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Abstract 

   Real-time scheduling is the theoretical basis of real-time systems engineering. Earliest 

Deadline First (EDF) is an optimal scheduling algorithm for uniprocessor real-time systems. 

The existing results on an exact schedulability test for EDF scheduling with arbitrary 

relative deadlines need to calculate the processor demand of the task set at every absolute 

deadline to check if there is an overflow in a specified time interval. The large amount of 

calculations restricts the use of EDF in practice. In this paper, we proposes new results on 

necessary and sufficient schedulability analysis for EDF scheduling; the new results reduce 

the calculation times in logarithm scales in all situations. For example a 16 tasks system 

that in the previous analysis had to check 858,331 points (deadlines) can, with the new 

analysis, be optimally check at just 12 points. The required calculation by the proposed 

analysis is stable for all kinds of task sets.  

   There is no restriction on the new results: each task can be periodic or sporadic, with 

relative deadline which can be less than, equal to or greater than its period; the tasks can 

have release jitter, and they can share non-preemptable resources in the system.  
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1.  Introduction 

   Real-Time systems are playing a crucial role in our society, and in the last two decades, 

there is an explosive growth of real-time systems being used in our daily life and industry 

production, such as the chemical and nuclear plant control, space missions, flight control 

systems, military systems, telecommunications, multimedia systems, and so on. The most 

important attribute of real-time systems is that the correctness of such systems depends on 

not only the running results but also on the time at which results are produced. In other 

words, real-time systems have strict timing requirements that must be met. Real-time 

systems guarantee that all the timing requirements can be met by the theory of real-time 

scheduling and schedulability analysis. 

   In real-time scheduling theory, a real-time system comprises a set of real-time tasks, the 

tasks can be scheduled by a number of policies including fixed priority or dynamic priority 

algorithms. The success of a real-time system depends on whether all requests of the tasks 

can be guaranteed to complete their executions before their timing deadlines; if they can, 

then we say the task set is schedulable. 

   The most common dynamic priority scheduling policy for real-time systems is the 

earliest deadline first (EDF) algorithm which was introduced by Liu and Layland [10] in 

1973. It has been proven by Dertouzos [7] to be optimal among all scheduling algorithms 

on a uniprocessor, in the sense that if a real-time task set cannot be scheduled by EDF, then 

this task set cannot be scheduled by any algorithm.  

   Liu and Layland [10] presented a necessary and sufficient schedulability condition for 

EDF scheduling under the assumption that all tasks’ relative deadlines are equal to their 

periods (see Section 2 for definitions), the schedulability condition is that the total 

utilization of the task set is less than or equal to 1. However, in real-time systems, a task’s 

relative deadline is not always equal to its period, so the above assumption severely 

restricts the usage of EDF in practice. 

   The existing results on exact schedulability analysis for EDF scheduling with arbitrary 

relative deadlines need to calculate the processor demand of the task set at every absolute 

deadline to check if there is an overflow in a specified time interval, this interval is bound 

by a certain value which guarantees we can find a failure point if the task set is not 

schedulable. In such an interval, there could be a very large number of absolute deadlines 

that need to be verified. The significant effort required to perform the exact schedulability 

test restricts the use of EDF in realistic systems, hence the EDF algorithm has not been 
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used as widely as the fixed priority algorithms in commercial real-time systems. 

   In this paper, we proposes new results on necessary and sufficient schedulability 

analysis for EDF scheduling, we refer it to as the Quick convergence Processor-demand 

Analysis (QPA) algorithm which builds on the traditional processor demand analysis. A 

tighter upper bound for the processor demand analysis is also presented. By intensive 

experiments, we show that QPA reduces the calculation times in logarithm scales in all 

situations, for example a 16 tasks system that in the previous analysis had to check 858,331 

points (deadlines) can, with the proposed analysis, be optimally check at just 12 points. The 

required calculation by QPA is stable for all kinds of task sets. 

   We first prove that the traditional processor demand analysis can incorporate release 

jitter and blocking. We also show that the QPA algorithm can be integrated with both 

release jitter and blocking, hence general tasks with release jitter can share non-preemptable 

resources in our system model. 

   The rest of the paper is organized as follows. Section 2 describes the system model and 

notations used in this paper. Section 3 describes the existing results on exact schedulability 

tests based on the processor demand analysis for EDF scheduling with arbitrary relative 

deadlines. In Section 4, we present a tighter upper bound for the processor demand analysis.  

   In Section 5, we propose the QPA algorithm which provides fast schedulability tests for 

EDF scheduling, it is also necessary and sufficient. In Section 6, we give some examples to 

illustrate the proposed analysis. In Section 7, by intensive experiments on a large number of 

randomly generated task sets, we show that the QPA algorithm reduces the calculation 

times in logarithm scales in all situations, and the result is stable for all kinds of task sets.  

   Section 8 integrates the proposed new results with release jitter. In Section 9, we show 

that blocking and release jitter can be considered at the same time in the processor demand 

analysis, and that QPA can be integrate with both release jitter and blocking. 

 

2. System Model 

   A hard real-time system comprises a set of n  real-time tasks 1 2{ , ,..., }nτ τ τ , each task 

consists of an infinite or finite stream of jobs or requests which must be completed before 

their deadlines. Let iτ  indicates any given task of the system. Each task can be periodic or 

sporadic. 

   Periodic tasks.  All jobs of a periodic task iτ  have a regular interarrival time iT , we 

call iT  the period of the periodic task iτ . If a job for a periodic task iτ  arrives at time t , 

then the next job of task iτ  must arrive at it T+ .  
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   Sporadic tasks. The jobs of a sporadic task iτ  arrive irregularly, but they have a 

minimum interarrival time iT , we call iT  the period of the sporadic task iτ . If a job of a 

sporadic task iτ  arrives at t , then the next job of task iτ  can arrival at any time at or after 

1t T+ . 

   If there are periodic tasks in the system, since in realistic situations it is difficult to 

forecast or to handle the exact starting time of all tasks when a system starts up, the 

periodic tasks are supposed to start or arrive at the same time. Each job of task iτ  requires 

up to the same worst-case execution time which equals the task iτ ’s worst-case execution 

time iC , and each job of task iτ  has the same relative deadline which equals the task iτ ’s 

relative deadline iD . If a job of task iτ  arrives at time t , the required worst-case 

execution time iC  must be completed in iD  time units, and the absolute deadline of this 

job is it D+ . Each task could have release jitter, when a job of task iτ  arrives at time t  

with the absolute deadline it D+ , it will be released for execution at the latest time it J+  

(the actual release time can be early than it J+ ). 

   At any time, an arrived job with a higher priority can preempt a lower priority job's 

execution. When a job completes its execution, the system chooses the pending job with the 

highest priority to execute. According to the EDF algorithm, the released job with the 

earliest absolute deadline is assigned the highest priority. 

   The following notation is used throughout the paper: 

   iC —the worst-case execution time of task iτ  

   iD —the relative deadline of task iτ  

   iT —the period of task iτ  

   n —the number of tasks in the system or the task set 

   iU —the utilization of task iτ , and /i i iU C T= . 

   U —the total utilization of the task set, and 
1

/n
i ii

U C T
=

= ∑  

   iJ —the maximum release jitter of task iτ  

   ir —a job (or a request) of task iτ  

 

3.  Previous Results on Exact Schedulability Analysis 

   This section describes the previous research results on exact schedulability analysis for 

EDF scheduling with arbitrary relative deadlines. In 1980, Leung and Merrill [9] noted that 

a set of periodic tasks is schedulable if and only if all absolute deadlines in the period 

[0,max{ } 2 ]is H+  are met, where is  is the start time of task iτ , and min{ } 0is = . In 1990, 

Baruah et al. [2, 3] extended this condition for sporadic tasks system, and showed the task 
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set is schedulable if and only if: 0t∀ > , ( )h t t≤ , where ( )h t  is the processor demand 

function given by: 

                     
1

( ) max{0,1 }
n

i
i

i i

t Dh t C
T=

⎢ ⎥−
= + ⎢ ⎥

⎣ ⎦
∑                 (1) 

   Baruah et al. ([2, 3, 4]) showed that using the above necessary and sufficient 

schedulability tests, the value of t  can be bound by a certain value. 
 
Theorem 1 ([2, 3, 4])  A general task set ( iT  and iD  are not related) is schedulable if 

and only if 1U ≤  and 

                              1
at L∀ < , ( )Rh t t≤  

where 1
aL  is defined as follows: 

                     1
1 1max{ ,..., ,max { } }

1a n i n i i
UL D D T D

U≤ ≤= −
−

               (2) 

 

   In 1996, Ripoll et al. [12] gave a tighter upper bound for the schedulability test under 

the assumption that all i iD T≤ , the upper bound is: 

                             2 1
( )

1

n

i i i
i

a

T D U
L

U
=

−
=

−

∑
 

   Obviously,           1
1

( )
max { }

1 1

n

i i i
i

i n i i

T D U
UT D

U U
=

≤ ≤

−
≤ −

− −

∑
 

   However for the general task set in which iD  could be greater than iT , the maximum 

relative deadline 1max { }i n iD≤ ≤  should be reconsidered. Therefore the necessary and 

sufficient condition for schedulability becomes: 
 
Theorem 2 ([4, 12])  A general task set is schedulable if and only if 1U ≤  and 

                             at L∀ < , ( )h t t≤ , 

where aL  is defined as: 

                       1
1

( )
max{ ,..., , }

1

n

i i i
i

a n

T D U
L D D

U
=

−
=

−

∑
                  (3) 

 

   In 1996, Spuri [14] and Ripoll et al. [12] derived another upper bound for the time 

interval which guarantees we can find an overflow if the task set is not schedulable. This 
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interval is called the synchronous busy period (the length of the first processor busy period 

of the synchronous arrival pattern). However Ripoll et al. [12] only considered the situation 

of i iD T≤ . 
 
Definition 1 ([12, 14])  A synchronous busy period is a processor busy period in which all 

tasks are released simultaneously at the beginning of the processor busy period and then at 

their maximum rate, and ended by the first processor idle period (the length of such a 

period can be zero). 

 

   The length of the synchronous busy period bL  can be computed by the following 

process [12, 14]: 

                          0

1

n

i
i

w C
=

=∑ ,                              (4) 

                        1

1

mn
m

i i

ww
T

+

=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥
∑ ,                            (5) 

the recurrence stops when 1m mw w+ = , and then 1m
bL w += . 

 

Lemma 1 ([14])  The length of the synchronous busy period is the maximum length of 

any possible busy processor period in any schedule. 

 
Lemma 2 ([10])  When the EDF algorithm is used to schedule a set of tasks on a 
processor, there is no processor idle time prior to an overflow (deadline miss). 
 

Theorem 3 ([14])  A general task set is schedulable if and only if 1U ≤  and 

bt L∀ ≤ , ( )h t t≤ , 

where bL  is the length of the synchronous busy period of the task set. 

 

Lemma 3  ( )b bh L L≤ . 
 
Proof.  Let all tasks be released simultaneously at 0t =  and then at their maximum rate, 

according to Definition 1, the processor is always busy during [0, bL ). Suppose ( )b bh L L> , 

then the processor continues busy at and after bt L= , so the busy period can be longer than 

bL , this contradicts Lemma 1, hence ( )b bh L L≤ .    □ 

 

   Since there is no direct relationship between aL  and bL , the time interval that needs to 
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be checked can be bound to the value min( , )a bL L . As the processor demand ( )h t  could 

only be changed at the absolute deadlines, the schedulability test becomes: 
 
Theorem 4 ([4, 12, 14])  A task set is schedulable if and only if 1U ≤  and 

 t P∀ ∈ , ( )h t t≤ , 

where            { | min( , ), }k k i i k a bP d d kT D d L L k N= = + ∧ < ∈ . 

 

4.  Improvement to the Upper Bound aL  

In this section, we present a tighter upper bound for the schedulability test, there is no 

restriction on task parameters when we use the new upper bound.  

 
Theorem 5  A general task set is schedulable if and only if 1U ≤  and 

t P∀ ∈ , ( )Rh t t≤ , 

where                *{ | , }k k i i k aP d d kT D d L k N= = + ∧ < ∈　 , 

and where        1
1 1

*
( )

max{( ),..., ( ), }
1

n

i i i
i

a n n

T D U
L D T D T

U
=

−
= − −

−

∑
　 .                (6) 

 

Proof.  When 1max { }i n i it D T≤ ≤≥ −  ⇔  i it D T≥ −  ⇔  i it D T− ≥ −  ⇔  1i

i

t D
T

⎢ ⎥−
≥ −⎢ ⎥

⎣ ⎦
 

⇔  1 0i

i

t D
T

⎢ ⎥−
+ ≥⎢ ⎥
⎣ ⎦

, 

then we have: 
1 1

( ) max{0,1 } (1 )
n n

i i
R i i

i ii i

t D t Dh t C C
T T= =

⎢ ⎥ ⎢ ⎥− −
= + = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑  

                 
1 1

( )
n n

i i
i i

i ii i

C Ct T D
T T= =

= + −∑ ∑  

If 1U ≤  and the task set is not schedulable, ( )Rh t t>  

⇔              
1 1

( )
n n

i i
i i

i ii i

C Ct t T D
T T= =

< + −∑ ∑  

⇔              
1 1

(1 ) ( )
n n

i i
i i

i ii i

C Ct T D
T T= =

− < −∑ ∑  
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⇔              1
( )

1

n

i i i
i

T D U
t

U
=

−
<

−

∑
              □  

 
Example of improvement 

Here we give an example of a task set comprised of 5 tasks: 

Task 
Execution 

Time  

Relative 

Deadline 
Period 

1τ  3 4 9 

2τ  2 6 4 

3τ  4 2800 3100 

4τ  8 10170 10200 

5τ  3 406 430 
 
The old result (see equation (3)): 10170aL = , there are 3401 absolute deadlines in the 

interval (0, )aL  that need to be checked. 

The new result (see equation (6)): * 7.9aL =　 , there are only 2 absolute deadlines in the 

interval *(0, )aL　  that need to be checked. 

 

5.  New Algorithm for Schedulability Analysis 

   The existing results on exact schedulability test for EDF scheduling need to check all 

the absolute deadlines in the time interval (0,min{ , })a bL L  when the task set is 

schedulable, this interval is bounded by a certain value which guarantees we can find a 

failure deadline if the task set is not schedulable. In a given interval, there can be a very 

large number of absolute deadlines needing to be checked. 

   In this section, we propose the Quick convergence Processor-demand Analysis (QPA) 

algorithm which provides fast and simple schedulability tests for EDF, it is also necessary 

and sufficient. By the proposed algorithm, we do not check every deadline, and we do not 

need all the values of deadlines in the interval even when the task set is schedulable. 

   We define L  to be the minimum value of *
aL  and bL . Considering that the upper 

bound *
aL　 does not work (divide by 0) when the utilization of the task U  is equal to 1, let 

L  be defined as: 

                            
*min( , ) 1

1
a b

b

L L U
L

L U
⎧ <⎪= ⎨

=⎪⎩

　

  

　

　　　　
                     (7) 
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   In this section, let id  to be an absolute deadline of a job for task iτ , and i i id kT D= + , 

k N∈ . When a system is unschedulable, define d Δ  to be the largest id  satisfying 

0 ( )i i id L h d d< < ∧ > . 

   QPA words by starting with a value of t  close to L  and then iterating through a 

simple expression toward 0. The value of this t  sequence converges for a unschedulable 

system to d Δ , and converges for a schedulable system to 0  (or at ( ) min{ }ih t D≤ ). 
 
Lemma 4  For a unschedulable system, let max{ | }m i id d d L= < . If ( )m mh d d≤ , then 

( ) 'd h d dΔ Δ< ≤ , where ' min{ | }i id d d d Δ= > . 
 
Proof.  Since max{ | }m i id d d L= < , and ( )m mh d d≤ , we have md dΔ < , and 

' md d L≤ < . Suppose ( ) 'h d dΔ > , as ( )h t  is a non-decreasing function with t , and 

'd d Δ> , we have ( ') ( ) 'h d h d dΔ≥ > . This contradicts the condition that d Δ  is the largest 

id  satisfying 0 ( )i i id L h d d< < ∧ > , so ( ) 'd h d dΔ Δ< ≤ . 

 

Lemma 5  For a unschedulable system, let max{ | }m i id d d L= < . If ( )m mh d d≤ , when 

[ ( ), ),t h d LΔ∈  then ( ) .d h t tΔ < ≤  
 
Proof.  The period [ ( ), )h d LΔ  can be divided into three intervals: 

   1) [ ( ), '),t h d dΔ∈  where ' min{ | }i id d d d Δ= > , from Lemma 4, ( ) 'd h d dΔ Δ< ≤ , 

therefore ( ) ( )h t h d tΔ= ≤ . 

2) [ ', ),mt d d∈  then ( ) ( )jh t h d= , where max{ | }j i id d d t= ≤ . Suppose ( )t h t< , we 

have ( ) ( )j jd t h t h d≤ < = , since 0 ' jL d d L< ≤ ≤ , this contradicts the condition that 

max{ | 0 ( ) }i i i id d d L h d dΔ = < < ∧ > , therefore ( ) .h t t≤  

   3) [ , ),mt d L∈  ( ) ( )m mh t h d d t= ≤ ≤ . 

   Since ( )h t  is a non-decreasing function with t , ( )t h d dΔ Δ≥ > ⇒ ( ) ( )h t h d dΔ Δ≥ > , 

hence we have ( )d h t tΔ < ≤  in each interval.     □ 

 

Theorem 6 Let 1 2{ | , , 0} { , ,..., } ,i i i i i mE d d kT D d L k d d d= = + < ≥ = ≠ ∅  where 

1 2 ... md d d< < < . If 1U ≤  and the task set is not schedulable, then there exists one or more 

absolute deadlines ( )i i id E h d d∈ ∧ > . Let d Δ  be the largest of such id , we can use the 

following algorithm to find d Δ . If the following iterative process could not find d Δ , then 

the task set is schedulable. 
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mt d= ; 

while( ( )h t t≤ ∧ 1( )h t d> ) 

 {if ( ( )h t t< ) ( )t h t= ; 

  else it d= ;  where 1i id t d +< ≤                   

 } 

if ( 1( )h t d≤ )  the task set is schedulable; 

else  the task set is not schedulable (then t  equals d Δ );
 
Proof.  Suppose the task set is not schedulable.  

   If ( )m mh d d> , the iteration stops as ( )h t t> . 

   If ( )m mh d d≤ , we have md d Δ> , then there are three cases during the iterative process: 

Case 1. ( )h t t< : at the beginning of the iteration mt d d Δ= > , since ( )h t  is a non-

decreasing function with t , ( ) ( )h t h d Δ≥ , then we have ( ) ( )h d h t t LΔ ≤ < < , 

from Lemma 5, ( )m mh d d≤ ∧ [ ( ), ]t h d LΔ∈ ⇒ ( )d h t tΔ < ≤ , so after ( )t h t← , 

we still have 0( ) ( )d h L h t t LΔ < ≤ < < . Therefore t  is always greater than 

d Δ  in this case. 

Case 2. ( )h t t= : at this time, t  is still larger than d Δ , if we let it d← , where 

1i id t d +< ≤ , obviously it d d Δ= ≥ . If it d d Δ= = , then ( )h t t> , the iterative 

process stops. If it d d Δ= > , from Lemma 4, ( ) 'd h d dΔ Δ< ≤  where 

' min{ | }i id d d d Δ= > , so we have ( ) 'h d d t LΔ ≤ ≤ < , from Lemma 5, the 

process enters Case 1 or Case 2 again. 

Case 3. ( )t h d Δ= : from Lemma 4, ( ) 'd h d dΔ Δ< ≤ , so ( ) ( )h t h d tΔ= = , that is a 

situation of Case 2, at this time, if we let it d=  such that 1i id t d +< ≤ , then 

t d Δ= , ( )h t t> , and the recurrence stops. 

From the above discussion, if the task set is not schedulable, then during the whole 

iterative process, the value of t  is always greater than or equal to d Δ  (stopped with 

t d Δ= ), and we have 1( ) ( )h t h d d dΔ Δ≥ > ≥ . Therefore when 1( )h t d≤ , the task set is 

schedulable.   □ 

 

   When 1( )h t d≤ , if we change the stopping condition to let the iterative process 

continue, then after one or two more iteration, t  will converge at 0. Theorem 6 is a 

necessary and sufficient condition for schedulability, it can be presented as: a general task 

set is schedulable if and only if 1U ≤  and the algorithm of Theorem 6 could not find d Δ .  

The algorithm in Theorem 6 needs to calculate the value of all absolute deadlines in 
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{ | , 0}i i i i iE d d kT D d L k= = + ∧ < > , the calculation has the complex ( )mΟ , where m  is 

the number of deadlines in E . The algorithm also needs to eliminate the same copies of 

the deadlines in E  and sort all deadlines in order, both of these two steps have the 

complex of 2( )mΟ  in the worst case. When m  is very large, the workload of these 

calculations can be huge, but fortunately this is not necessary. We do not need to know the 

exact number of deadlines in E , and we do not even need to know all the values of 

deadlines in E . Theorem 6 can be changed to the following theorem. 

 

Theorem 7  Let all tasks be released simultaneously at 0t =  then at their maximum rate, 

and id  be an absolute deadline of a job arrives after 0t = , denote min min{ }id D= . If 

1U ≤ , the task set is schedulable if and only if the result of the following algorithm is 

min( )h t d≤ . 
 

max{ | }i it d d L= < ; 

while ( ( )h t t≤ ∧ min( )h t d> ) 

  {if ( ( )h t t< ) ( )t h t= ; 

   else max{ | }i it d d t= < ; 

  } 

if ( min( )h t d≤ )  the task set is schedulable; 

else  the task set is not schedulable; 
 
Proof.  min min{ }id d=  is equal to 1d  in Theorem 6, max{ | }i id d L<  is equal to md  in 

Theorem 6, and max{ | }i id d t<  is equal to id  where 1i id t d +< ≤  in Theorem 6.      

□ 

 

In the iterative process of Theorem 7, t  takes the value ( )h t , when ( )h t t<  progress 

towards zero is made. Only when ( )h t t=  do we need to force the iterative process to take 

a value less than ( )h t . This is when we need to compute max{ | }i id d t<  to let the 

iteration continue, max{ | }i id d t<  can be calculated by the following approach.  

For a single task jτ , the last arrived job before t  is released at: 

( 1) j
j

t T
T
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎢ ⎥

, 

the absolute deadline of this job is: 

                             ( 1)j j j
j

td T D
T
⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎢ ⎥

.                      (8) 
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If j jD T< , then jd  in equation (8) is max{ | }.j jd d t≤  To consider the case of 

j jD T≥ , we can let jd  move on to the previous deadline j j jd d T= − , until jd t< .  

For the task set, max{ | }i id d t≤  is the largest such jd  for each task.  

Let the initial value of max 0td = , the value of max{ | }i id d t≤  can be obtained by: 
 
for ( 1j = ; j n≤ ; j + + ) 

  { ( / 1)j j j jd t T T D⎡ ⎤= − +⎢ ⎥ ; 

   while ( jd t> ) j j jd d T= − ; 

   if ( max
t

jd d> ) max
t

jd d= ; 

  }  

After the recurrence, max max{ | }t
i id d d t= ≤ . 

    

   The above algorithm for finding the max{ | }i id d t≤  has the complex ( )nΟ , the 

workload is only equivalent to calculating the value of ( )h t  one time.  

In our experiments, we observed that ( )h t t=  occurred very rarely for schedulable task 

sets, and for unschedulable task sets, in most cases, ( )h t t=  only occurred at the end of 

Theorem 7’s iteration during the schedulability test. 

 

6.  Illustration Examples 

In this section, first we give two examples to illustrate the analysis in Section 5, and 

then we give examples to illustrate the necessary of the formula max{ | }i it d d t= <  in the 

algorithm of Theorem 7. 

 

Example A 

In this example, the task set includes 8 tasks: 
 

Task 
Execution 

Time  
Relative 
Deadline 

Period 

1τ  6000 18000 31000 

2τ  2000 9000 9800 

3τ  1000 12000 17000 

4τ  90 3000 4200 

5τ  8 78 96 

6τ  2 16  12 
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7τ  10 120 280 

8τ  26 160 660 
 
The schedulability is tested by the following steps: 

Step 1. Calculate the utilization of the task set, 0.803U ≅ 1≤ . 

Step 2. Calculate upper bound aL  by equation (3), 18000aL = . 

       (There are 1735 absolute deadlines in aL .) 

Step 3. Calculate upper bound bL  by equations (4)(5), 16984bL = .  

       (There are 1638 absolute deadlines in bL .) 

(There are 1638 absolute deadlines that require to be checked by the old approach.) 

Step 4. Calculate upper bound *
aL　 by equation (6), * 15357aL =　 . 

As *
a bL L<　 , * 15357aL L= =　 ; mind =16 and max{ | }i id d L< =15352. 

Step 5. Verify the schedulability by the QPA algorithm given by Theorem 7: 

1) 15352t = , ( )h t =8282, 

2) 8282t = , ( )h t =2884, 

3) 2884t = , ( )h t =950, 

4) 950t = , ( )h t =318, 

5) 318t = , ( )h t =112, 

6) 112t = , ( )h t =26, 

7) 26t = , ( )h t =2; 

       Since ( ) 2h t = mind≤ , the task set is schedulable. 

Only 7 iteration required compared to 1638 previously. 

Note step 2 is not needed for the new results as *
aL  is always less than or equal to aL . 

 

Example B 

In this example, the task set is taken from the evaluation in Section 7 (the parameters are 

generated automatically). The period range of the 16 tasks is 1- 610 , and their parameters 

are as follows: 
 

Task 
Execution 

Time  
Relative 
Deadline 

Period 

1τ  0.046017 1.419897 1.324642

2τ  0.103668 1.819094 1.665016

3τ  0.005133 0.341237 2.894035

4τ  0.867954 17.024084 14.970213
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5τ  0.138762 37.186903 47.98906

6τ  4.374349 42.335452 90.746475

7τ  21.725475 287.330462 372.991594

8τ  18.601216 673.81609 847.449375

9τ  164.298311 1874.27352 1762.311388

10τ  624.972457 5915.216558 5787.904261

11τ  1641.81716 7625.959698 15549.16986

12τ  1129.07592 4560.327895 46697.68032

13τ  13712.6729 92575.63579 80125.00202

14τ  12241.42 379004.064 439136.1428

15τ  24268.6361 781900.4736 715880.6276

16τ  48061.4305 939573.2658 1000000
 
The schedulability is tested by the following steps: 

Step 1. Calculate the utilization of the task set, 0.9U = 1≤ . 

Step 2. Calculate upper bound aL  by equation (3), aL =939573.265758. 

       (There are 1695376 absolute deadlines in aL .) 

Step 3. Calculate upper bound bL  by equations (4)(5), bL =475686.09375.  

       (There are 858331 absolute deadlines in bL .) 

(There are 858331 absolute deadlines that need to be verified by previous results.) 

Step 4. Calculate upper bound *
aL　 by equation (6), *

aL =　 66019.846. 

As *
a bL L<　 , *

aL L= =　 66019.846; mind =0.341237 and max{ | }i id d L< =66019.710586. 

Step 5. Verify the schedulability by the QPA algorithm given by Theorem 7:  
1.  t=66019.710586, h(t)=40798.678690, 
2.  t=40798.678690, h(t)=25950.533926, 
3.  t=25950.533926, h(t)=16663.199224, 
4.  t=16663.199224, h(t)=10272.873244, 
5.  t=10272.873244, h(t)=7161.185345, 
6.  t=7161.185345, h(t)=4296.913363, 
7.  t=4296.913363, h(t)=1551.081489, 
8.  t=1551.081489, h(t)=445.414149, 
9.  t=445.414149, h(t)=113.948337, 
10.  t=113.948337, h(t)=21.893751, 
11.  t=21.893751, h(t)=2.992976, 

 12.  t=2.992976, h(t)=0.200835; 
       Since ( )h t mind≤ , the task set is schedulable. 

Again a significant reduction, 12 compared with 858331. 
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Necessary of the algorithm max{ | }i it d d t= <  

   In the iteration of Theorem 7, when ( )h t t= , we need to find id  where 

max{ | }i i id d d t= < , and let max{ | }i it d d t= < , to make the iteration continuing. 

Although the chance of ( )h t t=  is very small for the task set which is schedulable, and for 

the unschedulable task set ( )h t t=  only appears at the end of the iteration in most cases, 

judging if ( )h t t=  and letting assigning max{ | }i it d d t= <  is necessary for the QPA 

algorithm. Here we give two examples to illustrate this, one task set is schedulable and the 

other one is unschedulable. 

 

Example 1. 
 

Task 
Execution 

Time  
Relative 
Deadline 

Period 

1τ  8 11 60 

2τ  12 20 170 

3τ  6 26 120 

4τ  7 80 110 
 
For this task set, 33L = , and min 11d = , max 26d = . The iteration is shown as follows: 

1. t =26, ( )h t =26 

2. t =20, ( )h t =20 

3. t =10, ( )h t =8 

Since min( )h t d< , the task set is schedulable. 

 

Example 2. 
 

Task 
Execution 

Time  
Relative 
Deadline 

Period 

1τ  8 10 60 

2τ  12 19 170 

3τ  10 30 210 

4τ  6 36 190 

5τ  8 70 280 

6τ  7 90 320 
 
For this task set, 51L = , and min 10d = , max 36d = . The iteration is shown as follows: 
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1. t =36, ( )h t =36 

2. t =30, ( )h t =30 

3. t =19, ( )h t =20 

Since the iteration stops with min( )h t d> , the task set is not schedulable. 

 

7.  Experiments and Evaluations 

   This section describes experiments that have been conducted to evaluate the 

performance of the Quick convergence Processor-demand Analysis (QPA) algorithm which 

is proposed in Section 5, and we compare the number of calculation times needed for the 

upper bounds aL , bL , *
aL　, and the QPA algorithm by intensive experiments on a large 

number of task sets with randomly generated parameters. 

 

Utilizations generation policy. 

   In order to get a uniform distributed task utilizations in the range 0-1, we use the 

UUniFast algorithm [6] to generate the task utilizations. Bini and Buttazzo [6] showed that 

the UUniFast algorithm can efficiently generate task utilizations with uniform distributions. 

 

Periods generation policy.  

   The task periods are generated according to an exponent distribution. Let 

max 1max { }i n iT T≤ ≤= , and min 1min { }i n iT T≤ ≤= . In order to make sure the periods are uniformly 

distributed in the given range (the maximum value of max min/T T ), the range of the periods 

are divided into the intervals 1~oe e , 1 2~e e , 2 3~e e , ..., if there are k  intervals, then 

( 1) /n k−⎢ ⎥⎣ ⎦  task periods are generated randomly in each interval, and one of the rest 

( ( 1)n −  mod k ) task periods is generated randomly from each intervals. 

   For example, if the task number is 14, and the given periods range is 1-100, first let 

14 100T = , since ln100 4.605≅ , the range is divided into 5 intervals, they are 1~oe e , 
1 2~e e , …, 4 4.605~e e , then 2 task periods are generated randomly in each interval, and for 

the rest 3 periods, one is generated in each interval, shown as following: 

   1~oe e :   1τ , 2τ , 11τ  

   1 2~e e :   3τ , 4τ , 12τ  

   2 3~e e :   5τ , 6τ , 13τ  

   3 4~e e :   7τ , 8τ , 

   4 4.605~e e : 9τ , 10τ , 

   Let nT  be the maximum value of max min/T T . When ln ln 0.1n nT T− ≤⎢ ⎥⎣ ⎦ , such as 
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6.02
nT e= , there is no necessary to have an interval 6 6.02~e e , then we let the last interval be 
5 6.02~e e . 

 

Relative deadlines generation policy. 

   The relative deadline of each task iD  is generated randomly from [ , ]a b , where a  is 

the lower bound value of iD , and b  is the upper bound value of iD . In our default 

generation policy, the value of each a : when 10iC < , ia C= ; when 10 100iC≤ < , 

2 ia C= × ; when 100 1000iC≤ < , 3 ia C= × ; when 1000iC ≥ , 4 ia C= × . The default 

value 1.2 ib T= × . 

   In some experiments, we may change the default value of a  and b  for the purpose of 

observation. If we do not specify, the relative deadlines are generated by the above default 

policy.  
 
   On the graphs, when the y axis is labeled "Number of ( )h t  Calculations", for the old 

methods, it means how many absolute deadlines have to be verified in each upper bound 

when the task sets are schedulable, or how many deadlines have been verified before the 

end of the schedulability test when the task sets are unschedulable (verifying one deadline 

requires calculate the function ( )h t  one time). For the QPA algorithm, this label just 

presents the required calculation for the proposed schedulability test. 

   A reasonable metric to compare results is to measure the number of times the processor 

demand function ( )h t  has to be calculated. Since the old results need to check all the 

absolute deadlines in the upper bound when a task set is schedulable, we do the 

experiments separately for the schedulable and the unschedulable task sets, i.e. when we 

experiment on schedulable task sets, if a generated task set is unschedulable, then the 

program discards it and does not count it into the experimental results. However all 

experiments use the same default generation policy described above (unless an alternative 

is specified). 

 

7.1  Experiments on Schedulable Task sets 

   In this section, we experiment on the task sets which are schedulable. All task sets are 

randomly generated according to the above default policies or the given policy if it is 

specified. If a generated task set is schedulable, then the program counts it into the 

experimental results; and if a task set is unschedulable, the program does not count it into 

the results. Except experiment (G), each point on the result diagrams are the average of 
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2,000 randomly generated task sets which are schedulable.  

   Due to the magnitude of the improvement, all the comparison graphs use logarithm 

scales on the y-axis. In all experiments, 4 situations are compared, on the graphs, " aL ", 

" bL ", and " *
aL　" present the number of deadlines that need be checked in aL , bL , and *

aL  

be the old methods, "QPA algorithm" presents the required calculation by QPA. Note all 

tests are necessary and sufficient and hence no task sets pass one test while failing the 

others. 

   As the density of a task set 
1

/ min{ , } 1n
i i ii

C D T
=

Δ = ≤∑  is a sufficient schedulability 

condition for EDF scheduling [11], in the experiments, we also test the density of each 

schedulable task set, to see how much percentage of the task sets have 1Δ > ; in which case 

we cannot judge the schedulability by this simple but sufficient test. 

 

(A) Impact of the number of tasks 

   In this experiment, we let each task set's utilization be 0.9 , the maximum value of 

max min/T T  is 10000, then the number of the required calculation times is a function of the 

number of tasks. 
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Figure 1. Impact of the number of tasks 

 
The percentage of the task sets with density larger than 1 in this experiment: 
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Figure 2. Percentage of the (schedulable) task sets with density larger than 1 
 
   From Figure 2, we can see that nearly all the schedulable task sets in the experiment 

have the density 1Δ > , so that nearly all the task sets require QPA to test their 

schedulability. 
 
(B) Impact of the task periods range 

   In this experiment, we let the number of tasks for each task set be 30, and each task set's 

utilization be 0.9, then the number of calculation times is a function of the maximum value 

of max min/T T . 
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Figure 3. Impact of the task periods range 

 
The percentage of the task sets with density larger than 1: 
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Figure 4. Percentage of the (schedulable) task sets with density larger than 1 
 
(C) Impact of the utilization 

   In this experiment, we let the size of each task set be 30, and max min/ 10000T T ≤ , then 

the number of calculation times is a function of the task set's utilization. 
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Figure 5. Impact of the task set's utilization 

 
The percentage of the task sets with density larger than 1: 



 21

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.9 0.93 0.96 0.99

Utilization of the task set percentage
 

Figure 6. Percentage of the (schedulable) task sets with density larger than 1 

 

(D) Impact of the maximum value /i iD T  

   We change the default generation policy of relative deadlines, let each relative deadline 

be generated randomly from a  to b , where a  remains the same value as the default 

generation policy, and max{ / } ib Di Ti T= × . The utilization of each task set is 0.9, task 

number is 30, and max min/ 10000T T ≤ . Then the number of calculation times is a function of 

the value max{ / }Di Ti . 

Experiment 1.  Let b  be changed from 1.1 iT×  to 2.2 iT× .  
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Figure 7. Impact of the maximum value of Di/Ti 

 
The percentage of the task sets with density larger than 1: 
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Figure 8. Percentage of the (schedulable) task sets with density larger than 1 
 

Experiment 2.  Let b  be changed from 1.2 iT×  to 3.2 iT× . 
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Figure 9. Impact of the maximum value of Di/Ti 

 

The percentage of the task sets with density larger than 1: 
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Figure 10. Percentage of the (schedulable) task sets with density larger than 1 

 

   Our default generation policy for each relative deadline is max{ / } 1.2i ib D T= = . From 

the above two experiments, we can see that the QPA algorithm can perform faster if we let 

1.2b > . When max{ / } 2.2i iD T ≤ , the percentage of the schedulable task sets with the 

density larger than one is nearly 100%. 

 

(E) Impact of the minimum value /i iD T  

   In this experiment, in order to control the maximum distance from each iD  to iT , we 

let each iD  be generated randomly from a  to b , where min{ / } ia Di Ti T= × , and b  

remains the same value of the default generation policy, that is 1.2 ib T= × .  

   We let the utilization of each task set be 0.9, the size of each task set be 30, and 

max min/ 10000T T ≤ , then the calculations is a function of min{ / }Di Ti . 
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Figure 11. Impact of the minimum value Di/Ti 
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The percentage of the task sets with density larger than 1: 
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Figure 12. Percentage of the (schedulable) task sets with density larger than 1 

 
(F) Fix the value of /i iD T  

   In this experiment, in order to observer the performance of QPA when all i iD T≤ , and 

the impact of the distance from each iD  to iT , we fix the value of each /i iD T , let the 

number of calculation times be a function of the fixed value /i iD T . 

   When all i iD T≤ , the upper bound *La  becomes: 

                             1
( )

*
1

n

i i i
i

T D U
La

U
=

−
=

−

∑
, 

that is equal to 2
aL  which is given by Ripoll et al. [12] under the assumption all i iD T≤ . 

   Let / ,i ik D T= 1k ≤ , then the density of each task set is: 

              
1 1 1 1

1 1
min{ , }

n n n n
i i i i

i i i ii i i i i

C C C C U
D T D kT k T k= = = =

Δ = = = = =∑ ∑ ∑ ∑ , 

   If we want 1Δ > , / 1U k k U> ⇒ < . 
   We let the utilization of each task set be 0.9, tasks number be 30, and the maximum 

value of max min/T T  is 10000, so 0.9k < . 
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Figure 13. Impact of the fixed value of Di/Ti 

 
   Although we only experiment on the schedulable task sets, we counted the number of 

the unschedulable task sets, denote it to be unscheN , so at each point on the graph, the 

percentage of the schedulable task sets is:  
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Figure 14. Percentage of the schedulable task sets 

 
(G) Frequency distribution of the task sets 

   This experiment explores how many tested task sets can complete their schedulability 

tests in a given number of ( )h t  calculations. We divide each interval on the x axis into 10; 
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this means if a schedulable task set needs 126 calculations to complete its schedulability 

test, then this task set is counted into the interval 120~130 on the x axis. The value of the y 

axis presents the counted number of the task sets. 

   The experiment tests 80,000 randomly generated task sets which are schedulable, for 

each task set, the utilization is 0.9, the tasks number is 30, and the maximum value of 

max min/T T  is 10000. 
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Figure 15. Frequency distribution experiment based on 80,000 schedulable task sets 

 

   Since the numbers of calculation times needed by the QPA algorithm for all task sets are 

very close to the origin of the coordinates, in Figure 15, the line of the algorithm is 

superpose on the y axis. In order to see clearly the frequency distribution for the algorithm, 

we give the following graph according to the above experiment. 
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Figure 16. Frequency distribution of QPA 
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   We can see from Figure 16 that most task sets complete each schedulability test in less 

than 30 times calculations of ( )h t , and all the 80,000 task sets in our experiment complete 

each schedulability test in less than 60 times calculations. 

 

7.2  Experiments on Unschedulable Task sets 

   This section describes experiments on unschedulable task sets. All task sets are 

generated according to the default generation policies if not specify, and only the 

unschedulable task sets are counted into the experimental results. 

   It is difficult to decide how to compare with the previous results on exact schedulability 

tests, since no literature mentions or explores what order should be used to check all the 

absolute deadlines by previous research results. For a schedulable system all deadlines need 

to be checked and hence the order is immaterial, but for a unschedulable system here is an 

issue. There can be three obvious choices: forward order, backward order, and check the 

deadlines by each task in turn. 

   The first two choices, forward order and backward order, need all absolute deadlines to 

be sorted, using the fastest approach, sorting m  absolute deadlines has the complexity 

2( log )m mΟ  in average, and 2( )mΟ  in the worst-case, when m  is large, the time 

needed to spent on the pretreatment of sorting could be far more than the schedulability test 

itself. If we compare QPA with the previous results by these two orders, it is unfair for the 

proposed analysis, since the QPA algorithm does not need such pretreatment. 

   Despite these factors, we would also like to observe what order to be used by previous 

results can find a failure point with the least number of checked deadlines. We investigate 

this first. 

 

(H) Frequency of the first failure absolute deadline 

   These experiments explore the frequency distribution of how many absolute deadlines 

have been checked when the program first finds a failure point according to different 

checking orders. 

   We denote chN  to be the number of deadlines that have been checked when the we 

first find a missed deadline for a task set, and denote toN  to be the total number of 

deadlines in min{ *, }a bL L L= . The value of /ch toN N  inverses with the number of 

checked deadlines.  

   The following 3 experiments are based on 1000 unschedulable task sets with the 

utilization 0.9, and the maximum value of max min/T T  is 1000. On the x-axis, 0.1 means 
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0 / 0.1ch toN N< ≤ , and so on. 
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Figure 17. Frequency of the forward order 
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Figure 18. Frequency of the backward order 

    
   This experiment which explores the frequency of checking by each task in turn, the 

order of tasks is checked by 1τ , 2τ , 3τ ,…, from the default generation policy, the less 

number task have the more chance to get a shorter relative deadline (see example B, 

Section 6), so the order can be regarded as smaller relative deadline task checked first. 
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Figure 19. Frequency of checking by each task (order of task) 

 
   From the above experiments, we can see that verify forward from 0t =  for the sorted 

absolute deadlines can find an overflow with the least number of checked deadlines.  

    

   Although only comparing how many deadlines have been checked is unfair for the new 

results, we would still like to compare QPA with the previous results by forward order from 

0t = . In the following experimental comparisons, we ignore all the additional calculations 

required by previous results such as sorting the deadlines. 

   When all task sets are schedulable, by the previous results, all the absolute deadlines in 

an upper bound have to be verified, so we only need to count here are how many deadlines 

in each upper bound in an experiment. But when the task sets are unschedulable, we need to 

sort deadlines, and we need to check every deadline until we find a failure one, due to the 

large amount of calculation required by the previous results, in this section, we could not 

experiment on so large a range of the task sets as the experiments in the previous section.  

   Except experiment (N), each point on the following diagrams are the average of 2,000 

randomly generated task sets which are unschedulable. The "old method" on the graph 

means the number of absolute deadlines which have been checked by the previous analysis 

by the forward order. 

 

(I) Impact of the task periods range 

   In this experiment, the utilization of each task set is 0.9, and task number of each task 

set is 30. 
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Figure 20. Impact of the task periods range 

 

   The default value of the maximum value of max min/T T  for all the experiments in this 

section is set to be 1000. From this experiment, we can see that if we let the maximum 

value of max min/T T  be larger than 1000, then the experimental results for the previous 

analysis in all experiments will be increased significantly. 

 
(J) Impact of the tasks number 
   In this experiment, we set the utilization of each task set to be 0.9, and for each task set, 

the maximum value of max min/T T  is 1000. 
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Figure 21. Impact of the number of tasks 
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(K) Impact of the task set's utilization 

   In this experiment, we let tasks number of each task set be 30, and the maximum value 

of max min/T T  be 1000. 
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Figure 22. Impact of the task set's utilization 

 
(L) Impact of the fixed value of /i iD T  

   In this experiment, we change the default generation policy of iD , let /i iD T  be a 

fixed value k , hence i iD k T= × . We set the tasks number of each task set to be 30, each 

task set's utilization to be 0.9, and the maximum value of max min/T T  to be 1000. 
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Figure 23. Impact of the fixed value of Di/Ti 
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   Let the number of the schedulable tasksets be scheN , then the percentage of the 

schedulable task sets under each value /i iD T  is:  
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Figure 24. Percentage of the schedulable task sets 

 
   From Figure 24, when each / 0.36i iD T ≤ , nearly all task sets are unschedulable, so we 

should not use such task sets, and the experimental comparisons on such task sets is 

meaningless. Only / 0.36i iD T >  when there are some task sets are schedulable, the 

comparisons then become meaningful. In this situation, the required number of ( )h t  

calculations by the old result is close to 1000. 
 
(M) Control the distance from each iD  to iC  

   In this experiment, we control the distance between each iD  and iC , let each iD  be 

generated from min{ / }i ia D C=  to b , where b  remains the default value of the 

generation policy. 

   For each task set, the utilization is 0.9, the number of tasks is 30, and the maximum 

value of max min/T T  is 1000. 
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Figure 25. Impact of the minimum value of Di/Ci 
 
Percentage of the schedulable task sets: 

60.00%

70.00%

80.00%

90.00%

100.00%

2 2.5 3 3.5 4 4.5 5

Minimum Value of Di/Ci

Pe
rt

en
ta

ge
 o

f s
ch

ed
ul

ab
le

Percentage

 
Figure 26. Percentage of the schedulable task sets 

    

   Compare experiments (L)(M) with experiments (I)(J)(K), we can find that when the 

distance between each iD  and iC  is no less than a certain value (i.e. 2 iC× ), the 

calculation times by the previous results is increased significantly, and we can also reach 

the conclusion that under the same situation (i.e. 30n = , 0.9u = , task periods 

range=1000), the number of calculation times in experiments (I)(J)(K) is less than the 

results of (L)(M), that’s because in (I)(J)(K) some iD s are too close to iC s, an overflow 

can often be found at the beginning of the deadline checking by forward order. So the 
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default generation policy and the experimental results in (I)(J)(K) are optimistic for the old 

analysis. 
 
(N) Frequency distribution of the task sets 

   This experiment based on 60,000 randomly generated task sets which are unschedulable, 

for each task set, the utilization is 0.9, the task number is 30, and the maximum value of 

max min/T T  is 1000. 
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Figure 27. Frequency distribution based on 60,000 unschedulable task sets 

 
   The following graph is the frequency distribution of the calculation required by QPA 
according to the above experiment. 
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Figure 28. Frequency distribution of QPA 

 

7.3  Conclusion of the experiments 

   From the experiments describes in this section, we can see that a lot of factors can 
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significantly affect the experimental results of the old methods; in some circumstances, they 

have exponential growth. The experimental results of QPA are stable for all kinds of task 

sets, and QPA reduces the required calculation in logarithm scales in all situations. 

   In experiment (G) based on 80,000 and experiment (N) based on 60,000 randomly 

generated task sets, by the QPA algorithm, more than 96% of the task sets complete each 

schedulability test in less than 30 calculation times of ( )h t , and all the task sets complete 

each schedulability test in less than 60 calculation of ( )h t . The function ( )h t  has the 

complex ( )nΟ , equal to calculating a task set’s utilization. This means the vast majority of 

the task sets in the experiments only require the calculation which is equivalent to less than 

30 times the utilization based test. 

   We also observed that the new upper bound *
aL  dominants the old results when each 

iD  is no larger than 2 iT . The calculation of bL  has an iterative process which may need 

more iteration times than the QPA algorithm, since *
aL  is simpler to calculate than bL , we 

would suggest that only *
aL　 is used in the QPA when each iD  is not too larger than 2 iT . 

 

8.  Schedulability Analysis with Release Jitter 

   In the previous literature, Spuri [14] mentioned if we remove the assumption of null 

release jitter, then the worst-case arrival pattern for testing the tasks schedulability by 

processor demand criterion is obtained by releasing the first instance of each task at time 

0t = , and all other instances are released at max{ ,0}i it kT J= − . However this conclusion 

was not formally proved. Under this worst-case arrival pattern, the processor demand 

( )Jh t  in a given interval is calculated by [14]: 

       
1

( ) max{0,1 } ,
i i

n
i i i i i

J i i
i D t Ji i

t J D t T J Dh t C C
T T= ≤ +

⎢ ⎥ ⎢ ⎥+ − + + −
= + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑  (9)          

and the length of the synchronous busy period is calculated by: 

                        1

1

mn
m i

i
i i

w Jw C
T

+

=

⎡ ⎤+
= ⎢ ⎥

⎢ ⎥
∑ ,                         (10) 

   Here we give the above assumption a formal proof, and provide a complete 

schedulability test which is necessary and sufficient for EDF scheduling which considers 

release jitter and incorporates the new bound discussed in Section 4. 

Theorem 8  A general task set is schedulable by EDF if and only if all the following 

conditions are true: 
1) 1U ≤ . 
2) All tasks are released simultaneously at time 0t =  after having experienced their 
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maximum release jitter, and then the subsequent instances of each task are released at their 

maximum rate. 

3) t P∀ ∈  ( )h t t≤ , 

where 
1

( ) max{0,1 }
n

i i
J i

i i

t J Dh t C
T=

⎢ ⎥+ −
= + ⎢ ⎥

⎣ ⎦
∑ , 

and P  is the set of absolute deadlines in min( , )J J
a bL L , that is: 

              { | min( , ), }J J
i i i i i i a bP d d kT D J d L L k N= = + − ∧ < ∈ ,  where 

             1
1 1 1

( )
max{( ),..., ( ), }

1

n

i i i i
J i
a n n n

T J D U
L D T J D T J

U
=

+ −
= − − − −

−

∑
, 

and J
bL  is the synchronous busy period with the arrival pattern of condition 2 (i.e. solution 

of equation (10)). 
 
Proof.  We start from condition 2 which gives the worst-case arrival pattern for task 

schedulability and the longest synchronous busy period. To prove this, at first, we remove 

the release jitter assumption. Let 1t  be an overflow time in any tasks arrival pattern, and t  

be the last time before 1t  such that there are no pending jobs with absolute deadline 

1iD t t≤ −  before 1t . If we move “left” all tasks’ first instances which arrive after t , let all 

tasks be released simultaneously at t , the task load in 1[ , ]t t  could only be increased, so 

there is still an overflow at or before 1t , let 2t  denote the new overflow time after the shift, 

we have 2 1t t≤ .  

   Then we add the release jitter assumption. If we let the release time of the first instance 

(arrives at time t ) of each task iτ  be fixed, and move “left” all other instances of task iτ  in 

the period 2[ , ]t t , making them closer to the first one, obviously the more we move and 

make the second and the following instances closer to the first one, the task load in the 

period 2[ , ]t t  could become larger. The maximum distance of each task iτ ’s other instances 

can be moved forward to the first one is iJ , that is the situation when all tasks arrive 

simultaneously at time t  after having experienced their maximum release jitter, and then 

the subsequent instances released at their maximum rate. So the arrival pattern of condition 

2 is the worst-case for testing the tasks schedulability, and the overflow still occurs at or 

before 2t , let 3t  denote the new overflow time when the tasks arrival pattern has been 

changed to condition 2, then we have 3 2t t≤ . 

   From Lemma 2, there is no processor idle time during 1[ , ]t t ; from Lemma 1, bL  gives 
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the longest busy period without considering release jitter, so 1 bt t L− < . We can apply the 

same argument of the previous paragraph to show that after changing the tasks arrival 

pattern to condition 2, the length of any busy period could only be increased, hence the 

arrival pattern of condition 2 also gives the maximum length of any busy period. Let J
bL  

denote the synchronous busy period with the arrival pattern of condition 2, we have 
J

b bL L≤ . As 3 2 1t t t≤ ≤ , we have 3 1
J

b bt t t t L L− ≤ − < ≤ . Let 0t = , 3 1
J
bt t L≤ < , so the 

overflow must be found in the period (0, )J
bL .      

When 1max { }i n i i it D T J≤ ≤≥ − −  ⇔  i i it D T J≥ − −  ⇔  i i it J D T+ − ≥ −  ⇔  

1i i

i

t J D
T

⎢ ⎥+ −
≥ −⎢ ⎥

⎣ ⎦
 ⇔  1 0i i

i

t J D
T

⎢ ⎥+ −
+ ≥⎢ ⎥
⎣ ⎦

, 

then we have: 
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If 1U ≤  and the task set is not schedulable, ( )t h t<  

⇔            
1 1

( )
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i i
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i ii i

C Ct t T J D
T T= =

< + + −∑ ∑  
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1 1
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−

∑
             □ 

 

Integrate with the new algorithm 

   In order to corporate release jitter into the new algorithm in Section 5, we let: 

             
min( , ) 1

1

J J
a b

J
b

L L u
L

L u

⎧ <⎪= ⎨
=⎪⎩

　

　　　　 
 ,   

1
( ) max{0,1 }

n
i i

i
i i

t J Dh t C
T=

⎢ ⎥+ −
= + ⎢ ⎥

⎣ ⎦
∑ ,  

and min 1min { }i n i id D J≤ ≤= − , then we can use Theorem 7 to test schedulability. 

   On the occasion when we need to find max{ | }i id d t≤ , for a single task kτ , the last 
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arrived job before time t  is released at: 

( 1)k
k

k

t J T
T

⎡ ⎤+
−⎢ ⎥

⎢ ⎥
, 

with the absolute deadline: 

                            ( 1)k
k k k

i

t Jd T D
T

⎡ ⎤+
= − +⎢ ⎥

⎢ ⎥
, 

so max{ | }i id d t≤  can be calculated by: 

for ( 1k = ; k n≤ ; k + + ) 

  { ( ( ) / 1)k k k k kd t J T T D= + − +⎡ ⎤⎢ ⎥ ; 

   while ( kd t> ) k k kd d T= − ; 

   if ( max
t

id d> ) max
t

kd d= ; 

  } 

After the recurrence, max max{ | }t
i id d d t= ≤ . 

 

9.  Resource Sharing and Release Jitter 

In typical realistic cases, the tasks in the system are not independent and they need to 

access shared non-preemptable resources. If a high-priority process is suspended waiting 

for a lower-priority task to complete its use of a non-preemptable resource, then priority 

inversion [8] occurs, it is said that the high-priority process is blocked by the lower priority 

process. 

There are a number of protocols that exist for limiting this priority inversion, the most 

important and widely used is the Stack Resource Policy (SRP) [1], which extends the 

Priority Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP) [13]. SRP is 

very easily integrated into the EDF scheduling framework. 

In this section, under the framework of EDF+SRP, we show that the blocking factor and 

release jitter can be considered at the same time into an exact schedulability analysis, and 

the new results can be integrated with both release jitter and blocking. 

 

9.1  Conditions for the Schedulability 

   Let ( )jπ τ  denote the preemption level of a task jτ , ( ) ( )j kπ τ π τ> ⇔ j kD D< . Each 

shared resource iR  is assigned a ceiling ( )iRΠ  which is set equal to the maximum 
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preemption level of any task that may access it. Let π  denote the highest ceiling of all the 

resources which are held by some tasks at any given time, that is: max{ ( ) |i iR Rπ = Π  is 

held}. Baker [1] showed the Stack Resource Policy has the following properties: 
 
Theorem 9 ([1])  If no job jr  is permitted to start execution until ( )jπ τ π> , then: 

1) no job can be blocked after it starts; 

2) there can be no transitive blocking or deadlock; 

3) no job can be blocked for longer than the execution time of one outermost critical 

section of a lower priority job; 

4) if the oldest highest-priority job is blocked, it will become unblocked no later than the 

first instant that the currently executing job is not holding any non-preemptable 

resources. 
 

Let ( )B t  be a function presents the maximum time for job kr  with relative deadline 

kD t≤  may be blocked by job rα  with relative deadline D tα >  in any given time 

interval [0, ]t .  

Spuri [14] showed that a sufficient condition for schedulability of a task set is that for 

any absolute deadline id  in a synchronous busy period: 

 ( ) ( )i i ih d B d d+ ≤ .                      (11) 

Although the definition of ( )B t  given by Spuri [14] implies that release jitter is 

considered, in the proof of the schedulability condition they did not take account of release 

jitter, only the blocking factor is incorporated. 

The definition of ( )B t  given by Baruah [5] is more intuitive: let ,kCα  denote the 

maximum length of time for which task ατ  needs to hold some resource that may also be 

needed by task kτ , then ( )B t  can be defined and calculated by: 

                  ,( ) max{ |kB t C D tα α= > , }kD t≤ .                   (12) 

   In the definitions of the remaining part of this section, to incorporate release jitter, we 

suppose kα ≠ . 

   Here we define ( )JB t  as: 

                 ,( ) max{ |J kB t C D J tα α α= − > , }k kD J t− ≤ ,              (13) 

   note ( )JB t  can also be defined as: 

                 ,( ) max{ |J kB t C D t Jα α α= > + , }k kD t J≤ + .               (14) 

   ( )JB t  is defined under the assumption when all tasks experienced their maximum 

release jitter. 

   If each task iτ  does not experience its maximum release jitter, but only experience a 
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jitter equals to 'iJ , where 'iJ  is an random number in [0, ]iJ , then the blocking time 

should be defined and calculated as: 

                 ' ,( ) max{ | 'J kB t C D t Jα α α= > + , '}k kD t J≤ + ,             (15) 

where 0 'J Jα α≤ ≤ , and 0 'k kJ J≤ ≤ . 

   So the definition of ( )B t  and the definition of ( )JB t  are special cases of ' ( )JB t . 

   Under the assumption that each task iτ  only experience a jitter equals to 'iJ , where 

' [0, ]i iJ J∈ , we can apply the same argument in Theorem 8’s proof to show that the worst-

case arrival pattern for schedulability occurs when each task iτ  is released at time 0  after 

having experienced a jitter 'iJ , then at its maximum rate. In this task arrival pattern, the 

processor demand in a given time interval [0, ]t  becomes: 

                     '
1

'( ) max{0,1 }
n

i i
J i

i i

t J Dh t C
T=

⎢ ⎥+ −
= + ⎢ ⎥

⎣ ⎦
∑ ,                (16) 

and the processor demand plus the blocking time in [0, ]t  is calculated by ' '( ) ( )J Jh t B t+ . 

   The maximum blocking time depends on how many jobs can be blocked and how many 

jobs can block other jobs. Comparing the definitions of ( )JB t  and ' ( )JB t , we can see that 

in the definition of ( )JB t , although the number of jobs which could be blocked is 

increased (from k kD t J≤ + ), the number of jobs which could block other jobs is decreased 

(from D t Jα α> + ). So at a given t , the value of ( )JB t  can be less than ' ( )JB t . In other 

words, when all tasks experience their maximum jitter, the maximum blocking time could 

be decreased. In order to show condition 2 of Theorem 8 is still the worst-case arrival 

pattern for schedulability after considering the blocking time, we need to prove at any given 

time t , ' '( ) ( ) ( ) ( )J J J Jh t B t h t B t+ ≤ + . 

 

Lemma 6  0t∀ > , ' '( ) ( ) ( ) ( )J J J Jh t B t h t B t+ ≤ +  

Proof.  If ' ( ) ( )J JB t B t≤ , since ' ( ) ( )J Jh t h t≤ , we have ' '( ) ( ) ( ) ( )J J J Jh t B t h t B t+ ≤ + . 

Then we only need to prove the situation when ' ( ) ( )J JB t B t> . 

   From the definition of ( )JB t  and ' ( )JB t , '( ) ( )J JB t B t< ⇒  

      , ,max{ | , } max{ | ', '}k k k k k kC D t J D t J C D t J D t Jα α α α α α> + ≤ + < > + ≤ + .   (17) 

   At any given t , we always have: 

      , ,max{ | ', } max{ | ', }k k k k kC D t J D t C D t J D t Jα α α α α α> + ≤ ≤ > + ≤ + .       (18) 

   From inequation (17)(18): 

      , ,max{ | , } max{ | ', }k k k k k kC D t J D t J C D t J D t Jα α α α α α> + ≤ + < > + ≤ + .    (19) 

 From inequation (19), there exists a task γτ  which satisfies all the following conditions: 

1) denote Dγ  to be its relative deadline, Jγ  to be its maximum release jitter, and 
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'Jγ  to be a jitter between 0 and Jγ , then 't J D t Jγ γ γ+ < ≤ + ;  

2) task γτ  needs to hold some shared non-preemptive resources that are also needed 

by a task kτ  with k kD t J≤ + , kγ ≠ , denote ,kCγ  to be the maximum length of 

such resource;  

3) ,kCγ  is no shorter than any other shared resource in  

,{ | ', }k k kC D t J D t Jα α α> + ≤ + . 

   From condition 1: 

   D t Jγ γ≤ +  ⇒  0t J Dγ γ+ − ≥  ⇒  (1 )
t J D

C C
T
γ γ

γ γ
γ

⎢ ⎥+ −
+ ≥⎢ ⎥
⎢ ⎥⎣ ⎦

. 

   't J Dγ γ+ <  ⇒  't J Dγ γ+ −  ⇒  
'

(1 ) 0
t J D

C
T
γ γ

γ
γ

⎢ ⎥+ −
+ =⎢ ⎥
⎢ ⎥⎣ ⎦

. 

   Hence: 

   
1

( ) max{0,1 }
n

i i
J i

i i

t J Dh t C
T=

⎢ ⎥+ −
= + ⎢ ⎥

⎣ ⎦
∑  

       
1

'max{0,1 }
n
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i

i i

t J D C C
T γ

=

⎢ ⎥+ −
≥ + +⎢ ⎥
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∑  

       ' ( )Jh t Cγ= + . 

   From condition 3: , ,max{ | ', }k k k kC C D t J D t Jγ α α α= > + ≤ +  

                      ≥ ,max{ | ', '}k k kC D t J D t Jα α α> + ≤ +  

                      ' ( )JB t= . 

   Since , ' ( )k JC C B tγ γ≥ ≥ , we have: 

                  ' ' '( ) ( ) ( ) ( ) ( ) ( )J J J J J Jh t B t h t h t C h t B tγ+ ≥ ≥ + ≥ + .     □ 

 
Theorem 10  A general task set is schedulable by EDF+SRP if the following conditions 

are true: 

1) 1U ≤ . 

2) All tasks are released simultaneously at time 0t =  after having experienced their 

maximum release jitter, and then the subsequent instances of each task are released at their 

maximum rate. 

3) t P∀ ∈  ( ) ( )J Jh t B t t+ ≤ , 
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where 
1

( ) max{0,1 }
n

i i
J i

i i
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∑ , ,( ) max{ |J kB t C D t Jα α α= > + , }k kD t J≤ + , 

and P  is the set of absolute deadlines in min( , )B J
a bL L , that is: 

             { | min( , ), }B J
i i i i i i a bP d d kT D J d L L k N= = + − ∧ < ∈ ,  where 
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1 1 1

max { ( )} ( )
max{( ),..., ( ), }

1

i

n
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+ + −
= − − − −

−

∑
,   (20) 

where max 1max { }i n i iD D J≤ ≤= − , and J
bL  is the synchronous busy period with the arrival 

pattern of condition 2. 
 
Proof.  We start from condition 3, and show that the task set is schedulable if at any 

deadline id , ( ) ( )J i J i ih d B d d+ ≤ . At first we assume there is no release jitter, let t  be a 

time when there is a job miss its deadline in any tasks arrival, and ' 0t =  be the last time 

before t  such that there are no pending jobs with deadlines less than or equal to t . At 

time ' 0t = , if there is an arrived job rα  with relative deadline D tα >  holding some 

shared resources which are also needed by the later arrived jobs kr  with kD t≤ , then this 

low priority job rα  may block a higher priority (earlier deadline) job kr . Let ut  be the 

first time when job rα  complete its access for a shared resources and does not hold any 

shared resource, from Theorem 9, the oldest highest-priority blocked job will become 

unblocked immediately at time ut . Then there are always pending jobs with deadlines less 

than or equal to t  in the period [ , ]ut t , no earlier deadline jobs can be blocked again after 

ut , and rα  is the only instance which could be executing in [0, ]t  with absolute deadline 

larger than t . The maximum time in which job rα  could be executing in the time interval 

[0, ]t  is , ,kCα  so the maximum blocking time in [0, ]t  is 

,( ) max{ |kB t C D tα α= > , }kD t≤ . 

   Then we change the tasks arrival pattern. Let each task with k kD t J≤ +  be released 

simultaneously at time 0t =  after having experienced its maximum release jitter then at its 

maximum rate, and let each task with D t Jα α> +  be released at time ε−  after 

experiencing the release jitter equal to Jα ε−  then at its maximum rate, where ε  is a 

infinite small number. For each task with D t Jα α> + , each absolute deadline of its job is 

( ) ( ) ,kT D J kT D J k Nα α α α α αε ε+ + − − − = + − ∈ . Then we get an arrival pattern of 

condition 2, from Theorem 8’s proof, this arrival pattern is the worst-case for tasks 

schedulability without considering the blocking factor. Since each task with D t Jα α> +  is 
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released ε  time units before the release time of each task with k kD t J≤ + , any task with 

k kD t J≤ +  can be blocked by any task with D t Jα α> +  if they need to hold the same 

non-preemptable resource, then the maximum blocking time in [0, ]t becomes: 

,( ) max{ |J kB t C D J tα α α= − > , }k kD J t− ≤ . After adding the blocking time, although the 

blocking time could be decreased under this arrival pattern, from Lemma 6, the total task 

load ( ( ) ( )J Jh t B t+ ) could only be increased. Therefore there is still an overflow at or 

before time t , and condition 2 is still the worst-case arrival pattern for the tasks 

schedulability under EDF+SRP. 

   Since both of the value of ( )Jh t  and ( )JB t  could only be changed at an absolute 

deadline ,i i i id kT D J k N= + − ∈ , if id∀ , ( ) ( )J i J i ih d B d d+ ≤ , then there is no overflow 

at any time. 

   The following part of the proof is to reduce the period we need to look for. As the 

blocking only changes the execution order of the jobs in a busy period, any overflow still 

occurs in a busy period, and the length of the longest busy period of the tasks is not 

changed, from Theorem 8’s proof, condition 2 gives the maximum length of any busy 

period, so we can still use J
bL  as an upper bound for the schedulability test. 

   When 1max { }i n i i it D T J≤ ≤≥ − −  ⇔  i i it D T J≥ − −  ⇔  i i it J D T+ − ≥ −  ⇔  

1i i

i

t J D
T

⎢ ⎥+ −
≥ −⎢ ⎥

⎣ ⎦
 ⇔  1 0i i

i

t J D
T

⎢ ⎥+ −
+ ≥⎢ ⎥
⎣ ⎦

, 

then we have: 
1

( ) ( ) ( ) max{0,1 }
n

i i
J J J i

i i

t J Dh t B t B t C
T=

⎢ ⎥+ −
+ = + + ⎢ ⎥

⎣ ⎦
∑  

                     
1

( ) (1 )
n

i i
J i

i i

t J DB t C
T=

⎢ ⎥+ −
= + + ⎢ ⎥

⎣ ⎦
∑  

                     
1 1

( ) ( )
n n

i i
J i i i

i ii i

C CB t t T J D
T T= =

= + + + −∑ ∑  

                     
max

1 1

max { ( )} ( )
i

n n
i i

d D J i i i i
i ii i

C CB d t T J D
T T<

= =

≤ + + + −∑ ∑  

If 1U ≤  and the task set is not schedulable, ( ) ( )J Jt h t B t< +  

⇔           
max

1 1

max { ( )} ( )
i

n n
i i

d D J i i i i
i ii i

C Ct B d t T J D
T T<

= =

< + + + −∑ ∑  
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⇔           
max

1 1

(1 ) max { ( )} ( )
i

n n
i i

d D J i i i i
i ii i

C Ct B d T J D
T T<

= =

− < + + −∑ ∑  

⇔           
max

1
max { ( )} ( )

1

i

n

d D J i i i i i
i

B d T J D U
t

U

<
=

+ + −
<

−

∑
             □ 

 

   Like all the previous results on the task schedulability analysis which incorporates SRP, 

since the definition and calculation of ( )B t  may be pessimistic in some cases, the above 

analysis is only sufficient for schedulability under EDF+SRP.  

   In equation (20) of Theorem 10, 
max

max { ( )}
id D iB d<  can be obtained by calculating the 

value of ( )B t  at every max(0, )id D∈ . As 
max 1max { ( )} max { }

id D J i i n iB d C< ≤ ≤≤ , for 

convenience, we can also use 1max { }i n iC≤ ≤  as 
max

max { ( )}
id D J iB d< . 

 

9.2  Integrate with the New Algorithm 
 

In this section, we integrate blocking and release jitter into the algorithm of Section 5, 

so that tasks with release jitter can share non-preemptable resources in our system model.  

To give the new theorem which incorporates blocking and release jitter, we need to 

show that ( ) ( )J Jh t B t+  is non-decreasing with t . 
 

Lemma 7 0t∀ > , ( ) ( )J Jh t B t+  is a non-decreasing function of t . 

Proof.  1t∀ , 2t , 1 20 t t< < , when 1 2( ) ( )J JB t B t≤ , 1 1 2 2( ) ( ) ( ) ( )J J J Jh t B t h t B t+ ≤ + , so we 

only need to consider the situation when 1 2( ) ( )J JB t B t> . 

   From the definition of ( )JB t , 1 2( ) ( )J JB t B t> ⇒  

 , 1 1 , 2 2max{ | , } max{ | , }k k k k k kC D J t D J t C D J t D J tα α α α α α− > − < > − > − < . 

   For any 1 2t t< , we have:  

       , 2 2 , 2 1max{ | , } max{ | , }.k k k k k kC D J t D J t C D J t D J tα α α α α α− > − < ≥ − > − <      

   Therefore: 

      , 1 1 , 2 1max{ | , } max{ | , }k k k k k kC D J t D J t C D J t D J tα α α α α α− > − < > − > − <     (21) 

   From inequation (21), there exists a task ξτ  which satisfies all of the following 

condition:  

1) 1 2t D J tξ ξ< − ≤ ;  

2) task ξτ  needs to hold some non-preemptable resource that is also needed by a 

task kτ  with 1k kD J t− ≤ , denote ,kCξ  to be the maximum length of such a 
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resource access; 

3) ,kCξ  is no shorter than any other shared resources in 

, 1 1{ | , }k k kC D J t D J tα α α− > − ≤ , 

    this means , 1( )k JC B tξ = . 

   Let the execution time of task ξτ  be Cξ , we have 1 ,( )J kB t C Cξ ξ= ≤ . 

   As 1t D Jξ ξ< − , 1 0t J Dξ ξ+ − <  ⇒  1(1 ) 0
t J D

C
T
ξ ξ

ξ
ξ

⎢ ⎥+ −
+ =⎢ ⎥
⎢ ⎥⎣ ⎦

         (22) 

As 2D J tξ ξ− ≤ , 2 0t J Dξ ξ+ − ≥  ⇒  2(1 )
t J D

C C
T
ξ ξ

ξ ξ
ξ

⎢ ⎥+ −
+ ≥⎢ ⎥
⎢ ⎥⎣ ⎦

        (23) 

   From (22)(23): 2
2 1

1
( ) max{0,1 } ( )

n
i i

i
i i

t J Dh t C h t C
T ξ

=

⎢ ⎥+ −
= + ≥ +⎢ ⎥

⎣ ⎦
∑  

Therefore we have: 

        1 1 1 , 1 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )J J J k J J J Jh t B t h t C h t C h t h t B tξ ξ+ = + ≤ + ≤ ≤ + .    □ 

 

After getting Lemma 7, Lemma 8, Lemma 9, and Theorem 11 can be proved, so both 

blocking and release jitter can be integrated together into the algorithm of Section 5. 

In the remaining part of this section, we define L  as: 

                        
min( , ) 1

1

B J
a b

J
b

L L U
L

L U

⎧ <⎪= ⎨
=⎪⎩

　

　　　　 
, 

and when a system is not judged to be schedulable, denote 

max{ | (0, ) ( ) ( )}i i i J i J id d d L d h d B dΔ = ∈ ∧ < + . 

 
Lemma 8  For a system that is not judged to be schedulable, let max{ | 0 }m i id d d L= < < . 

If ( ) ( )J m J m mh d B d d+ ≤ , then ( ) ( ) 'J Jd h d B d dΔ Δ Δ< + ≤ , where ' min{ | }i id d d d Δ= > . 
 
Proof.  Since max{ | 0 }m i id d d L= < < , and ( ) ( )J m J m mh d B d d+ ≤ , we have md dΔ < , 

and ' md d L≤ < . Suppose ( ) ( ) 'J Jh d B d dΔ Δ+ > , since 'd d Δ> , and from Lemma 7, 

( ) ( )J Jh t B t+  is non-decreasing with t , so we have: 

( ') ( ') ( ) ( ) 'J J J Jh d B d h d B d dΔ Δ+ ≥ + > . 

This contradicts the condition that max{ | (0, ) ( ) ( )},i i i J i J id d d L d h d B dΔ = ∈ ∧ < +   

therefore ( ) ( ) 'J Jd h d B d dΔ Δ Δ< + ≤ .    □ 

 

Lemma 9  For a system that is not judged to be schedulable, let max{ | 0 }m i id d d L= < < . 

If ( ) ( )J m J m mh d B d d+ ≤ , when [ ( ) ( ), ),J Jt h d B d LΔ Δ∈ +  ( ) ( ) .J Jd h t B t tΔ < + ≤  
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Proof.  The period [ ( ) ( ), )J Jh d B d LΔ Δ+  can be divided into three intervals: 

1) [ ( ) ( ), '),J Jt h d B d dΔ Δ∈ +  where ' min{ | }i id d d d Δ= > , from Lemma 8, 

( ) ( ) 'J Jd h d B d dΔ Δ Δ< + ≤ , therefore ( ) ( ) ( ) ( )J J J Jh t B t h d B d tΔ Δ+ = + ≤ . 

2) [ ', ),mt d d∈  then ( ) ( ) ( ) ( )J J J j J jh t B t h d B d+ = + , where max{ | }j i id d d t= ≤ . 

Suppose ( ) ( )J Jt h t B t< + , we have ( ) ( ) ( ) ( )j J J J j J jd t h t B t h d B d≤ < + = + , since 

' jd d d LΔ < ≤ ≤ , this contradicts the condition that d Δ  is the largest id  

satisfying (0, ) ( ) ( ),i i J i J id L d h d B d∈ ∧ < +  therefore ( ) ( )J Jh t B t t+ ≤ . 

3) [ , ),mt d L∈  ( ) ( ) ( ) ( )J J J m J m mh t B t h d B d d t+ = + ≤ ≤ . 

      Since ( ) ( )J Jh t B t+  is non-decreasing with t , ( ) ( )J Jt h d B d dΔ Δ Δ≥ + >  

   ⇒ ( ) ( ) ( ) ( )J J J Jh t B t h d B d dΔ Δ Δ+ ≥ + > , therefore we have ( ) ( )J Jd h t B t tΔ < + ≤  in each 

interval.    □ 
 
Theorem 11  For a general task set scheduled by EDF+SRP with release jitter, let 

,i i i id kT D J k N= + − ∈ , and min 1min { }i n i id D J≤ ≤= − . If 1U ≤ , we can use the following 

algorithm to test the schedulability: 

 

max{ | }i it d d L= < ; 

while ( ( ) ( )J Jh t B t t+ ≤ ∧ min( ) ( )J Jh t B t d+ > ) 

  {if ( ( ) ( )J Jh t B t t+ < ) ( ) ( )J Jt h t B t= + ; 

   else max{ | }i it d d t= < ;  

  } 

if ( min( ) ( )J Jh t B t d+ ≤ )  the task set is schedulable; 
 
Proof.  Let ( )BH t  be the function ( ) ( ) ( )B J JH t h t B t= + , since Lemma 7 is true, in 

Theorem 6 & Theorem 7’s description and their proof, ( )h t  can be replaced by ( )BH t , 

0( )h L  can be replaced by 0( )BH L , ( )ih d  can be replaced by ( )B iH d , and ( )mh d  can 

be replaced by ( )B mH d . After integrating with blocking factor, Lemma 4 corresponds to 

Lemma 8, and Lemma 5 corresponds to Lemma 9, so we can use the same process of 

Theorem 6 and Theorem 7’s proof to prove Theorem 11.    □ 

 

9.3  Illustration Example 

   We give an example to illustrate the analysis which integrate with both release jitter and 

blocking. This example contains 6 general tasks, and there are two types of non-preemtable 

shared resources R1 and R2 in the system. The task parameters and the shared resource 
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access time as the follows: 
 

Task Execution 
Time  

Relative 
Deadline Period Release 

Jitter 
R1 Access

Time  
R2 Access 

Time 

1τ  7 34 40 6 2 0 

2τ  17 70  136 18 6  9 

3τ  60 280 360 30 22 16 

4τ  49 590 420 40 0 17 

5τ  53 320 510 37 18 12 

6τ  70 360 490 46 16 21 
 
The schedulability is tested by the following steps: 

Step 1. Calculate the utilization of the task set, 0.83 1U = ≤ . 

Step 2. Calculate upper bound B
aL  by equation (20), 509B

aL = . 

Step 3. Calculate upper bound J
bL  by equation (10), 766J

bL = . 

Step 4. As B J
a bL L< , 509B

aL L= = . max{ | } 478i id d L< = ; min 1min { } 28i n i id D J≤ ≤= − = .  

       Verify the schedulability by the QPA algorithm (Theorem 11): 

1) 478t = , ( ) ( ) 352J Jh t B t+ = , 

2) 352t = , ( ) ( ) 244J Jh t B t+ = , 

3) 244t = , ( ) ( ) 98J Jh t B t+ = , 

4) 98t = , ( ) ( ) 53J Jh t B t+ = , 

5) 53t = , ( ) ( ) 29J Jh t B t+ = , 

6) 29t = , ( ) ( ) 22J Jh t B t+ = , 

       Since min( ) ( )J Jh t B t d+ ≤ , the task set is schedulable. 

 

10.  Conclusion 

   In this paper, we have addressed and solved the problem of providing fast schedulability 

analysis which is necessary and sufficient for EDF scheduling with arbitrary relative 

deadlines. As the most commonly studied optimal scheduling algorithm, EDF provides 

real-time systems the best schedulability among all scheduling algorithms. However the 

large amount of calculation required by its exact schedulability analysis severely restricts 

the use of EDF in practice. 

   We present a tighter upper bound for the traditional processor demand analysis which 

provides exact schedulability test for EDF scheduling, by experimental comparisons, the 

new upper bound dominants the previous results when each iD  is no larger than 2 iT . We 
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propose the Quick convergence Processor Demand Analysis (QPA) which builds on the 

traditional processor demand analysis, it is necessary and sufficient. By intensive 

experiments, we show that QPA reduces the required calculation times in logarithm scales 

in all situations compared with the previous results, and the required calculation by QPA is 

stable for all kinds of task sets. 

   Since the QPA algorithm does not check every absolute deadlines, and it does not need 

all values of deadlines in the time interval, there is no additional calculation overheads 

needed by QPA, so it can further reduce the calculation in practice beyond the experimental 

results. 

   The QPA reduces the required calculation to a level that can be accepted by nearly all 

computing systems, and it can be easily used for online admission control. By the QPA 

algorithm, in experiment (G) based on 80,000 and experiment (N) based on 60,000 

randomly generated task sets, more than 96% of the task sets complete each schedulability 

test in less than 30 calculation times of ( )h t , and all the task sets complete each 

schedulability test in less than 60 calculations whether they are schedulable or 

unschedulable. The function ( )h t  has the complex ( )nΟ , equal to calculating a task set’s 

total utilization. This means the vast majority of the task sets in the experiments only 

require the calculation which is equivalent to less than 30 times the utilization based test. 

   There is no restriction on the new results: each task can be periodic or sporadic; the 

relative deadline of each task can be less than, equal to or greater than its period. 

   We prove that blocking can be considered with release jitter in the traditional processor 

demand analysis. We also show that QPA can be integrated with both blocking and release 

jitter, so the general tasks with release jitter can share non-preemptable resources in our 

system model. 
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