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Abstract

Multibody factorization algorithms [2, 1, 16] give an el-
egant and simple solution to the problem of structure from
motion even for scenes containing multiple independent mo-
tions. Despite this elegance, it is still quite difficult to ap-
ply these algorithms to arbitrary scenes. First, their per-
formance deteriorates rapidly with increasing noise. Sec-
ond, they cannot be applied unless all the points can be
tracked in all the frames (as will rarely happen in real
scenes). Third, they cannot incorporate prior knowledge
on the structure or the motion of the objects.

In this paper we present a multibody factorization algo-
rithm that can handle arbitrary noise covariance for each
feature as well as missing data. We show how to formu-
late the problem as one of factor analysis and derive an
expectation-maximization based maximum-likelihood algo-
rithm. One of the advantages of our formulation is that we
can easily incorporate prior knowledge, including the as-
sumption of temporal coherence. We show that this assump-
tion greatly enhances the robustness of our algorithm and
present results on challenging sequences.

1. Introduction

Common motion or “common fate” provides a powerful cue
for segmenting objects. This principle, simply stated is that
points that move together should be grouped together but
there are number of ways of formulating “moving together”
(see [16] for a recent review). In this paper, we focus on the
problem of grouping based on common rigid 3 dimensional
motion. Figure 1 shows Ullman’s classical demonstration
of how powerful this cue can be [12]. Two concentric cylin-
ders rotate with different angular velocities and are rendered
using an orthographic projection. Note that points on differ-
ent cylinders may move in the same direction while points
on the same cylinder may move in opposite directions. Nev-
ertheless, humans obtain a powerful percept of the two in-
dependently moving objects.

Figure 1: a. Ullman’s [12] co-axial transparent cylinders
demonstration. b. Costeira-Kanade [1] factorized matrix
for noise free input. Top row is unsorted matrix, bottom is
sorted. c. Costeira-Kanade factorized matrix for noisy input
(unsorted on top row, sorted on bottom).

Multibody factorization algorithms [1, 2, 16] present an
elegant and simple solution to this task. As we explain be-
low, these methods factorize the measurement matrix so that
in the absence of noise elements corresponding to different
segments will be zero. Figure 1 shows the Costeira and
Kanade factorized matrix in the noiseless case. Indeed the
off-diagonal blocks are close to zero (and not zero due to
input degeneracy) and the algorithm correctly segments the
display. But once we add even small amounts of noise, (fig-
ure 1c) the off block elements are no longer separable from
the others and the correct segmentation is far from obvi-
ous. Similar sensitivity to noise is shown by the algorithms
in [2, 16].

An additional problem with existing factorization algo-
rithms is that they require a full observation matrix: i.e.
they work with points that are visible in all frames. In
real scenes, where there are occlusions and failures of track-
ing, this is a severely limiting assumption. Finally, existing
factorization methods have no way of incorporating prior




knowledge on the motions or the structure. Due to the dif-
ficulty of the segmentation problem, one would like a way
of incorporating these priors. For example, in almost any
video sequence the camera location at time ¢ is dependent
on its location at time ¢ 4+ 1 so that randomly permuting
the order of frames would give a very different sequence.
Yet existing factorization algorithms are invariant to such a
factorization and thus neglect an important source of infor-
mation.

In this paper we present a multibody factorization algo-
rithm that can handle arbitrary noise covariance for each
feature as well as missing data and can easily incorpo-
rate prior knowledge. The algorithm is an expectation-
maximization based maximume-likelihood algorithm. We
present results on challenging real and synthetic sequences.

1.1. Problem Formulation

A set of P feature points in I’ images are tracked along an
image sequence. Let (ugp,vyp) denote image coordinates
of feature point p in frame f.

Let U = (uypp), V = (vgp) and W = (w;;) where
W2i—1,5 = Ui and Wai,j = Vij forl1 <:< F,i.e. Wisan
interleaving of the rows of U and V.

Let K be the number of different motion components in
the sequence. Let {Gy}X_, be a partition of the tracked
feature points into K disjoint sets, each consists of all the
points that conform to the kth motion, and let P; be the
number of feature points in G, (3_ P, = P).

Let M} be a2 x 4 matrix describing the jth camera pa-
rameters at time 4, and let S; be a 4 x P; matrix describing
the 3D homogeneous coordinates of the P; points in G
moving according to the jth motion component.

Let
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m? and n? are 3 x 1 vectors that describe the rotation of the
jth camera; d? and ¢/ are scalars describing camera trans-
lation %, and S; describes points location in 3D.

Let W be a matrix of observations ordered according to
the grouping {Gy }_,, i.e. the first P, columns of W cor-
respond to the points in G; and so on.

Under affine projection, and in the absence of noise,
Costeira and Kanade [1] formulated this problem in the
form:
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1We do not subtract the mean of each row fromiit, sincein case of miss-
ing data the centroid of points visible in a certain frame does not coincide
with the centroid of al points.
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If the segmentation {G } 2, was known, then we could
have separated the point tracks (columns of the observations
matrix) into K disjoint submatrices according to {G}}, and
run a single structure from motion algorithm (for example
[11]) on each submatrix.

In real sequences, where segmentation is unknown, the
observation matrix, W, is a column permutation of the or-
dered matrix W:

W=WI=MS (5)

where S is a 4K x P matrix describing scene structure
(with unordered columns). Substituting in equation 2 shows
that the same P x P column permutation matrix IT that
right multiplies the measurements matrix, multiplies also
the block diagonal structure matrix, S. Hence, the struc-
ture matrix .S is in general not block diagonal, but rather a
column permutation of a block diagonal matrix.

S = SII (6)

The motion matrix, M, remains unchanged.

1.2. Previous Work

Costeira and Kanade [1] suggested to search for the block
structure in .S by factorizing W using the SVD:

W =UxvT 7)

Forming a matrix V’ whose columns are the first 4K
columns of V" and calculating the P x P matrix Q = V'V'7.
It can be shown that in the absence of noise, Q(3, j) = 0 for
points belonging to different segments.

In noisy situations the inter block elements Q(z, j) are
not zero, and in general they cannot be separated from the
intra block elements by thresholding. Sorting the matrix @
to find block structure is equivalent to minimizing the en-
ergy of the off-diagonal blocks which is an NP-complete
problem. Instead, Costeira and Kanade, suggested a greedy
suboptimal clustering heuristic which turns out to be very



sensitive to noise. Results illustrating this sensitivity ap-
pear in section 3. In addition, as an initial step, the rank of
the noise free measurements matrix should be found from
the noisy measurements matrix. This is a difficult problem
which is discussed extensively in [2].

Gear [2] suggested a similar method that use the reduced
row echelon form of the measurements matrix W. For rea-
sons of numerical stability, QR decomposition is first ap-
plied to W and then the reduced row echelon form of R
(W = QR), which is identical to the reduced row echelon
form of W, is found. Let A be the reduced row-echelon
form of R. If measurements are noise free, then if both
Aij # 0and Ay, # 0 for some 4, then points j and & are in
the same set, and a simple connected component algorithm
can find the segmentation. For noisy scenarios, [2] suggests
an EM algorithm for clustering. Again, in noisy situations
the algorithm does not guarantee correct segmentation. It
is crucial for Gear’s algorithm that the motion matrix (that
contains all motion matrices for all times) is of full rank.
Otherwise, there may be non-zero elements on the same row
for two points (columns) belonging to different objects.

Zelnik et al [16] incorporates directional uncertainty by
using Gear’s method onthe matrix (G H | where G and H
are F' x P matrices containing measurable image quantities.

Kanatani [7] proposed an algorithm that takes advantage
of the affine subspace constraint. However, he shows that
in spite of the model improvement, when comparing to a
previous algorithm, each algorithm performs better on dif-
ferent cases.

Several authors have addressed the related, but differ-
ent problem of 3D rigid body segmentation based on two
frames and a perspective camera [14, 15, 13]. While these
methods show encouraging results, they lack the attrac-
tive property of factorization methods in which informa-
tion from all the frames is used to perform the segmenta-
tion. For example, for Ullman’s two cylinder demonstra-
tion which is rendered using orthographic projection it is
easy to show that a single fundamental matrix perfectly ex-
plains the data and hence such scenes cannot be segmented
using two-frame algorithms.

Despite the elegance of factorization methods many
problems remain;

e Once there is noise in the measurements, it is nontrivial
to compute a segmentation from the factorization.

¢ All these methods assume that a full measurement ma-
trix exists and there is no way to use data from frames
where image locations of some of the points are un-
known.

o these methods have no way of incorporating additional
prior knowledge.

2. EM Algorithm for Multibody Fac-
torization

2.1. Segmentation as Constrained Factoriza-
tion

The permutation II does not preserve the block diagonal

structure of S, but it does preserve the property that in a

column of the structure matrix corresponding to a point in

Gy, only the four entries 4(k — 1) 4+ 1,..., 4k can be non-

zeros (entry 4k is always one).

Hence we look for a factorization of W to M and S
where the non-zero entries of S for each column can ap-
pear only in one out of K specific locations. If we find such
a factorization, we can group together columns (points) of
S to form blocks, and hence segment the points. Unfortu-
nately, a standard factorization algorithm such as SVD is
not guaranteed to find a factorization that satisfies this extra
constraint even if it exists. We now show how to modify the
classical EM for factor analysis algorithm [10] to produce
factorizations that satisfy this constraint.

2.2. Factorization as Factor Analysis
For noisy observations, the model is:

Wlapsp = Mlopyar Slaigxp + Mapxp  (8)

where M and S are as defined in the previous section and 7
is Gaussian noise.

We seek a factorization of W to M and S un-
der the constraint that S is a permuted block diago-
nal matrix S, that minimizes the weighted squared error
S, Wy — MyS)T, (W, — M,S)], where ¥, ! is the
inverse covariance matrix of the feature points in frame ¢.

In [4], the problem of structure from motion for a single
motion was written as a factor analysis problem, and solved
while placing a prior on the motion. We adapt this approach
to the multi motion case and show how to group the feature
points at the same time.

In standard factor analysis we have a set of observations
{y(t)} that are linear combinations of a latent variable z(t):

y(t) = Ax(t) +n(t) 9)

with 2(t) ~ N(0,021) and n(t) ~ N(0,¥,). If ¥, is a
diagonal matrix with constant elements ¥; = ¢21 then in
the limit /0, — 0 the ML estimate for A will give the
same answer as the SVD [9]. We now show how to rewrite
the multibody factorization problem in this form.

In equation 2 the horizontal and vertical coordinates of
the same point appear in different rows. To get an equa-
tion with all measurement taken from the same frame in the
same line of the measurements matrix, It can be rewritten



as:

g gv + [l pxop
(10)
where My is the submatrix of M consisting of rows corre-
sponding to U (odd rows), and My, is the submatrix of M
consisting of rows corresponding to V' (even rows).
T
Let A = SO SE)T . Identifying y(¢) with the ¢th row
of the matrix [U V] and z(¢) with the ¢th row of [My My],
then equation 10 is equivalent (transposed) to equation 9.
The EM algorithm for factor analysis is a standard algo-
rithm for finding the ML estimate for the matrix A. It con-
sists of two steps, (1) the expectation (or E) step in which
expectations are calculated over the latent variables x(¢) and
(2) a maximization (or M) step in which these expectations
are used to maximize the likelihood of the matrix A.
For diagonal covariance matrices ¥, the standard algo-

[U V]Fx2P = [MU MV]F><8K { }
8K x2P

rithm gives:
E step:
E@®)ly(t) = (072 T+ATT; 1 A) T AT W, Ly(411)
V(z(t)y(t) = (072 T+ATw; 1 4) " (12)
<a(t) > = Ex(t)]y(t)) (13)

<z)z)T > = V(z(t)|yt))+<z(t)><z(t)>T (14)

M step:
A=yt <z >)O < xt)z(t)”

In our setting, the matrix A must satisfy several con-
S 0
0o S
ery column of .S must have no more than 4 nonzero entries
and finally, the last nonzero entry in each column should be
equal to 1. We now show how to modify the M step so that
it performs constrained factorization.

Denote by s’; a vector of length 3 that denotes the 3D
coordinates of point p belonging to motion model k. then
for a diagonal 2 noise covariance matrix ¥, the M step is:

>)7! (15)

straints. First, it must be of the form . Second, ev-

S]; = BkaZ;j (16)
where
By = Y [V (p,p)(up— < df >) <mp(t)" >
t
+ U (p+ Pop+ P)(vp— < ef >) < my(t) >
Cor = > [¥7 (p.p) < mu(t)ymy ()" >

t

+ U, (p+ Pp+ P) < np(t)ng(t)” >

2We refer to the case where ;. is not diagonal in the next subsection.

(17
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where the expectations required in the M step are the
appropriate subvectors and submatrices of < z(¢) > and
< z(t)z(t)T > (recall equation 1 and the definition of

The task now is to find a grouping and 3D structure co-
ordinates of the tracked points that maximize the complete
log likelihood. In other words, we are looking for a factor-
ization of the matrix [U V'] to a F' x 8K motion matrix,
M, and a 8 K x 2P structure matrix, S, where S'is subject
to the constraint that in each of its columns there is only one
fourth of non-zeros.

The M-step in the multi-motion case is therefore:

kK = argm;?xlikelihood(k, s];) (18)
sp=[0 ... 0 s 0... 0]
where s’; is the structure (computed from equation 16 or

from one of the equations 19, 25 ahead) under the assump-
tion that point p moves according to motion k.

By modifying the EM algorithm to deal with constrained
factorization we now have an algorithm with the following
attractive properties:

e It is guaranteed to find a factorization where the struc-
ture matrix has at most 4 nonzero elements per column,
even in the presence of noise.

e It can be applied even when there is missing data (these
are just points for which ¥, (i, i) = 0).

e It is guaranteed to find a local maximum of the likeli-
hood of S.

Regardless of uncertainty and missing data the complex-
ity of the EM algorithm grows linearly with the number of
feature points and the number of frames. At every iteration,
the most computationally intensive step is an inversion of
an 8 x 8 matrix.

In addition to these properties, the EM algorithm has the
advantage of allowing us to incorporate additional priors.

2.3. Directional Uncertainty and Missing Data

A more realistic noise model for real images is that ¥,
is not diagonal but rather that the noise in the horizontal
and vertical coordinates of the same point are correlated
with an arbitrary 2 x 2 inverse covariance matrix (it can
be shown that the posterior inverse covariance matrix is

SI2 YL,

S LI, I
torization with uncertainty [5, 8]. It is easy to derive the
M step in this case as well. It is similar to equation 16 ex-
cept that cross terms A7, B;, involving U, (p,p+ P) (that

equals ;! (p + P, p)) are also involved:

). This problem is usually called fac-



sy = (Bpk+ Bly)(Cpr+ Cpp) ™! (19)
where
e = Z [T (p, p +P) (vip—< e1>) <m(t)"X(20)
+t\If{1(p+ P,p)(upp— < di>) < n(t)>"]
e = > [% e+ P) <nt)m(t)" >

+ U (p+ Pop) <m(t)n(t)” >]

With the addition of directional uncertainty, points re-
siding on lines (with aperture effect), for example, can now
provide reliable information in a certain direction.

The presented algorithm allows the use of any arbitrary
inverse covariance matrix, ¥; !, for any point p at any time
t. There is no requirement for any relation between these
matrices, as opposed to [5, 16], a property which is impor-
tant for handling missing data.

2.4. Adding Temporal Coherence

We follow [4] and use temporal coherence prior on each of
the motion components:

The factor analysis algorithm for factorization assumes
that the latent variables z(¢) are independent. In SFM
this assumption means that the camera location in differ-
ent frames is indepenent and hence permuting the order of
the frames makes no difference for the factorization. As
mentioned in the introduction, in almost any video sequence
this assumption is wrong. Typically camera location varies
smoothly as a function of time.

Figure 2a shows the graphical model corresponding to
most factorization algorithms: the independence of the
camera location is represented by the fact that every time
step is isolated from the other time steps in the graph. But it
is easy to fix this assumption by adding edges between the
latent variables as shown in figure 2b.

Specifically, we use a second order approximation to the
motion of the camera:

ot) = alt—1)+v(t—1)+ %a(t 1) 4a 2
v(t) = vit—1)+alt—1)+e (22)
at) = at—1)+es (23)
y(t) = Ax(t) +n(t) (24)

Note that we are not assuming that the 2D trajectory of
each point is smooth. Rather we assuming the 3D trajectory
of the camera is smooth.

It is straightforward to derive the EM iterations for a
ML estimate of S using the model in equation 24. The

M step is unchanged from the classical factor analysis and
is given by equation 16. The only change in the E step is
that E(x(t)|y) and V(x(t)|y) need to be calculated using
a Kalman smoother. We use a standard RTS smoother [3].
Note that the computation of the E step is still linear in the
number of frames and data points.

2.5. Adding Prior on Structure

Up to this point, we have assumed nothing regarding the
3D coordinates of the feature points we are trying to recon-
struct. 3D Reconstructions with the true coordinates are
considered (a priori) as likely as any other reconstruction,
even one that suggest the object is located at an infinite po-
sition, or behind the camera, for example. But usually when
sequences are acquired for structure reconstruction, the ob-
ject is located just in front of the camera in the center of
the scene, and not at infinity 3. Therefore, we would like to
prefer suggestions for reconstructions that place the feature
points around certain coordinates in the world, denoted by
So (typically X and Y are scattered around zero and Z is
finite). We model this preference with the following prior:
p(S) o e~ MS=Soll%,

Derivation of the modified M-step with the addition
of prior on structure yields (the following modification of
equation 19):

sk = (Bpr + Bl) (Cpr + Cli + AT — So)) ™" (25)

Experimental results show an improvement in recon-
struction results in noisy scenes after the addition of this
naive prior.

3. Experiments

EM guarantees convergence to a local maximum which is
dependent in the initialization. To find the global maximum,
we start with several (random) initializations for each input,
and choose the output that achieves maximal likelihood to
be the final result. Empirical results show that for noise free
scenes, the global maximum is usually found with a single
initialization. As the amount of noise increases, number of
initialization needed for success also increases. We work
with maximal number of 10 initializations for an input se-
quence in the experiments reported in figure 4 and maximal
number of 20 initializations in the experiments reported in
figure 5.

Figure 3 shows a comparison of EM and Costeira and
Kanade’s algorithm on Ullman’s two cylinder demonstra-
tion as depicted in figure 1. 50 points were sampled uni-
formly from the surface of both objects, the trajectories of
these points were computed and then projected onto each

Salthough for objects to comply with affi ne model they have to located
relatively far from the camera, they are not placed at infi nity.
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Figure 2: a. The graphical model assumed by most factorization algorithms for SFM. The camera location z(t) is assumed
to be independent of the camera location at any other time step. b. The graphical model assumed by our approach. We model
temporal coherence by assuming a Markovian structure on the camera location.

frame to create the ordered noise free measurements matrix
. Then the columns of T¥ were shuffled by a random per-
mutation € S to create a noise free . Each input ma-
trix was added normally distributed zero-mean noise with
the specified standard deviation. As can be seen, both algo-
rithms work in the noise-free case (top two rows) but with
small amounts of noise (¢ = 0.1) Costeira and Kanade’s
algorithm segments the data incorrectly (and hence obtains
the wrong structure) while EM continues to work. In or-
der to help Costeira and Kanade’s algorithm we gave it the
correct rank of the measurement matrix (as discussed in [2]
this step is often a failure source for Costeira and Kanade’s
algorithm). The algorithms of [2, 16] cannot be applied
because they require 1 to be of full rank.

Figure 4 shows quantitative comparisons of EM and
Costeira and Kanade for for three different synthetic se-
quences as a function of noise level. It is apparent that all
algorithms give perfect segmentation when there is no noise
at all. As the amount of noise increases, the performance
of [1] deteriorates rapidly, while EM-based segmentation
continues to succeed for low amounts of noise and shows
moderate increase in number of error for larger amounts of
noise. It is also clear that EM with temporal coherence per-
forms significantly better than EM without temporal coher-
ence for noisy inputs. The algorithms of [2, 16] perform
similar to [1] provided the actual rank of observation matrix
in non-degenerate cases.

Figure 5 shows the performance of EM with time coher-
ence as a function of the percentage of missing data. While
all existing factorization algorithms cannot work with miss-
ing data, EM continues to perform well even when 50% of
the data is missing. For comparison, we also show the al-
gorithm of [1] when the observation matrix is first filled in
using Jacobs’ algorithm [6] and the correct rank is given to
all algorithms.

Finally, we tested the different algorithms on a real se-
quence of two cans rotating horizontally around parallel
different axes in different angular velocities. 149 feature
points were tracked along 20 frames, from which 93 are
from one can, and 56 are from the other. Some of the fea-
ture points were occluded in part of the sequence, due to the

rotation. Figure 6a shows the first frame of the sequence and
the tracks superimposed. Note that because all the motions
are horizontal, a single fundamental matrix can explain the
data and hence this sequence cannot be segmented using
two-frame methods. Using EM with temporal coherence. 8
points were misclassified and the structure correctly shows
the curved surface of the two cylinders. To test Costeira-
Kanade, we took the maximal full submatrix of the mea-
surements matrix. The result was 30 misclassified points
and a failure in 3D structure reconstruction.

4. Discussion

Motion segmentation is a “chicken and egg” problem: In or-
der to divide the input into different sets, the motion related
to each set should be known, whereas on the same time, in
order to compute the motion, the segmentation should be
given.

In this paper we introduced an EM framework for finding
best segmentation and 3D structure, while averaging over
all possible motions.

Moreover, the EM framework allows us to place priors
on both structure and motion and to deal with directional
uncertainty and missing data. The EM iterations described
in this paper are simple and computationally efficient. Us-
ing this framework, we achieve good results on challenging
inputs and outperform other existing methods.

An interesting future work would be to combine infor-
mative priors on the grouping of points. An example of
such a prior is proximity of feature points in image domain;
usually points residing on the same object, appear close to
each other in their pictures.
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