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Overlap coefficient for assessing the similarity of
pharmacokinetic data between ethnically
different populations

Sachiko Mizuno, Takuhiro Yamaguchi, Akira Fukushima, Yutaka Matsuyama
and Yasuo Ohashi

We developed a method to assess the similarity of pharmacokinetic data between
ethnically different populations. An evaluation of confidence intervals for the mean

difference in pharmacokinetic parameters, such as area under the concentration-
versus-time curve (AUC), between populations is often used. We propose the use of
the overlap coefficient (OC), which represents the proportion of overlap between
two probability distributions, as a measure of the similarity between distributions.
We considered five OC estimators - two parametric ones and three nonparametric
ones. Simulation studies were conducted to compare the performance of the five OC
estimators and their bootstrap confidence intervals. Results showed that
nonparametric estimators with fixed-bandwidth kernel density estimation had a

smaller mean squared error in almost all situations, and their coverage probabilities
were close to the nominal level. The proposed method was applied to
pharmacokinetic data from a bridging study of a combination therapy for
metastatic colorectal cancer patients in the USA and Japan. From the analyses of
this study, it was suggested that the distributions of the logarithmically transformed
AUC for leucovorin and 5-fluorouracil were similar between the two populations.
Clinical Trials 2005; 2:174-181. www.SCTjournal.com

1 Introduction

In the development of new medical products,
clinical trials are required to be standardized and
conducted efficiently and quickly on a global scale.
In an effort to address these issues, the International
Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals
for Human Use (ICH) was initiated in 1990. One
outcome of the project was the development of the
guideline on "Ethnic Factors in the Acceptability of
Foreign Clinical Data" [1], known as the ICH ES
guideline. One of the concems of ES is a bridging
study to allow extrapolation of foreign clinical data
to a new region. The ES guidance is based on the
premise that it is not necessary to repeat the entire
clinical drug development programme in the new
region; bridging studies should allow for new

medicines to be supplied expeditiously to patients
for their benefit.
When evaluating the extrapolation of clinical

data from one region to an ethnically different
region, it is important to assess whether the
pharmacokinetic data are similar across the popu-
lations. Pharmacokinetic studies are conducted to
characterize the absorption, distribution, meta-
bolism, and excretion of a drug either in blood or
in other pertinent locations. The pharmacokinetic
profiles of two populations are compared in terms of
the appropriate parameters, which are measures of
systemic exposure such as peak concentration and
area under the concentration-versus-time curve
(AUC). However, there are no standard methods
for assessing the similarity of pharmacokinetic
parameters. Graphical presentation of data and the
evaluation of confidence intervals for the difference
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of mean parameters between populations are often
used.

The confidence interval approach claims equiv-
alence of two populations when a two-sided
confidence interval for the ratio of the geometric
mean of pharmacokinetic parameters between
populations is entirely contained in prespecified
equivalence limits. Peace [2] argues that since the
decision interval for concluding bioequivalence is
based upon the ratio of means, it is more
appropriate to base the decision on the mean of
the individual ratios, and many statistical methods
have been discussed. The method based on the ratio
of the geometric mean is a basic method for testing
bioequivalence [3,4]. However, there are some
problems with the application of this method to a
bridging study. Bioequivalence is usually assessed by
comparing pharmacokinetic parameters after the
administration of two formulations with the same
drug product in the same individual. The assess-
ment ofbioequivalence is based on the fundamental
assumption thatwhen two formulations of the same
drug product are equivalent in the rate and extent of
drug absorption, they will achieve the same
therapeutic effect. On the other hand, in a bridging
study, the pharmacokinetic parameters of the same
drug are compared between ethnically different
regions. A bridging study will inevitably include
patients with different baseline demographics,
which may affect the profiles of the pharmacoki-
netic parameters. Therefore, the variability of the
pharmacokinetic data in the bridging situation is
essentially larger than that observed in a bioequi-
valence study, and it is required to show similarity
rather than equivalence of the pharmacokinetic
parameters.

Another problem with the confidence interval
approach is that it requires equivalence with regard
to the population means. The assumptions of
normality and equal variances, which are often
assumed in the assessment of bioequivalence, are
not expected to be reasonable in the comparison of
ethnically different regions. Furthermore, the
methods based on a comparison of population
means are, in general, statistically significant when
the sample size of each group is large, even if the
difference is not clinically important. In a bioequi-
valence study, the sample size calculation can be
properly conducted using a crossover design, while
it is difficult to set the sample size in the bridging
settings. For these reasons, in the evaluation of the
similarity of pharmacokinetic parameters across
ethnically different populations, a method assessing
the variability of distributions themselves is more
appropriate than that based on a comparison of
population means.

One approach to this problem is to measure the
overlap of the distributions. The overlap coefficient

(OC), the proportion of overlap of two probability
distributions, has been recognized as a measure of
similarity between distributions [5]. Figure 1 illus-
trates the OC from two normal distributions with
unequal variance. The shaded area is the proportion
of similar responses (OC). The OC ranges between
zero and unity. The two distributions are more
similar as the OC is closer to unity. Assuming that
both distributions are normal and have equal
variances, a comparison of two distributions using
the OC approximates a comparison of two means.
Rom and Hwang [6] proposed using the proportion
of similar response, which is the same measure as the
OC, and they applied this measure to pharmacoki-
netic data from a bioequivalence study under the
assumption that the two distributions were normal.

The OC estimators are classified into two types
according to the density estimation method: the
parametric approach, with the assumption that
the distributions of response are normal [6,7] and
the nonparametric approach, with no assumption
about the distributions [8,9]. Stine and Heyse [8]
explored the properties of several estimators
through simulation studies and found that the
parametric approach performed well in normally
distributed settings, while the nonparametric
approach performed well in situations in which
two samples were obtained from skewed distri-
butions. Although the results of their study are very
useful, they focused on general cases. Further
examinations that reflect the bridging situation
will be necessary to use OC estimates as a measure of
the similarity of pharmacokinetic data between
ethnically different populations.

In this paper, we propose the use of the OC for
assessing the similarity of pharmacokinetic data
between ethnically different populations. We con-
sider the five OC estimators: two parametric ones
and three nonparametric ones. Simulation studies
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Figure 1 The overlap coefficient (OC; shaded area) from
two normal distributions with unequal variance.
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under various sampling situations are conducted to
compare the performances of the five OC estimators
and their bootstrap confidence intervals. We analyse
pharmacokinetic data from a bridging study of
a combination therapy for metastatic colorectal
cancer patients in the USA and Japan.

2 Pharmacokinetic data of the
UFT/leucovorin study

UFT is a fluorouracil prodrug and an oral 4: 1 molar
concentration of uracil plus tegafur. Combination
therapy with oral UFT and oral leucovorin (UFT/
leucovorin) is used to treat metastatic colorectal
cancer. Multicentre phase III studies evaluating the
efficacy of UFT/leucovorin have already been
conducted in Europe and the USA [10,11]. To
facilitate the extrapolation of these foreign clinical
data to Japanese patients, pharmacokinetic studies
of UFT/leucovorin for metastatic colorectal cancer
patients were conducted in the USA andJapan at the
same time with the same protocol [12,13]. The study
subject consisted of 45 patients in the USA and 44
patients in Japan. With respect to baseline charac-
teristics, there was a difference in the distribution of
body surface area between the two populations.
However, when the dosage of UFT was adjusted for
body surface area, the influence of this difference
was considered to be small. Blood concentrations of
5FU, uracil, and leucovorin were measured nine
times within eight hours, and the AUC was
calculated for each patient. We used logarithmic
transformed values of the AUC for 5FU, uracil and
leucovorin to assess the similarity between the two
populations.

Table 1 shows the summary statistics. For all
response variables, the mean values of AUC were
larger in Japan than in the USA, while the standard

deviations were larger in the USA than in Japan.
Considering the summary statistics in Table 1, we
can see that theAUC of 5FU in both populations was
almost normally distributed, and little difference
was observed in their variances. For uracil, the
distribution of the AUC inJapan was almost normal,
but that in the United States was left-skewed. For
leucovorin, the distribution of the AUC was almost
normal in both populations, with their variance
being almost equal.

3 Estimation of the overlap coefficient
3.1 Definition of OC

Consider a pharmacokinetic study in two different
populations. Let Xi (i = 1,...,n) and Yi (i =
1,..., m) be a response variable for each patient i
from two different populations with densities fand
g, respectively. The OC is defined as the area under
the smaller of the two population density functions:

OC = f min[f(x), g(x)] dx

3.2 Parametric estimators

Estimation of the OC has focused on samples from a
normal population. If the two populations are
normal with means px and py, respectively, and a
common variance o,, the estimator of the OC is
given by [5,7]

. X-Y
=

n-1 SX +(m - 1)S2
V

=

m-

Table 1 Summary statistics of logarithmic transformed AUC for 5FU, uracil, and leucovorin

Population Summary statistics 5FU Uracil Leucovorin

Japan Sample size 44 44 44
Meana 5.21 8.54 7.80
Standard deviation 0.64 0.59 0.41
Skewness 0.12 -0.53 0.01
Kurtosis - 0.12 0.49 0.19
P-value for the test of normalityb 0.72 0.40 0.92

United States Sample size 43 39 42
Meana 4.82 7.78 7.62
Standard deviation 0.83 1.03 0.43
Skewness -0.57 -0.76 - 0.19
Kurtosis -0.25 0.05 -0.65
P-value for the test of normalityb 0.08 0.01 0.59
P-value for the test of equal variance 0.09 0.00 0.79
Ratio of variance 1.69 3.04 1.04

alog(ng.h/mL).
bShapiro-Wilk test.
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where F( * ) denotes the cumulative standard
normal distribution, X and Y are the sample
means for Ax and puy, respectively, and Sx and Sy
are the sample variances in each population. We
refer to this estimator as "Normal-Eq'.

If the two populations are normal with unequal
variances and Szx < Sy, two density estimators, f(x)
andg(x), cross at two points, which are given by the
roots of a quadratic expression, so that:

(X1 X2) (S2 S -1[(XSk-YS2) + SXSyI(X_
+ 2(Sy - S2) log (Sx/SY) 1/2]

We take xl to be the smaller root. Then, the
estimator of the OC is given by [5,7]

OC = 1 + '(Z11) - (Z12) - F(Z21) + c1(Z22)
where z1l = (xi - X)/Sx and Zj2 = (Xi - Y)/Sy for
j = 1, 2. We refer to this estimator as "Normal-Un".

3.3 Nonparametric estimators

The nonparametric estimators replace the unknown
population density functions, fand g, in the OC by
the kernel density estimators computed from each
sample [8,9]. A kemel density is a continuous
smooth estimate of the population density func-
tion. Given data Xi (i = 1, K, n), the kernel function
K(.) and the bandwidth h(X,), the kernel density
estimator is given by

f(x) = 1 E 1 K(XX1)
Several simulation studies have shown that the
choice of the kernel function has little effect on
the estimated kernel density [8,14]. Here, we use the
Gaussian kemel function, which is given by

K(u) = /2; exp - 2)

The bandwidth, h(Xi), which is also called the
smoothing parameter or window width, decides the
degree of smoothness. The setting of the bandwidth
is a difficult problem because a kemel density with a
wide bandwidth has relatively low variance but
more bias due to its wide kernel, while a small
bandwidth leads to less bias but more variance.
Therefore, the choice of the bandwidth strongly
influences the OC estimate [8]. There are many
methods for computing the bandwidth from
samples, which are classified into two types: the
fixed-bandwidth that has a constant value and the
variable-bandwidth that changes a value of band-
width according to data Xi adjusting for the local
variations in smoothness [14].

The fixed-bandwidth is usually estimated to
minimize a kernel-based estimate of the asymptotic

mean integrated squared error. We introduce the
notation R(g) = fg(u)2 du for any square integral
function of K(u) and rk = fu2K(u) du. Let f be the
true density function. Under some conditions, the
optimal bandwidth h(Xi) = ho is given by [14]

ho ok4R 11/n

Here, there exist several proposals for selecting ho in
estimating R(f"). We used two methods to choose
the fixed-bandwidth. The first method is the normal
scale rule [15], which Stine and Heyse [8] applied to
obtain nonparametric estimates of the OC. This rule
depends on the assumption that the true density f
is Gaussian and may tend to oversmooth if the
population is multimodal. The second method is
the direct plug-in rule [16], where ho is estimated by
its sample estimate of R(f"). We refer to the OC
estimators based on these two fixed-bandwidth
kernel estimators as "Kemel-Ns" and "Kernel-Pi",
respectively.

The usual fixed-bandwidth density estimator is
susceptible to bumpiness in the tails, since it does
not adapt to local variations in the smoothness. The
estimator can be generalized to allow this by using
the adaptive bandwidth. In this variable kernel
density estimator, the h(Xi) is replaced by its sample
values. In this study, we used the variable-band-
width h(Xi) = hof(Xi)-f2, which was recommended
by Abramson [17]. We refer to the OC estimator
based on the variable-bandwidth kernel estimator as
"Kernel-Var".

3.4 Bootstrap confidence intervals

The confidence intervals can be easily constructed
for Normal-Eq and Normal-Un estimators [18].
However, it is difficult to estimate the standard
error of the nonparametric estimators. We consider
bootstrap confidence intervals for the five estima-
tors (Normal-Eq, Normal-Un, Kemel-Ns, Kemel-Pi,
and Kernel-Var). We used a standard normal
interval, which is the simple bootstrap interval
based on a normal approximation [19]. The
implementation is an iteration of the steps used to
estimate the OC. Each iteration of the resampling
procedure is as follows:

1) Draw samples with replacement from two
observed groups with size n and m, respectively.
The bootstrap samples are of the same size as the
initial samples.

2) For the nonparametric estimators, compute the
kernel estimates of population density.

3) Compute the estimates of the OC from the
bootstrap samples or the bootstrap kernel
estimates calculated in step 2.

Clinical Trials 2005; 2: 174-181www.SCTjournal.com
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This procedure is repeated B times. Then, the
bootstrap estimate of standard error SE* is given by

SE* b=_DCVB-i

where OC* is the estimate from the bth sample
(b = 1,..., B) and O = Bb=1 OCb*/B. The standard
normal interval is OC + Z1-a/2SE*, where Zl-a/2 iS
the 1 - a/2 percentile of the standard normal
distribution. For our simulations and analyses of
actual data, we set B = 200.

All analyses were performed using the SAS software
package, IML procedure, QUAD subroutine [201. This
subroutine can implement an adaptive global-type
integrator that produces a quick, rough estimate of
the integration result and then refines the estimate
until achieving the prescribed accuracy.

4 Simulation study
To evaluate the performance of five estimators of the
OC, we carried out simulation studies to approxi-
mate the AUC data in the UFT/leucovorin study.
The following three situations were considered for
the shapes of the distributions of two populations.
Situation 1 was based on the leucovorin data; both
distributions were normal, with equal variance.
Situation 2 was based on the SFU data; both
distributions were normal, with unequal variance.
Situation 3 was based on the uracil data; one
distribution was normal, and the other was not
normal. The skewed distribution was simulated by a
mixture of two normal distributions considering the
standard deviation, skewness and kurtosis in the
uracil data. In the bridging situation, it is unlikely
that the true value of the OC is almost 1, and the
two distributions are not considered to be similar if
the OC is less than 0.6. Therefore, the mean
differences of the two populations A were set so
that the true values of the OC ranged from 0.6 to
0.9. The detailed simulation settings in each
situation are as follows:

Situation 1

Let N(pu, Ca2) be the normal distribution with mean
j. and variance oc2, and let Xi and Yi be the
independent samples from each population.

Xi N(A, 12), Yi N(O, 12)
where A = 0.25, 0.50, 0.75, and 1.00. In this case,
the true values of the OC were 0.90, 0.80, 0.71, and
0.62, respectively.

Situation 2

Xi , N(A, 12), Y- N(o, (1/p)2)
where the variance ratio p2 was 2 and A = 0, 0.50,
and 0.80. In this case, the true values of the OC were
0.82, 0.71, and 0.60, respectively.

Situation 3

Xi N(A, 12), Yi -pN(O, 12) + (1 -p)N(-1.8, 1.42)
where the mixture proportion p = 0.6 and A = 0,
0.30, and 0.60. In this case, the true values of the OC
were 0.78, 0.70, and 0.61, respectively.
An equal sample size of 50 for each group was

generated, and the simulations were based on 1000
replications, so that the estimated coverage prob-
abilities of true 90% confidence intervals would
have a simulation accuracy of approximately ±1.6%
due to Monte Carlo variability. The simulations
were evaluated in terms of the mean squared error
(MSE), the coverage probability of 90% confidence
intervals, and the mean length of 90%'o confidence
intervals.

Table 2 shows the simulation results for the MSE.
In situation 1, Kemel-Var had the largest MSE when
A = 1. There were no large differences among the
other estimators. In situation 2, Normal-Eq had the
largest MSE for all values of A. The MSE of Normal-
Un, Kernel-Ns, Kernel-Pi, and Kernel-Var were
similar, with Kernel-Var having the largest. In
situation 3, Normal-Un had the largest MSE for all
values of A, in particular, a large MSE when A = 0
and 0.3. Among nonparametric estimators, Kernel-
Var had the largest MSE.

Table 3 shows the simulation results for the
coverage probability and mean length of 90%
confidence intervals. The coverage probabilities
were very close to the nominal level of 90% for
three nonparametric estimators (Kernel-Ns, Kernel-
Pi, and Kernel-Var) in all situations. On the other
hand, the coverage probabilities for two parametric
estimators (Normal-Eq and Normal-Un) were smal-
ler than the nominal level of 90% in situation 2 and
situation 3, respectively. In terms of the confidence
interval length, no large differences were observed
among estimators, although the lengths of Normal-
Eq were a little wider than those of the other
estimators.

The results of the simulation studies are sum-
marized as follows. Normal-Eq had the largest MSE
with poor coverage probabilities in situation
2. Normal-Un had the largest MSE with poor
coverage probabilities in situation 3. In almost
all cases, Kernel-Var had a larger MSE than the
other nonparametric estimators (Kernel-Ns and
Kernel-Pi).

Clinical Trials 2005; 2: 174-181 www.SCTjournal.com
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Table 2 Mean squared error (MSE) of the OC estimates

True value Estimatorsb

Situationa A OC Normal-Eq Normal-Un Kernel-Ns Kernel-Pi Kemel-Var

Situation 1 0.25 0.90 0.0047 0.0047 0.0049 0.0050 0.0044
0.50 0.80 0.0062 0.0058 0.0048 0.0047 0.0044
0.75 0.71 0.0058 0.0056 0.0053 0.0052 0.0055
1.00 0.62 0.0057 0.0056 0.0059 0.0059 0.0076

Situation 2 0.00 0.82 0.0139 0.0042 0.0049 0.0044 0.0060
0.50 0.71 0.0082 0.0048 0.0048 0.0047 0.0052
0.80 0.60 0.0062 0.0048 0.0048 0.0049 0.0054

Situation 3 0.00 0.78 0.0052 0.0085 0.0050 0.0047 0.0056
0.30 0.70 0.0055 0.0084 0.0046 0.0046 0.0048
0.60 0.61 0.0049 0.0066 0.0050 0.0051 0.0062

aSituation 1: two equal-variance normal distributions; situation 2: two unequal-variance normal distributions; situation 3: normal
distribution and skewed distribution (mixture distribution).
bNormal-Eq: parametric approach (equal-variance); Normal-Un: parametric approach (unequal-variance); Kernel-Ns: nonparametric
approach (fixed-bandwidth, normal scale rule); Kernel-Pi: nonparametric approach (fixed-bandwidth, plug-in rule); Kernel-Var:
nonparametric approach (variable-bandwidth).

5 Results of the UFT/leucovorin study
From the results of the simulation studies, the
Kemel-Ns and the Kernel-Pi outperformed the other
estimators in terms of the MSE, the coverage
probability and the mean length of the 90%
confidence intervals. Therefore, we used these two
estimators for the analysis of the UFT/leucovorin
pharmacokinetic data. We estimated the OC and its
90% confidence intervals of logarithmic trans-
formed AUC for SFU, uracil, and leucovorin. We
also estimated the ratio of the geometric mean and
its 90% confidence intervals, which is often used for
the assessment of bioequivalence.

Table 4 shows the results from these analyses. Few
differences in the two OC estimators were observed,
as expected. The OC estimate for leucovorin had the
largest value, and the OC estimate for 5FU was close
to that for leucovorin. On the other hand, the OC
estimate for uracil was a relatively small value. For
the ratio of the geometric mean, the estimate for
leucovorin had a value close to 1, although the
estimates for SFU and uracil were substantially
larger than 1.

6 Discussion

We compared the relative performance of the five
OC estimators and their bootstrap confidence
intervals in bridging studies where the similarity of
pharmacokinetic profiles was assessed between
ethnically different populations. The simulations
have been conducted so as to approximate the AUC
data in the UFT/leucovorin study. From the
simulation studies, although the simulations were
limited, we can draw some conclusions about the

performance of the five estimators. First, nonpara-
metric methods outperformed parametric methods
in almost all situations. Among nonparametric
methods, Kernel-Ns and Kemel-Pi gave consistently
good results, and few differences in their perform-
ances were observed. Therefore, it is suggested that
these two nonparametric estimators with fixed-
bandwidth kemel are robust to the distributional
assumptions and provide a reasonably good measure
of similarity in the analysis of pharmacokinetic data
in bridging studies. For selecting bandwidth, we
used two simple methods, the normal scale rule
(Kernel-Ns) [15] and the direct plug-in rule (Kernel-
Pi) [16]. Sheather and Jones [21] have proposed a
more theoretically attractive method for selecting
the bandwidth in kemel density estimation. How-
ever, their approach needs to use an optimization
technique such as the Newton-Raphson method to
obtain the bandwidth. Considering the stability and
simplicity for estimating the bandwidth, Kemel-Ns
and Kernel-Pi seem to be sufficient to estimate the
OC in practical settings.

Secondly, for the parametric estimators, Normal-
Eq and Normal-Un provided poor performance
under the normal distribution with unequal var-
iance (situation 2) and under the non-normal
distributions (situation 3), respectively. These find-
ings are compatible with the simulation results of
Stine and Heyse [8]. However, the MSE of Normal-Eq
in situation 3 was not as large as one might have
expected. This relatively good performance of the
Normal-Eq appears to be related to the simulation
settings of the skewed distribution. In our simu-
lations, the skewed distribution was simulated by a
mixture of two normal distributions, which was not
so heavily skewed. In the linear discriminant
analysis, it is well known that the estimation of
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false discriminant rates is robust to non-normality,
such as mixtures of normal distributions [22,231.

From the analysis of the UFT/leucovorin study,
we tried to judge the similarity of the AUCs of 5FU,
uracil, and leucovorin between the two populations.
In a bioequivalence study, assessment for equival-
ence of AUC between the two populations is based
on whether 90%A confidence intervals for the ratio of
geometric means are entirely contained in the range
from 0.8 to 1.25 [3,4]. According to this criterion, all
response variables are judged to be dissimilar
between the two populations. However, this cri-
terion is considered to be strict in the bridging
situation, because of the differences in study design.
For the evaluation of bioequivalence of the
maximum plasma concentration (Cmax), a wider
interval from 0.7 to 1.43 may be acceptable [24]. It is
reasonable to suppose that this wider criterion will
suffice for the assessment of similarity in the
bridging situation. According to this criterion,
only leucovorin data are judged to be similar
between the two populations.

There is no general consensus about the criteria
of similarity by the OC estimates. However,
considering the relationship between the standar-
dized mean difference and the OC estimates in the
normal distributions with equal variance, judge-
ment using the confidence intervals for the
difference of the population means is equivalent to
the judgement by the lower limit of the OC
estimates. In leucovorin, the distributions of AUC
were almost normal in both populations, with their
variances being almost equal. The lower limits of the
90% confidence interval for two nonparametric OC
estimates (Kemel-Ns and Kernel-Pi) were 0.75 and
0.76, respectively. Therefore, it seems reasonable to
say that the two distributions of AUC for leucovorin
are similar.

For 5FU, the distributions of AUC were almost
normal, and large differences were not observed in
their variances. Furthermore, there was little
difference in the lower limits of the OC estimates
between leucovorin and 5FU. It can be interpreted
that the two distributions ofAUC for SFU are similar
to some extent.

For uracil, although the distribution of AUC in
the USA was left-skewed, the lower limits of the OC
estimates were smaller than those of leucovorin. It
may be interpreted that the two distributions of
AUC for uracil are not similar. With respect to
criteria to assess similarity using the OC estimates,
further research and considerable effort to reach the
consensus among specialists, including the regulat-
ory authority, will be needed.

Considering the low values of the OC estimates
for uracil, the presence of ethnic factors that
influence the pharmacokinetic profile of uracil
may be suggested. It is important to examine the
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Table 4 Estimates and 90% confidence intervals of the OC and the ratio of geometric mean

Estimates (90% confidence intervals)

Methodsa 5FU Uracil Leucovorin

OC Kernel-Ns 0.82 (0.72, 0.92) 0.67 (0.55, 0.78) 0.85 (0.75, 0.94)
Kernel-Pi 0.83 (0.73, 0.93) 0.69 (0.58, 0.79) 0.86 (0.76, 0.95)

Ratio of geometric mean 1.47 (0.92, 2.02) 2.13 (1.48, 3.06) 1.19 (0.99, 1.42)
a Kernel-Ns and Kemel-Pi: nonparametric approaches with kernel density estimation using different fixed-bandwidths (normal scale rule
and plug-in rule) for the overlap coefficient (OC).

influence of ethnic factors, such as weight and body
surface area, on pharmacokinetic profiles between
patients in different regions. If some ethnic factors
are known to influence the pharmacokinetic data,
the statistical methods that adjust such factors as
covariates will be applied. One of those methods is
the analysis of covariance, which is based on mean
differences between two data sets. With respect to
the OC estimates, there is no general methodology
for such analyses. Further research on this issue will
be necessary.
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