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Using Perceptual Models to Improve Fidelity
and Provide Resistance to Valumetric Scaling for

Quantization Index Modulation Watermarking
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Abstract—Traditional quantization index modulation (QIM)
methods are based on a fixed quantization step size, which may
lead to poor fidelity in some areas of the content. A more serious
limitation of the original QIM algorithm is its sensitivity to valu-
metric changes (e.g., changes in amplitude). In this paper, we first
propose using Watson’s perceptual model to adaptively select the
quantization step size based on the calculated perceptual “slack.”
Experimental results on 1000 images indicate improvements in
fidelity as well as improved robustness in high-noise regimes.
Watson’s perceptual model is then modified such that the slacks
scale linearly with valumetric scaling, thereby providing a QIM
algorithm that is theoretically invariant to valumetric scaling.
In practice, scaling can still result in errors due to cropping and
roundoff that are an indirect effect of scaling. Two new algorithms
are proposed—the first based on traditional QIM and the second
based on rational dither modulation. A comparison with other
methods demonstrates improved performance over other recently
proposed valumetric-invariant QIM algorithms, with only small
degradations in fidelity.

Index Terms—Digital watermarking, perceptual model, quan-
tization index modulation (QIM), rational dither modulation
(RDM), valumetric scaling, Watson’s model.

I. INTRODUCTION

EARLY communications models of watermarking assumed
a communication channel that contained two unknown

noise sources. The first noise source modeled the interference
due to the cover work and the second noise source modeled
subsequent distortions between the time of embedding and
detection. It is now recognized that digital watermarking can
be best modeled as communication with side information [1].
The side information available is the original coverwork or
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host signal, which is entirely known to the watermark em-
bedder. For such an arrangement, Costa showed [2] that the
channel capacity of a communications channel with two noise
sources—one of which is entirely known to the transmitter,
but both unknown to the receiver, is equivalent to a channel in
which the known noise source is absent. This result has im-
portant implications for digital watermarking—Costa’s result
implies that the coverwork (i.e., the known first noise source)
need not interfere with the embedded watermark.

Quantization index modulation (QIM), first proposed by
Chen and Wornell [3], provides a computationally efficient
method for implementing codes based on Costa’s work. QIM
uses a structured lattice code to provide a computational
efficient watermarking algorithm with high data capacity.
However, the standard algorithm employs a fixed quantization
step size which may lead to poor fidelity in some areas of the
coverwork. Dither modulation (DM) has been introduced to
partially addresses this issue. Section II describes QIM and DM
in detail.

It is well known that improvements in fidelity and robustness
can be achieved by adapting the watermark strength to the local
perceptual characteristics of the coverwork. To address the fi-
delity issue, we apply Watson’s perceptual model [4], described
in Section III, to determine how much each discrete cosine trans-
form (DCT) coefficient can be altered. This quantity, referred
to as “slack,” is then used to adaptively adjust the quantiza-
tion step sizes used to quantize the DCT coefficients. The al-
gorithm (DM–W) is described in Section IV. Experimental re-
sults on 1000 images indicate that the algorithm provides sig-
nificant improvements in fidelity, as measured by Watson’s dis-
tance, and performance degrades more gracefully with additive
white Gaussian noise.

The most serious disadvantage of QIM has been its extreme
sensitivity to valumetric scaling. Even small changes in the
brightness of an image, or the volume of a song, can result in
dramatic increases in the bit-error rate (BER). Several papers
[5]–[10] have addressed this issue, and prior work is discussed
in Section V.

The slacks computed by Watson’s model do not scale linearly
with valumetric scaling. As a result, our adaptive DM method
[11] is not robust to valumetric scaling. In order to be robust
to valumetric scaling, it is necessary that the quantization step
sizes be scaled by the same scaling factor that the signal has un-
dergone in order to correctly perform QIM decoding. A small
modification to the Watson model leads to slacks that do scale
linearly [11]. This algorithm, referred to as the modified Watson
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Fig. 1. Watermarking as a communication system.

model (DM–MW) is compared to the work of Oostveen et al.
[7] and shown to have superior performance. The modification
of the Watson model does lead to a degradation in fidelity. How-
ever, this degradation is slight, and the new algorithm still has
significantly better fidelity when compared with either the orig-
inal DM algorithm or that of Oostveen et al. [7]. This work is
described in Section VI.

Dither modulation using a DM–MW implicitly assumes that
the slacks calculated by the embedder and detector are the same,
even though the function of embedding alters the DCT coeffi-
cients. Since these alterations are small, this assumption is usu-
ally true. However, this is also the source of some error. To guar-
antee that the slack is unaffected by the embedding procedure,
we investigated using rational dither modulation.

Rational dither modulation (RDM) [12] has been recently
proposed as an alternative DM method in which the quantiza-
tion step size at time is a function of the watermarked sam-
ples at earlier times. This algorithm is described in Section VII.
If this function is chosen such that it scales linearly with ampli-
tude, then RDM is invariant to valumetric scaling. To incorpo-
rate a perceptual model within the RDM framework, we propose
to calculate the quantization step sizes for the current block
based on slacks of the previous watermarked block. Thus, while
the slacks of the current block are affected by the embedding
process itself, the embedding of block is based on the slacks
from the previously watermarked block , whose slacks were
altered in the previous iteration but are unaffected by the pro-
cessing of block . Thus, both the watermark embedder and the
watermark detector are guaranteed to use the identical values of
step size (ignoring noise and roundoff error). This is described
in Section VIII. Of course, once again, there is a degradation
in fidelity, but experimental results indicate that it is small. Ex-
periments shows that the final algorithm, rational dither mod-
ulation using modified Watson distance (RDM–MW), has the
lowest BER as a function of amplitude scaling, compared to
DM, RDM, DM–MW, and the algorithm of [7].

II. QUANTIZATION INDEX MODULATION

Watermarking with side information is modeled by the com-
munication system shown in Fig. 1. The message and the
cover Work or host signal (i.e., image or song) are input into
the watermark embedder, which outputs a watermark that is
added to the cover Work to produce the watermarked work .
The watermarked work then undergoes a number of distortions
that are modeled as an unknown noise source . The water-
mark detector receives a distorted, watermarked work (i.e.,

and decodes a message ).
A quantizer maps a value to the nearest point belonging to a

class of predefined discontinuous points. The standard quanti-

zation operation with step size is defined as

round (1)

where the function round denotes rounding a value to the
nearest integer.

Basic QIM uses two quantizers and . They can be used
to quantize the host signal to two sets of disjoint points, one set
represents bit “0” while the other represents bit “1.” When a
message is being embedded, or is chosen according to
the message bit to quantize to the nearest quantization point.
For example, and may be chosen such that quantizes
to even integers and quantizes to odd integers. If we wish to
embed a “0” bit, then is chosen, else . The watermarked
signal is given by

(2)

A. Dither Quantizer for QIM

Dither modulation is an extension of the original QIM algo-
rithm, proposed by Chen and Wornell [13]. The purpose of the
dither modulation, which is commonly used to deal with quanti-
zation noise [14], [15], is threefold. First, it is well known that a
pseudorandom dither signal can reduce quantization artifacts to
produce a perceptually superior quantized signal. Second, dither
ensures that the quantization noise is independent of the host
signal . Third, the pseudorandom dither signal can be consid-
ered to act as a key which is only known to the embedder and
detector, thereby improving the security of the system.

The host signal sample is quantized with the resulting
dithered quantizer to form the watermarked signal sample .
The embedding function embeds message bit by

(3)

where

(4)

and is a pseudorandom signal usually chosen with a uni-
form distribution over , and is the number of
samples.

B. Hard- and Soft-Decision Detection

During detection, the detector calculates two signals
and by embedding “0” and “1” into the received signal

separately, in the same manner as (3)

(5)

The detected message bit is then determined by judging which
of these two signals has the minimum Euclidean distance to the
received signal

(6)

The above description embedded one bit in each sample. In
practice, we usually spread one message bit into a sequence of
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samples. One way to achieve this is to use a rate repeti-
tion encoding (i.e., simply embedding the same message bit in

samples). Detection can still be performed on a one-bit-per
sample basis followed by a majority vote taken over the sam-
ples to decide which message bit was embedded. We refer to
this as hard-decision detection, which is given by

where is the floor function (7)

An alternative detection strategy is to accumulate the two Eu-
clidean distances for samples and then determine the detected
message bit, that is

(8)

The code rate is also but this soft-decision decoding [13]
usually outperforms hard-decision decoding.

The original QIM and DM algorithms, described before, use
a fixed quantization step size that is independent of the con-
tent. However, it is well known that the ability to perceive a
change depends on the content. For example, the human vi-
sual system is much less sensitive to changes in heavily tex-
tured regions and more sensitive to changes in uniform regions.
To account for this, we propose using a perceptual model to
automatically select the quantization step size at each sample.
Section III provides a description of the perceptual model we
use, and Section IV then describes how this model is incorpo-
rated into the QIM framework.

III. WATSON’S PERCEPTUAL MODEL

Any perceptual model of the human visual system (HVS) has
to account for a variety of perceptual phenomena, including lu-
minance masking, contrast masking and sensitivity, all of which
are discussed shortly. In psychophysical studies, the level of dis-
tortion that can be perceived in just more than 50% of experi-
mental trials is often referred to as a just noticeable difference
(JND). This difference is considered the minimum that is gen-
erally perceptible, and JNDs are sometimes employed as a unit
for measuring the distance between two images.

Watson’s model estimates the perceptibility of changes in in-
dividual terms of an image’s block DCT.1 It uses the block DCT
transform, which proceeds by first dividing the image into dis-
joint 8 8 blocks of pixels. Each block is then transformed into
the DCT domain, resulting in the block DCT coefficients of the
transformed image . We denote one term of the th block by

, , . is the dc term (i.e., the mean
pixel intensity in the block).

1Note that we are not referring to quantized JPEG coefficients.

Watson’s model consists of a sensitivity function, two
masking components based on luminance and contrast masking,
and a pooling component.

A. Sensitivity

The model defines a frequency sensitivity table . For each
DCT coefficient , each table entry is approximately
the smallest discernible change in the absence of any masking
noise. The resulting frequency sensitivity table is shown in [16].
Note that it is a table of constant values.

B. Luminance Masking

Luminance adaptation refers to the fact that a DCT coefficient
can be changed by a larger amount before becoming perceptible,
if the average intensity of the 8 8 block is brighter. The lumi-
nance-masked threshold is given by

(9)

where is a constant with a suggested value of 0.649,
is the dc coefficient of the th block in the original

image, and is the average intensity of the image. Alter-
natively, may be set to a constant value representing the
expected intensity of images.

C. Contrast Masking

Contrast masking (i.e., the reduction in visibility of a change
in one frequency due to the energy present in that frequency)
results in a masking threshold given by

(10)

The final threshold estimates the amounts by which
individual terms of the block DCT may be changed before re-
sulting in one JND. We refer to these thresholds as slacks.

D. Watson Distance

Given the original content , its transform domain coeffi-
cients are denoted by , and denotes the watermarked
transform coefficients. The Watson distance between the orig-
inal and watermarked image is then given by

(11)
Aside, we note that the JPEG standard provides a sample

set of image-independent quantization matrices which, while
not part of the standard, have been very widely adopted. The
JPEG standard requires that the quantization matrix be part of
the compressed file. Watson’s model can be used to determine
an image-dependent quantization matrix that can significantly
improve the performance of JPEG. The interested reader is di-
rected to [17] for further information.

It is interesting to contrast Watson’s perceptual distance with
measures of fidelity based on the document-to-watermark ratio
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Fig. 2. Original image.

Fig. 3. Watermarked image (using DM method) with a Watson distance of 513,
a DWR = 15 dB, and a PSNR of 28 dB.

(DWR) or peak signal-to-noise ratio (PSNR). The DWR is de-
fined as

(12)

where represents the original host signal, is the watermarked
signal, and the watermark . Similarly, the PSNR is
defined as

(13)

where is the total number of pixels and
Figs. 3 and 4 show two images with a and a

PSNR of 28 dB. The original image is shown in Fig. 2. Clearly,
Fig. 4 has a much higher fidelity than Fig. 3, yet the DWR and
PSNR measures are identical. In contrast, the Watson distances
for Figs. 4 and 3 are 53 and 513, respectively. Figs. 5 and 6 show
the same images at a DWR of 35 dB and a PSNR of 49 dB. The
Watson distances of Figs. 5 and 6 are 39 and 8, respectively.
It is very difficult to discern any difference even viewed on a
high-resolution computer monitor. However, if the images are
magnified, there are subtle artifacts within the sky region.

Fig. 4. Watermarked image (using the DM–W method) with a Watson distance
of 53, a DWR = 15 dB, and a PSNR of 28 dB.

Fig. 5. Watermarked image (using DM method) with a Watson distance of 39,
DWR = 35 dB, and a PSNR of 49 dB.

Fig. 6. Watermarked image (using the DM-W method) with a Watson distance
of 8, DWR = 35 dB and a PSNR of 49 dB.

Finally, we note that the Watson distance is not normalized
by the size of the image, while the DWR and PSNR measures
are. Consequently, a Watson distance of say, 100, is substantially
worse for small images than for large images.
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Fig. 7. Adaptive dither modulation based on Watson’s model.

IV. ADAPTIVE DITHER MODULATION BASED

ON WATSON’S PERCEPTUAL MODEL

Each watermarking application may have its own specific
requirements but the two most important and mutually con-
flicting requirements are usually fidelity and robustness. By lo-
cally adapting the quantization step size, we are able to provide
significantly improved fidelity. For example, in regions of high
texture, a larger step size can be used, while in regions of low
texture, a small step size is chosen. As we shall demonstrate,
this adaptivity can simultaneously improve robustness, at least
in high-noise regimes.

DM is robust to additive white Gaussian noise, provided the
standard deviation of the noise remains small compared with the
quantization step size. For dither modulation, the distance be-
tween and is (i.e., the distance between the
embedding output for message bit “0” and “1” is ). Thus, if
the noise exceeds , the BER for DM rapidly degrades.

In contrast, an adaptive step size has, by definition, many dif-
ferent step sizes. Thus, we would expect the rate of change in
BER to be slower. This is experimentally confirmed.

Traditional DM is nonadaptive, using a uniform scalar (step
size ) for quantization as shown in (3). Note that the slacks,
defined by (10), evaluate the amounts by which individual DCT
coefficients may be changed according to Watson’s perceptual
model. This motivates us to design an adaptive DM method in
which the DCT coefficients are quantized using step sizes that
are based on Watson’s perceptual model. We can use the slacks
of (10) to adaptively select the quantization step size.

The adaptive DM system is schematically shown in Fig. 7.
The cover Work is converted to the DCT domain and the co-

efficients serve as the host signal . The slacks from Watson’s
model are multiplied by a global constant to determine the
final quantization step size for each DCT coefficient. The
global constant must be known to the detector and is the
equivalent of the detector knowing the fixed quantization step
size in traditional DM. The constant is empirically adjusted
to control the watermark strength and the document-to-water-
mark ratio. The message is embedded by the DM embedder
to obtain the watermarked signal . After transmission, the re-
ceived work is used to estimate the corresponding quantiza-
tion steps . The estimation procedure is exactly the same as it
is at the embedder. However, the estimate is now applied to the
received, watermarked work rather than the original, unwater-
marked work. Finally, using these step sizes, the message is
detected by the DM detector using (5) and (8).

Note that we use the original work to compute the quantiza-
tion step size for each sample during embedding, and we use the
distorted watermarked work to compute the quantization step
size for each sample during detection. If these two step sizes are
not the same, then a bit error may occur. In fact, even without
distortions, there is the possibility that the slacks and, therefore,
the quantization step sizes, computed at the detector, will be dif-
ferent due to the changes introduced by the embedded. However,
in practice, very good correspondence is achieved, as is demon-
strated below.

A. Experimental Results

We used a database of 1000 images from the Corel data-
base, each of dimension 768 512. A binary message of length
12 288 bits is embedded into each image. We extracted 62 DCT
coefficients from each 8 8 block, ignoring the dc and highest
frequency coefficients. The entire sequence of 62 6144 coeffi-
cients was then pseudorandomized and each bit of the message
was embedded in 31 random coefficients.2 This is equivalent to
embedding two bits in each block of the image.

To see the benefit that randomization of the host signal can
bring, we examined the watermarking effectiveness of the em-
bedder with and without randomization of the host coefficients.
The effectiveness is simply the BER when detection is per-
formed to the generated watermarked signal immediately after
embedding (i.e., in the absence of any subsequent distortion).
Given the experimental conditions described early in this sec-
tion, it is observed that the BER or effectiveness with the non-
randomized method is 0.042. In contrast, the BER with random-
ization cross whole image is just 0.003. This demonstrates over
an order of magnitude improvement with randomization.

Fig. 8 shows the BER as a function of additive white Gaussian
noise. Results are provided for both our adaptive method and
the original DM algorithm of [3]. In both cases, we adjusted the
watermark strength such that the 35 dB.

To fix the average DWR at 35 dB, we fixed the quantization
step size at 3.0 for DM. For adaptive DM, the global constant
was adjusted to a value of 0.3 to meet the requisite DWR. Each
point on a curve is the BER averaged over 1000 images from
the Corel database.

The original DM algorithm has superior performance for low
noise. We believe the poorer performance of the adaptive DM
algorithm in the low noise region is due to a combination of
1) discrepancies between the corresponding estimated quanti-
zation step sizes at the embedder and the decoder and 2) the
smaller step sizes used.

For the adaptive DM method based on Watson’s model, the
histogram of quantization step sizes used for each image is
shown in Fig. 9. The overall average for 1000 images is 2.415,
which is smaller than that used for standard DM. Note that the
step sizes used for both methods quantize DCT coefficients,
while the noise is added in the pixel domain of the image.

2Randomization of the coefficients ensures that the 31 coefficients associated
with a single bit are 1) distributed spatially throughout the image and 2) dis-
tributed across a variety of low-, mid-, and high-frequency coefficients. This
provides some robustness to 1) clipping and other spatially localized processing
and 2) frequency filtering. The randomization also has the effect of whitening
the host signal.
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Fig. 8. BER as a function of additive white Gaussian noise (DWR = 35 dB).

Fig. 9. Histogram of step size for adaptive DM using Watson’s model. The
average step size for 1000 image is 2.415.

When the standard deviation in the noise exceeds 0.7, which
is roughly ( ), the BER for DM rapidly degrades,
and the adaptive method is clearly superior. Note also that the
superior performance of our algorithm is achieved with a very
low Watson distance of 8 (i.e., very high fidelity) compared with
the original method which has a Watson distance of 38.5. Thus,
improved robustness and improved fidelity have been simulta-
neously achieved.

Unfortunately, despite the new method’s superior per-
formance under additive white Gaussian noise conditions, it
remains vulnerable to amplitude scaling. When the amplitude of
image is scaled by factor of , the resulting luminance-masked
threshold (denoted as ) is calculated as

(14)

that is, does not scale linearly with amplitude scaling, but is,
in fact, invariant to amplitude scaling. Thus, referring to (10),
the slack and corresponding quantization step size are not
proportional to scaling factor and the adaptive DM method is
therefore sensitive to amplitude scaling.

V. PRIOR WORK ON VALUMETRIC ROBUSTNESS

There has been considerable work to develop QIM algo-
rithms that are invariant to valumetric scaling. Eggers et al.
[5] proposed to estimate the valumetric scaling by “securely
embedd[ing] SCS pilot watermark.” However, the fact that all
watermarked content may contain the same pilot signal may
lead to a security weakness—if the pilot signal can be estimated
and removed, the watermark may not be detected. At the very
least, the pilot signal is likely to reduce the watermark payload.
Lee et al. [6] proposed estimating the global scaling factor
using an EM algorithm, which does not need a pilot watermark.
However, they note that the “complexity could be impractical.”
The closest work to ours is that of Oostveen et al. [7] which
uses a simple perceptual model based on Weber’s law. The
quantization step size is a function of the average brightness
of a neighborhood of pixels. This provides a simple perceptual
model in which bright regions undergo larger changes than
dark regions. It is obvious that if the image is scaled by a factor

then the quantization step size is scaled similarly.
Lagendijk et al. [9], [10] have presented several methods

based on the characteristic function of the signal, and on
a maximum likelihood procedure. Their algorithm requires
models of both the host signal and noise. Experimental results
are reported on synthetic data and real audio data. However, it
is unclear how the algorithms will perform on real imagery.

Bas [8] recently proposed a method using so called “floating
quantizers.” The quantization and step sizes are based on the
minimum and maximum of a triplet of pixels. A key advantage
of this method is its robustness to nonlinear valumetric scaling
such as gamma correction.

VI. ADAPTIVE DITHER MODULATION BASED

ON A MODIFIED WATSON MODEL

The previously described adaptive DM algorithm based on
Watson’s perceptual model remains sensitive to valumetric
scaling, since the slacks do not scale linearly with amplitude
scaling. To be robust to valumetric scaling, we need the slacks
to scale linearly with valumetric scaling (i.e., we want the
estimated to be multiplied by when the amplitude of the
signal is scaled by ). To this end, we modify the luminance
masking in (9) to be , given as

(15)

Compared with the previous (9), the last term is new. The
term denotes the average of the dc components of the
image, which we divide by 128 (the mean pixel brightness).3

The modified slack is then given by

(16)

3Note that since the Watson distance and the proposed modified Watson dis-
tance are a function of C , the average brightness of the image, our methods
will be susceptible to any cropping operation that changes the overall brightness
value.
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Thus, after the modification, when the image is amplitude
scaled by factor of , the resulting Luminance masking and
slack are given by

(17)

In the modified Watson model, the new luminance masking
and slack scale linearly with . The modified slack can

then be used to determine the step size

(18)

When the image is scaled by a factor of , the estimated quan-
tization step size is also scaled by . This provides an adap-
tive QIM algorithm that is theoretically invariant to valumetric
scaling.

A. Experimental Results

For evaluation purposes, we again used a database of 1000
images, each of dimension 768 512. A binary message of
length 12 288 bits was embedded into each image. In the fol-
lowing experiments, the global constant was set to 0.075 for
the modified Watson algorithm.

For comparison purposes, we evaluated the performance of
the following algorithms:

A) the original nonadaptive QIM scheme of [13] using hard-
decision detection;

B) the adaptive QIM scheme of [7] using the hard-decision
detection;

C) adaptive QIM based on regular Watson model, soft-deci-
sion detection;

D) adaptive QIM based on the modified Watson model, hard-
decision detection;

E) adaptive QIM based on the modified Watson model, soft-
decision detection.

We compared the performance of these methods to amplitude
scaling when the DWR is fixed at 35 and 25 dB. However, while
the DWR is the same for images watermarked with the five algo-
rithms, the average Watson distance between the watermarked
and original image differs considerably, as shown in Table I.

Table I shows that the three adaptive schemes proposed here
have very much lower perceptual distortion as measured by
Watson’s distance. Importantly, the modification to the Watson
distance used in methods D and E to provide robustness against
valumetric scaling produces only a small degradation in image
quality and remain much better than methods A or B.

TABLE I
AVERAGE WATSON DISTANCE FOR DIFFERENT

METHODS FOR A DWR OF 35 dB

Fig. 10. BER versus amplitude scaling (DWR = 35 dB).

Fig. 11. BER versus amplitude scaling (DWR = 25 dB). Note that for basic
DM, the BER when there is no (unity) scaling is 0, and this point is therefore
not plotted.

The robustness to amplitude scaling for all schemes is shown
in Figs. 10 and 11 for DWRs of 35 and 25 dB, respectively. The
performance is qualitatively similar for both DWRs though, of
course, the BER is considerably smaller for 25 dB,
since the watermark is stronger in this case. The discussion
below is therefore restricted to the case of 35 dB.

We observe that for very small changes in scale
, the original algorithm A performs as well or better than the

others. Our method C has poorer performance in this range, but
for larger scale changes, it has similar or superior performance.
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Fig. 12. BER as a function of constant luminance change (DWR = 35 dB).
Note that for basic DM, the BER when there is no change in luminance is 0, and
this point is therefore not plotted.

It is also important to note that this is achieved with a perceptual
distortion, as measured by Watson distance, of less than 20%
compared with method A (see Table I).

Both algorithms A and C are not designed to be invariant to
valumetric scaling. Bit-error rates of greater than 10% occur for

and . In contrast, Oostveen et al.’s method B
and our methods D and E show much better robustness to scale
changes. Clearly, method E outperforms all others with a BER
that never exceeds 7% over the range of tested. To ensure
that this performance was not due to soft decoding alone, we
implemented method D, DM-MW with a hard decision. While
performing worse than method E, method D is still superior to
Oostveen et al.’s method (which also uses hard decoding). One
possible explanation for the poorer performance of Oostveen
et al.’s method is that it is pixel-based rather than DCT based.
Consequently, clipping of the pixels at 0 and 255 may have a
more direct and deleterious effect.

Finally, we again note that while the perceptual distortion in-
troduced by methods D and E is greater than for method C, the
modification to the Watson model has only resulted in a small
degradation in quality. Importantly, methods D and E have con-
siderably higher quality than previous algorithms A and B.

Fig. 12 illustrates the sensitivity of all five algorithms to the
addition/subtraction of a constant luminance value.

The method of Oostveen et al. is sensitive to this procedure
because their adaptive step size is based on the average inten-
sity of pixels in a neighborhood. This is clearly demonstrated in
Fig. 12, where it has the highest BER. Conversely, the regular
DM algorithm performs best, as the quantization occurs in the
DCT domain and does not include the dc coefficient. Thus, we
expect that DM would not be affected by this operation. Never-
theless, performance degradation is observed, particularly as we
darken (subtract) the image. We suspect that this is due to clip-
ping artifacts. Our proposed algorithms are substantially worse
than DM, but about an order of magnitude less sensitive com-
pared with Oostveen et al. The sensitivity of our methods is due
to the fact that the slack calculations are based on the average
intensity of the image, see (16), which is altered by the addition
of a constant luminance.

Fig. 13. BER as a function of amplitude scaling after a constant luminance
change of 10 (DWR = 35 dB).

Fig. 14. BER as a function of additive white Gaussian noise (DWR= 35 dB).

Fig. 13 shows the BER as a function of amplitude scaling
after the addition of a constant luminance change of 10. The
performance of all algorithms is qualitatively similar. However,
the BER is, on average, considerably worse than for amplitude
scaling alone, as shown in Fig. 10.

Fig. 14 shows the sensitivity of all five algorithms to additive
white Gaussian noise. The two curves from Fig. 8 are included
for completeness. All of the adaptive methods perform worse
than regular DM, for low levels of noise. However, the adaptive
methods degrade more gradually as the standard deviation of the
noise increases above about 0.6. The best performing algorithms
in this high-noise regime are DM–MW using soft decoding and
DM–W. Interestingly, the DM–W demonstrates the best perfor-
mance for noise with standard deviations of greater than 1.5.

To understand why the performance of DM–W outperforms
DM–MW for the noise of standard deviation greater than about
1.5, we examined the cumulative distribution in quantization
step sizes for the two algorithms, as shown in Fig. 15. The two
curves diverge at a step size of about 2. Thereafter, the DM–MW



LI AND COX: USING PERCEPTUAL MODELS TO IMPROVE FIDELITY 135

Fig. 15. Cumulative histogram of quantization step sizes for DM–WM and
DM–M, (measured over all 1000 images).

Fig. 16. BER as a function of JPEG quality for a fixed DWR of 35 dB.

increases more quickly, indicating that the DM–MW has smaller
quantization step sizes than DM–W.

It should be noted that this performance difference is specific
to a particular set of images. This is because the change in step
size is due to the last term of (15). For bright images, this term
will be greater than one and lead to larger step sizes than for
the standard Watson model. Conversely, for dark images, this
term will be less than one and lead to step sizes that are smaller
than the standard Watson model. Thus, a different image test set
might show that the DM–MW outperforms DM–W.

Fig. 16 shows the sensitivity of all five algorithms to JPEG
compression for a fixed DWR of 35 dB. All of the algorithms
are extremely sensitive to JPEG compression, although the orig-
inal DM is somewhat more robust. However, for quality fac-
tors of less than 92%, dither modulation with Watson’s model
(DM–W) performs best. It is unclear why this should be.

Fig. 17 examines the sensitivity of all five algorithms when
the Watson distance is fixed at 55. That is, we maintain a fixed
fidelity rather than a fixed DWR. In this case, we see that DM
and the adaptive method of Oostveen et al. perform significantly
worse that our three adaptive methods. Once again, DM–W has
the best performance for quality factors that are less than 75.

Fig. 17. BER as a function of JPEG quality for a fixed Watson distance of 55.

VII. RATIONAL DITHER MODULATION

An investigation as to the source of errors in algorithm E,
dither modulation using a modified Watson model and soft de-
coding, revealed that one important source of residual errors was
due to the difference in slacks calculated at the embedder and
detector. To eliminate this problem, we investigated combining
our perceptual model with rational dither modulation.

RDM was first proposed by Perez-Gonzalez et al. [12] and
is intended to provide valumetric invariance to QIM. Given
a host signal and a watermarked signal

, then the th bit of a watermark message
is embedded as

(19)

where denotes the set of past watermarked signals
and the function maps its -dimensional

input vector to a real value and has the property that for any
valumetric scaling factor

(20)

This definition of RDM is intrinsically invariant to valumetric
scaling. The function can be chosen from a very large set of
possible functions, including the -norms, that is

(21)

However, it is well known that -norms poorly model the
human perceptual system. Thus, it is interesting to consider a
function that models properties of perception and satisfies
the constraint of (20). An obvious candidate function is the
slack function of (16) using the modified Watson model.

VIII. RDM WITH MODIFIED WATSON’S MODEL

In Section VI, we used the modified slack to adaptively set
the quantization step size and thereby provide robustness to val-
umetric scaling. Fig. 7 is a block diagram of the system. Notice
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that the quantization step size is determined by a local neigh-
borhood around the host sample, , and that this neighbor-
hood is altered during the embedding of the watermark. Thus,
during detection, we must rely on the fact that these alterations
are small, and hope that the slacks based on the modified local
neighborhood are the same as those determined during embed-
ding. While this is often true, rational dither modulation sug-
gests an alternative approach, in which the perceptual slack at
time is based on a nearby neighborhood of previously wa-
termarked samples. Clearly, there may be some degradation in
perceptual quality since a perceptual estimate made in a nearby
neighborhood is not guaranteed to be perceptually relevant.

A. Implementation of RDM–MW

Before describing the implementation of rational dither mod-
ulation with a modified Watson perceptual model, we first de-
scribe an implementation of RDM in the DCT domain. This al-
gorithm, denoted as RDM, is used for comparison.

Our implementation of RDM quantizes the 62 DCT co-
efficients of each 8 8 block (excluding the dc and highest
frequency terms). For each DCT coefficient, we use its corre-
sponding DCT coefficient from the previously watermarked
8 8 neighboring block to determine the quantization step
size. Thus, the window size is 1. The function is chosen to
be the absolute value of the DCT coefficient (i.e., we use an

-norm in (21)) scaled by a global constant that is chosen so
that the DWR averaged over all watermarked images is equal
to a desired value.

We believe that a window size of 1 provides the fairest com-
parison with our adaptive RDM algorithm. However, we also
implemented an RDM algorithm with a window size of 62, de-
noted RDM-62-L2-Norm, that uses an L2-norm of the 62 DCT
coefficients in the previous block.

Our perceptually adaptive RDM method is denoted
RDM–MW. To incorporate a perceptual model within the
RDM framework, we propose to calculate the quantization step
sizes for the current block based on the slacks of the previous
watermarked block. That is, each DCT coefficient in the current
block is quantized based on the slack of its corresponding
coefficient in the previously watermarked block. Thus, this
method also has a window size of 1.

The slacks used to quantize block are unaffected by the em-
bedding process since they are determined from the previously
watermarked block. Thus, both the watermark embedder and the
watermark detector are guaranteed to use the identical values of
quantization step size (ignoring noise and roundoff error). Of
course, we expect a degradation in fidelity since we are basing
our perceptual model of block on calculations performed on
block . However, provided there is sufficient spatial con-
tinuity in the image, then this degradation is likely to be small.
This is supported by the experimental results.

For all methods, a message of length 8192 is embedded using
a 1/31 rate repetition code (i.e., one message bit is embedded
in 31 DCT coefficients). As noted previously, randomization of
the DCT coefficients significantly improves performance. How-
ever, randomization of the DCT coefficients is problematic for

TABLE II
AVERAGE WATSON DISTANCE FOR VARIOUS

METHODS FOR A DWR OF 35 dB

Fig. 18. BER as a function of valumetric scaling (DWR = 35 dB).

RDM. This is because the adaptive step size depends on the pre-
vious block of coefficients. Therefore, the previous neighboring
block of coefficients must be watermarked prior to the current
block (i.e., not in random order). In [18], we proposed a solu-
tion to this problem based on partitioning the image into disjoint
regions, selecting a random block from each region, and only
randomizing the coefficients in these blocks. While very satis-
factory results were obtained, it was pointed out that a simpler
solution is to randomize the message code, prior to embedding.
Thus, we randomize the 8192 31 length repetition code and
sequentially embed it in the DCT coefficients.

IX. EXPERIMENTAL RESULTS

Once again, we watermarked 1000 images from the Corel
database. We embedded the equivalent of 2 bits in each 8 8
block (i.e., 31 coefficients per bit). In all experiments, the av-
erage DWR was fixed at 35 dB.

The average Watson distance of the watermarked images for
each of the three RDM algorithms and DM–MW is tabulated in
Table II. As expected, the perceptual distortion for RDM–MW
is worse than for DM–MW. However, the difference is small.
RDM has a much larger Watson distance of 54 and RDM-62-L2-
Norm has a perceptual distance of 29. Clearly, RDM–MW has
provided a much reduced perceptual distortion.

The BERs as a function of valumetric scaling are shown in
Fig. 18. The RDM–MW has the lowest BER. Surprisingly, our
implementation of RDM with a window size of 1 has consider-
ably worse performance.



LI AND COX: USING PERCEPTUAL MODELS TO IMPROVE FIDELITY 137

Fig. 19. BER as a function of constant luminance change (DWR = 35 dB).

Fig. 20. BER as a function of additive white Gaussian noise (DWR= 35 dB).

Fig. 19 show the BER as a function of constant lumi-
nance change. The RDM–MW performs better than RDM or
DM–MW, although all three algorithms are more sensitive
to constant luminance changes. RDM-62-L2-Norm usually
has better performance, which is probably attributable to its
window size of 62.

Fig. 20 illustrates the response to additive white Gaussian
noise. The RDM–MW, RDM-62-L2-Norm, and DM–MW all
perform very similarly. Once again, our implementation of
RDM with a window size of 1 performs significantly worse.

The sensitivity to JPEG compression is investigated in
Figs. 21 and 22. For a fixed DWR of 35 dB, we see that both
RDM–MW and DM–MW perform worse that RDM algorithms
with no perceptual model. However, if we fix the perceptual
distortion rather than the DWR, then the perceptual-based algo-
rithms have superior performance. The RDM–MW has slightly
worse performance than DM–MW, which is probably due to
the fact that the perceptual model for RDM–MW is worse.

X. CONCLUSION

We have proposed several modifications to dither modulated
QIM. The first method, DM-W, uses Watson’s perceptual model

Fig. 21. BER as a function of JPEG quality for a fixed DWR of 35 dB.

Fig. 22. BER as a function of JPEG quality for a fixed Watson distance of 55.

to adaptively change the quantization step size in order to im-
prove fidelity. Experimental results confirm that for the same
DWR, the Watson distance is reduced by more than 80%. This
improvement is achieved while simultaneously improving the
robustness in high noise regimes.

Next, we modified Watson’s perceptual model so that the
adaptive QIM scheme (DM–MW) is theoretically invariant to
valumetric scaling. Experimental results demonstrate that using
soft-decision decoding, the BER does not exceed 7% over a
scale range of 0.5 to 1.5. While there is a small degradation in
fidelity compared with DM–W, the perceptual distortion intro-
duced by this method is much lower than the original QIM, the
adaptive method of Oostveen et al., and standard rational dither
modulation.

This algorithm—DM–MW—implicitly assumes that the
slacks calculated at the embedder and detector are the same,
despite the modifications to the DCT coefficients introduced
by the embedder. This is a source of error that is eliminated
by using rational dither modulation with the modified Watson
measure (RDM–MW). The adaptive step size for the current
block is now based on perceptual estimates from the previously
watermarked, neighboring block. This guarantees that the
slacks calculated at the embedder and detector are identical
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(prior to any distortions between embedding and detecting).
Of course, using the perceptual slacks calculated from the
previously watermarked neighborhood to affect the step size
in the current block is likely to introduce some distortions,
and a further small degradation in fidelity, compared with both
DM–W and DM–MW, is observed. However, this degradation
is small and the use of RDM–MW significantly reduces the
BER.

Experimental results also demonstrated that the performance
of DM–W, DM–MW, and RDM–MW degrade more smoothly
with the addition of white Gaussian noise. This provides supe-
rior performance in high noise regimes.

We also tested the performance of these algorithms to the ad-
dition/subtraction of a constant luminance value. Experimental
results comparing the performance with that of Oostveen et al.
indicate all three algorithms are significantly more robust. How-
ever, standard DM in the DCT domain (DM) is the most robust.

Sensitivity to JPEG compression was also investigated. We
observed that all of the algorithms considered here are very sen-
sitive to JPEG compression. If we maintain a fixed DWR, we
generally observe that the perceptually-based algorithms per-
form worse that those that do not use a perceptual model. How-
ever, if we fix the perceptual distortion rather than DWR, then
the perceptually-based algorithms provide significant improve-
ments in performance.

The algorithms we have described are block based. As such,
they are robust to spatially varying amplitude changes if such
changes occur on a block-by-block basis. However, highly non-
linear amplitude changes, such as gamma correction, remain
problematic. This remains an area of future work.

Our experimental investigations also reveal that a significant
source of residual errors is due to rounding which occurs after
computing the inverse DCT and converting to integer pixel
values. These rounding errors mean that the step size calculated
at the embedder and detector are not identical. Rounding errors
are, of course, a form of quantization, and most QIM, DM, and
DC–DM methods are sensitive to requantization which can
also occur as a result of analog-to-digital conversion and JPEG
compression. The algorithms proposed here have the same
susceptibility. Future work will investigate spread-transform
dither modulation as an avenue for further improvement.
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