three symbolsgleandg. be
exists a prefix code with codeword lengths defined in (7). Now thihe probabilities of any two source symbols such that> ¢2. Then

redundancy of this code is upper-bounded as
L—H = p;(Ij+logp)+pi(ltlogpi)+ Y pilli+logpi)
S
< pi([Flogp;T1+logpj)+pu([~logpr]+log pr)
1 =9 -legp;1 _g-[-logpk]
+ Z Pi <—10g +1>

e 1—pj—pr
P2k

1— 2—"—]05 I’j-‘ _ 2—[—]03; Pkl

=1—(1—p;—ps)log Tp—
j .

—p;j(L=logp;—[-logp;1) —pi(1—logpi — [log pi])
1— Q*FIOA a1l _ 27[710?; qz21

=1-(1—gi—¢2)log T pp—

= qi(1-loggi —[-log g1]) —g2(1—log g> — [<log ¢27).

Hence,
1 =9 =leg ] _g-[=logaz]

R<1-(1-=q1—q2)log [P—

— qi(1=log g1 —[~log ¢1]) —q2(1—log g2 — [-log ¢2])
and the lemma is proved. O

In the next lemma, we prove an alternative upper boundzoin
terms ofq; andg..

R < ¢'(q1, q2), where
J (01, 2) =3+ (1—q —q2)log(1 — 1 — ¢2)
+qi1(loggi — 2) + g2(log g2 — 1).  (8)

Proof: Let g, =p; andg. = p;. for somej andk, wherel < j,
k <n andj # k. Define

L ifi =j
] 2, ifi=*k ©
[—1og (n222,-)]. if1<i<n
andi # j, k.

Following arguments similar to those in Lemma 1, we see that there
exists a prefix code with codeword lengths defined in (9). Now the

redundancy of this code is upper-bounded as
L—H=p;(l; +1ogp;) + pu(li +logpi)

+ Z pi(li +log pi)
1<i<n
25k
<pj(1+logp;) + pr(2 + logpx)
0.25
5 [ (28 ) 4]
1<i<n —Pi TPk
25k
=14+ (1-q — )2 +1og(l —q1 —¢2)]

[—1logp;],

ifi=j

ifi==~F 7

if 1 <i<mnandij, k.

{ < 1 — 9= [=legp;] _ 9—[—logpi] )"
—log Pi y

1—pj—pk
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+ qilogqi 4 g2(1 4+ log ¢2) Since0.18 < ¢ < 0.5,p1 =1 —¢—¢ > 0.5and[—logp:] = 1.
From (6), we have
=3+ (1—-q —q)log(l—q1 — q2)
é_ 9—[—log q]
+qi(logqr — 2) + q2(log g2 — 1). gl-g-e @) =1-¢log| "
Hence, +(1—g—¢e)log(l—q—e)

R<3+(1—qgi —q2)log(l—q1 —q2)
+q1(logqr — 2) + g2(logga — 1)

—q(1 —logq —[—logq])
—1—elog (; - 2*“1"“1) —q(1—[-1logq])

—H(qg,1=—qg—¢ ¢

and the lemma is proved. O

We now compargy(qi:, ¢=) in (6) andg’(q1, ¢=) in (8). For some
values ofy; andgs, g(q1, ¢2) is greater thag’ (¢1, ¢=), while forother whereH (¢, 1 — ¢ — ¢, €) is the entropy of a source with distribution
values ofgi andq, ¢'(q1, q2) is greater thaw(q:, ¢2). This can be {g. 1 —q —¢, €}. Itisobvious thatd (¢, 1 —q —e, €) = H;(q). Also
seen from two examples. Fgr = 0.5, g2 = 0.2, g(¢1, ¢2) =0.339,  considering
andg’((ﬂ, qg):().3145. Henceg(ql, qz) >g/(g1, (12). Forg: =0.3, 2, if 0.25 < g <0.5
g2 = 0.2, g(q1, ¢2) = 0.5536 and ¢'(¢1, ¢2) = 0.7145. Hence, [—logq] = { -
g(q1, ¢2) < g'(q1, ¢2).

We now prove an enhancement of Theorem 1, which is the maie have
result in this correspondence.

3, if 0.18 < ¢ < 0.25

g(l—g—¢q)
Theorem 2: Letq be the probability of any source symbol0Ifi8 < 1
q < 0.5, then ~1—elog <§ - 2*“‘0“1) —q(1 = [=logq]) — Hy(q)
. 3 P 7 A / 7
B(Q) S q<gll‘é}§7q IIllIl[f(])l), g(Pl'/ (I) g (pl‘ q)] (10) 14+ 2+ q- Hb(q)p if 0.25 S q< 0.5
where the functiong, ¢, andg’ are defined in (2), (6), and (8), respec- )1+ elog % + 2q — Hi(q), if 0.18 < ¢ < 0.25
tively. .
Proof: We distinguish three mutually exclusive cases for which ~_ J 1t ¢~ Hy(a), if0.25<¢ <05 (13)
one of them must be true, but we do not know which one it is. 1+ 2¢— Hi(g), if 0.18 < ¢ < 0.25.

Case 1: If the source has only two symbols, th&his unambigu-
ously determined as — Hy(q).

Case 2: Ifthe source has at least three symbols and the givethe gd(l—g—e q)=3+eloge+ (1 —g—e)log(l—q—¢)
probability of the most likely source symbol, théhis upper-bounded
by (2), wherep;, = q.

Similarly, from (8), we have

—2(1-qg—¢)+qlogg—q

Case 3: If th.e. source has at.least three symbols and the gjvien =14 q¢+2e+eloge+ qlogg
not the probability of the most likely source symbol, then werlebe
this probability, wherey; > ¢. Now the redundancy of this code is +(1-g—elog(l—g—¢)

upper-bounded by (6) and (8), wheye = p; andg: = ¢, and it is
also upper-bounded by (2). Thus, it is upper-bounded by the minimum
of these three upper bounds. Howeyercan take any value between ~14q— Hy(q). (14)
g and1 — ¢. Since we have no further information abgut we take
the maximum of these upper bounds overalt p1 < 1 — gq.

Finally, since we do not know which of the three cases is true, we  max  min[f(p1), g(p1, @), ¢ (p1, ¢)] > 1 + ¢ — Hi(q).

take the maximum of the upper bounds given in all three cases. Hence,/~P1<'"1
Now 1+ ¢ — Hy(q) is always greater thah— H,(q) for positive value

R(q) < max {1 — Hi(q), f(q), q.Alsofor0.18 < ¢ < 0.5, itis not difficult to prove thal +q— Hy (q)
is greater tharf (¢), where the functiory is given by (2).
Therefore, the termk— H,(q) andf(¢) on the RHS of (11) do not
contribute to the final upper bound d®(¢), and thus the theorem is
wproved. O

=14q+2e—H(qg, 1—q—¢ )

Finally, from (12)—(14), we obtain

max  min[f(p1), 9(p1, 9); 9 (P1, q)]}- (11)
q<p1<l—q

The remaining task is to simplify the RHS of (11), i.e., we will sho

thatl — H,(¢) andf(¢) do not contribute to the final upper bound on  ysing Theorem 2, we can improve the upper bound in Theorem 1 for
R(q). 0.18 < ¢ < 0.5. The resulting upper bound is shown in Fig. 4. From

For any givery betweer0.18 and0.5, we takep: = 1—g—e¢, where  thjs figure, we can obtain the following fact which is readily seen to be
e tends to zero. Note that is within the open sef, 1 — ¢). Hence,  equivalent to Fact 1.

max  min[f(p1), g(p1, ¢). ¢'(p1. )] Fact4: The upper bound oft for a source approachesf and only

g<p1<l—g
e ' . / if the probability of every source symbol tendsltor 0.
>min[f(1-g—e€),9(l-g—€q).g(1-q-¢q)]

From Fig. 4, itlooks as though the upper boundfim terms ofq is
symmetric abouy = 0.5. Hence, we conjecture that the upper bound
on R in terms ofg with 0.18 < ¢ < 0.5, is alsol 4+ ¢ — H,(q). This

In the following, we will calculatef(1 — ¢ — €), g(1 — ¢ — ¢, q), and
g'(1 — g — €, q), respectively. First

fl—g—e)=2—-(1-q—¢) —Hy(1—q—¢) conjecture can be verified if we can prove that
. '
~1+q— Hy(q). (12) gomax_ min[f(p1), 9(p1. @), g (p1, )] < 1+ q — He(q).
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Fig. 4. Enhanced upper bound éhwhen the probability of a symbol is known.

IV. CONCLUSION Sincep; is fixed, to minimize the upper bound on the redundancy of
In this correspondence, we have obtained an upper bourg ion this code is to maximizg, ‘%;'5” pilog(l+ ﬁ)' On the other hand
terms of the probability of any given source symbol. An upper bound on ol e—l; o,
. . ) doo2Th=2mligp Y 27h
R in terms of the probabilities of any two given source symbols is also = (e
obtained. To obtain a lower bound @hin terms of the probability of ==n T
any given symbol would be an interesting problem for further research. o= [—logp]
We mention that the technique used in the proof of Lemma 1 has <2 Tt Z (pi+ i)
been modified in [11] to obtain upper bounds on the redundancy of an 5T
optimal fix-free code.
P :27[710gpj]+1—p]’—|— Z €x;. (16)
1<i<n
APPENDIX R ]
OPTIMIZATION OF AN UPPERBOUND ON I? FOR A GIVEN p; By the Kraft inequality, the RHS of (16) must be less thdn order to
In this appendix, we show how to optimize an upper boundkdar ~ guarantee the existence of a prefix code. Hence,
a givenp;. First, we letl; = [—log p;]. Now suppose Z wi < p; —2 [lesrsl, 17)
I, = [—log(p: + )], fori # j 15i2n

i#5
Let us, for the time being, ignore the constraitits. =; < 1 — p; for
i # j. To maximized_1<i<. pilog(l+ %) under the constraint in
. it i
(17), we define ’

where() < #; < 1 — p;. Herex; < 1 — p; guarantees thdt > 1, so
that it is a valid length for a codeword. Then

L—H=p;{lj+logp,)+ > pilli+logpi)

1<i<n
i#5
<pj([—logp,]+logp;) = ; L i
j j gD J Z pilog 1+])i + A Z v
@ 1§_z§_n 1§_z§_n
+ > b {— log <pi- <1 + —)) +1 +10gpa} i 7
1<ien pi From 2L = 0, we have
G Az 1
=p;([—logp,| +1logp,) o= TP <1 + %) (18)
+ Z Di {— log <1 + i) + 1} where)\’ = A - (In 2). Putting (18) into (17), we obtain
1<i<n P —[—logp;]
i#J —<1+i><]—)j_2 -
=1-p;(1-[-logp,] —logp;) N 1=»j

Then from (18), forl < i < n,i # j
xT;
- Z pilog <1 + p_7> . (15) D — 9—[—logp;]

1<i<n x; < pi
iFEd 1 — Dj
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Since the upper bound in (15) is a decreasing functior éor eachi, An Axiomatization of Partition Entropy
in order to minimize this upper bound, we take the upper bound

- . Dan A. Simovici Member, IEEEand Szymon Jaroszewicz

p; — 2~ I—logp;
r=p (19)
—P;
Abstract—The aim of this correspondence is to present an axiomati-

With this choice ofx;, sincep; > 2~ T—legr;1 4. > 0. Onthe other zation of a generalization of Shannon’s entropy starting from partitions

hand,

Hence we conclude thét< z; < 1 — p;, as required.

of finite sets. The proposed axiomatization defines a family of entropies
depending on a real positive parameter that contains as a special case
the Havrda—Charvat entropy, and thus, provides axiomatizations for the
Shannon entropy, the Gini index, and for other types of entropy used in
classification and data mining.

pit =g pi (1 —2—f—1"51’ﬂ) <1.
—p;

Index Terms—&Gini index, Havrda—Charvat entropy, non-Shannon en-
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. INTRODUCTION AND BASIC NOTATIONS
<[-logpi].

The notion of partition of a finite set is naturally linked to the no-

This explains why the code defined b4, 1 < i < n} as above gives tjon of probability distribution. Namely, ifd is a finite set andr =

a tighter upper bound oR than the Shannon code. {By, ..., B,} is a partition of4, then the probability distribution at-
tachedtor is (p1., ..., pn), wherep; = 'f;f“ forl < i < n.Thus, itis
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Our main result is an axiomatization of this generalization that illu-
minates the common nature of several known ways of evaluating con-
centrations of values of functions.

The set of reals, the set of nonnegative reals, the set of rational num-
bers, the set of natural numbers, and the set of positive natural numbers
are denoted b, R>o, @, N, N1, respectively. All other sets consid-
ered in the following discussion are nonempty and finite.
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