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Abstract—Buildings consume a significant amount of elec-
tricity, which is normally generated from dirty sources causing
an increase in carbon footprints. To reduce carbon footprint,
distributed renewable energy generation has been proposed. How-
ever, the amount of renewable energy harvested normally does
not match the amount of energy consumed in individual homes.
To address this mismatch, we propose a distributed solution to
share renewable energy among homes, which form a microgrid.
Specifically we (i) design an incentive-driven distributed energy
sharing system (iDES) in a microgrid to enable effective energy
sharing and reduce the communication overhead, and (ii) develop
energy sharing pricing model to incentivize energy sharing. The
energy sharing price generally reflects the installation costs of
on-site renewable and energy storage units, the dynamic changes
of energy supply-demand relationship, and the remaining energy
level of batteries. We validated the effectiveness of our system with
extensive evaluations that use empirical traces. The results show
that our energy sharing pricing model can effectively motivate
and encourage homes to share energy.

Keywords—Microgrids, Incentive, Distributed, Energy Sharing.

I. INTRODUCTION

Buildings consume over 75% of the electricity in the
United States. Currently, 69.4% of U.S. electricity is generated
by burning coal, petroleumor natural gas, and another 20.7%
by nuclear power stations [1]. These conventional sources of
energy have a number of negative environmental, economic,
and geopolitical sideeffects. Therefore, different forms of re-
newable energy (e.g., solar and wind) have been introduced
to provide energy for homes. To reduce transmission and
distribution (T&D) losses and decrease carbon emissions,
researchers have proposed distributed generation from many
small on-site energy sources deployed at individual buildings
and homes.

However, prior studies [2] show that the amount of renew-
able energy harvested normally does not match the amount
of energy consumed in individual homes. This mismatch is
usually due to the difference in the time of the energy harvest
peak and user demand peak. In order to handle this mismatch,
various solutions can be applied. One widely used approach is
to sell the surplus energy to a utility company during energy
surplus stage and get energy from the utility company during
energy shortage stage . However, by using this approach,
renewable energy sold on a large scale may destabilize the
traditional power system.

Another solution, one that brings the Time-of-Use(TOU)
pricing model into play and allows the consumers to lower their
electric bills is to use an intelligent charging system, such as
Smart Charge [3] that uses an on-site battery array to store en-
ergy at a low cost for use during high-cost periods. This intelli-
gent system allows consumers to reduce the electricity cost by
determining when to switch the home’s power supply between
the grid and the battery array. Alternatively, consumers may
also take part in automated demand response programs, which
automatically turn off home appliances when the demand for
electricity is high. These programs are increasingly offered
by electric utilities [4]. The consumer’s energy footprint and
bill are reduced, as these intelligent load management schemes
automatically disconnect the loads from power when necessary
or convenient.

However, Smart Charge requires extremely large capacity
batteries to store energy for an entire day’s energy consump-
tion, and the shifting appliance schedule forces users to change
their energy consumption patterns. Therefore, we introduced
energy sharing [5] for multiple homes, and form a microgrid.
Although this approach solves the mismatch between energy
supply and demand, it is a centralized approach that requires
a central controller, where all the energy sharing decisions
are made. However, centralized architectures require relatively
high-end central controllers (which means additional invest-
ments), and like any centralized system, customer-end comput-
ing abilities are not fully utilized. Besides that, a centralized
system is vulnerable to central controller failure. Moreover,
homes may lack of incentives to share energy because there
are no obvious profits from sharing.

To solve these issues, in this paper we propose iDES, an
incentive-driven distributed method to solve the mismatch be-
tween energy harvesting and consumption in individual homes;
where energy sharing decisions are made by the individual
homes. We also introduce an energy selling pricing model
to incentivize energy sharing among homes. Specifically, the
main contributions of the paper can be summarized as follows:

• We designed an incentive-driven distributed energy sharing
system (iDES) in a sustainable microgrid which is formed
by homes that are willing to exchange renewable energy.
Our system design is more robust and generic. It can be
applied to different types of microgrids (off-grid and grid-tied
microgrids).

• To incentivize energy sharing, we developed an energy
sharing pricing model that effectively reflects (i) the amortized978-1-4799-6177-1/14/$31.00 c© 2014 IEEE
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Fig. 1: Overview of iDES Design. The white arrow is the information flow. The dark arrow is the energy flow. The upper
energy data flow is acquired from renewable energy sources, and the lower energy-data flow contains remaining battery
energy information. The inter-Home Communication component is a distributed communication system that processes data
from renewable sources and batteries to make price decisions and control energy sharing.

Fig. 2: Architecture of a Microgrid: Interconnected homes with
renewables and batteries.

installation costs of renewable energy havesting devices (e.g.,
solar panels) and energy storage units (e.g., batteries), (ii) the
dynamic change of energy supply-demand relationship inside
the microgrid, and (iii) the batteries’ remaining energy level
in individual homes.

• We designed a distributed energy sharing communication
protocol, which can reduce the communication overhead and
effectively find the energy sharing home pairs with agreed
energy sharing price between two homes.

II. SYSTEM OVERVIEW

In this section we will introduce the microgrid architecture,
and then describe the system components and interactions
among these components.

The microgrid architecture is shown in Figure 2. Homes are
connected together to form a sustainable micogrid. Renewables
and batteries are deployed in homes to harvest energy and
store the surplus energy, respectively. A common power line
is introduced as the energy sharing media, which can use
either DC (Direct Current) or AC (Alternating Current) line.
An information line is used for inter-home communication.
There is a power meter and a switch between every home and
the power line. The power meter is used to measure energy

harvesting and consumption rate, while the switch is used
to control energy sharing with other homes. Each home is
assigned an unique id, which is used to identify homes during
the inter-home communication and sharing control. This kind
of microgrid architecture is usually within community level
because it is convenient to connect homes that are sharing the
same power infrastructure and distance leads to cost of power
transmission. However, the architecture itself has no such
limitation and could be extended to more distant locations.

In order to share energy in a distributed way, we propose
the system design (shown in Figure 1), which includes four
components as follows:

• Energy Prediction: The energy prediction component col-
lects three types of energy data including (i) the consumption
data from home appliances, (ii) the harvesting data from
renewables, and (iii) the remaining energy in batteries. It
predicts the future energy consumption and harvesting using
these collected data, then calculates whether the home has
energy to share or needs energy in the near future.

• Inter-Home Communication: The inter-home communica-
tion component is responsible for exchanging (i) the energy
data and price information during energy sharing process and
(ii) the energy sharing scheduling information. Here we assume
the underlying communication channel is reliable. We focus
only on the information flow only.

• Price Decision: When home has surplus energy, the price
decision component decides the energy selling price based
on the energy harvesting cost, energy storage cost and the
dynamic supply-demand relationship in the microgrid.

• Sharing Control: The sharing control component toggles
the smart meter, which includes a power meter and a switch,
to transmit a certain amount of energy after receiving the en-
ergy sharing instructions from the inter-home communication
component.

During the energy sharing, homes are classified into sup-
pliers (we define suppliers as homes that have surplus energy
and are willing to share energy with others) and consumers



Notation Definition
ηij Energy transmission efficiency from home i to j
C(t) Sky condition percentage at time t
P (t) Renewable harvesting power at time t

ECi(n) Consumption energy of home i in window n

EHi(n) Harvested energy of home i in window n

EBi(n) Remaining energy in battery of home i in window n

Er(n) Requested sharing energy in window n

Eg(n) Granted sharing energy in window n

Y (n) Energy selling price in window n

4Ei(n)
Difference between available energy and consumed

energy
Ei→j(n) Energy transferred from i to j in window n

TABLE I: Definition of notations

(we define consumers as homes that demand energy from other
homes). Suppliers will share their energy to consumers, and
store the remaining energy into batteries if energy is not sold
out. The amount of energy obtained is measured by the power
meter for accounting purpose. As we cannot control the exact
energy flow if there is simultaneous energy sharing, the energy
sharing is executed sequentially. If homes are not involved in
the current sharing, their power switches will be left open.

III. SYSTEM DESIGN

In this section, we first introduce the energy prediction used
in our system design (§III-A), then describe the energy shar-
ing price (§III-B). The detailed information exchange during
energy sharing is described in §III-C. Table I summarizes the
definition of notations used in the paper.

A. Energy Prediction

In our system energy sharing is conducted periodically,
therefore we divide time into ”windows”; size is denoted
as window size w. We will use nw to represent the nth
window. We choose some generic models to use in our
system over many other candidates, similar to [5]. Note that
energy harvesting and consumption predictions are not our
main contribution. More sophisticated models that consider
changing weekend activity patterns, weather conditions, or
other data are possible. Moreover, our design is compatible
with other consumption prediction models.

Harvesting Prediction: We use a weather forecast-based
prediction model [6] to predict energy harvesting. At any time
t, based on the sky condition percentage C(t) released by the
National Weather Service (NWS), we predict the solar panel’s
energy harvesting rate Pi(t) as

Pi(t) = Pmax · (1− C(t)) (1)

where Pmax is the solar panel’s maximum harvesting power.
Based on Equation (1), at any time t = n, the harvested solar
energy within the next energy-sharing window is predicted as
follows:

ÊHi(n+ 1) =

∫ n+1

n

Pi(τ)dτ (2)

It is worth noting that, the algorithm is designed for solar
power prediction because we are using solar panels as our
testbeds. However, without loss of generality, our system could
be extended to other renewable energy sources ()such as wind
power) because batteries could be used for power storage in
this kinds of home level renewable energy harvesting system
[7].

Consumption Prediction: We use a model based on an
Exponentially Weighted Moving Average (EWMA) to predict
the home’s consumption from historical consumption data. The
EWMA exploits the diurnal nature of a home’s consumption,
while it also adapts to seasonal variations. Let ECi(n) denote
the amount of energy consumed in [n, n+1] and ÊCi(n+1)
denote the predicted energy consumed in [n+1, n+2], which
is given by:

ÊCi(n+ 1) = α · ÊCi(n) + (1− α) · ECi(n) (3)

The value of α is chosen by using the method in [8].

As energy transmission takes time, the system shares
energy for next window usage. Assuming in time interval
[n, (n+ 1)], a home consumes EC(n) amount of energy and
harvests EH(n) amount of energy. The home is expected to
have ÊH(n + 1) harvesting and ÊC(n + 1) consumption in
next window by prediction, while the battery has ÊB(n+ 1)
at the beginning of window n+1. Let 4E(n + 1) be the
expected energy difference between expected available energy
and energy consumption as follows:

4E(n+ 1) = ÊH(n+ 1) + ÊB(n+ 1)− ÊC(n+ 1) (4)

Based on energy difference, homes can be classified into
supplier set S and consumer set D according to whether they
have surplus energy (i.e. 4E(n) > 0) or not (i.e. 4E(n) <=
0). Note that the supplier and consumer set is not fixed. A home
may belong to consumer set D in window n and supplier set
S in window n+ 1.

B. Energy Selling Price

In order to incentivize energy sharing, we introduce the
energy selling price in this section. Suppliers set the energy
selling price as they are the source of the energy sharing. There
are three mainly factors that will impact the price: the energy
generation cost, the supply-demand relationship and the energy
selling urgency. Because in our system the renewable energy
is harvested from renewables and the harvested energy for
sharing is stored in a battery, the energy generation cost needs
to cover the amortized cost for the renewables and battery.
Meanwhile, the energy supply-demand relationship affects the
price as well. When there is more harvesting than consumption
in the microgrid, the suppliers need to set a low price in order
to successfully sell the surplus energy with a higher probability.
Otherwise, they can raise the price to increase the benefit.
Another factor that impacts the price is the battery level. When
a supplier’s battery is nearly full and the supplier is expected



to harvest surplus energy in the next window to overcharge the
battery, the supplier is more likely to sell the energy at lower
price to avoid energy waste. After including all these above
factors, we design the pricing model as follows:

Y = Ya ∗ (1 + 1/γB) ∗ (1 + 1/γS) (5)

Where Ya, γB and γS are the amortized cost, the batteries’
energy level and the energy supply-demand ratio of current
window, respectively. The range of γB is between 0 and 1.
When the supplier has energy to sell, the battery will not be
empty, which indicates γB will not be 0. γS is greater than 0
and less than infinity. A value of 0 or infinity means there is no
supplier or no consumer, so there is no need to share energy.
Note that the price is always higher than the amortized cost as
homes need to at least cover the energy harvesting and storage
costs for the shared energy.

The cost for the consumer is also impacted by the energy
transmission loss. In time interval [n, (n+1)], when a supplier
home i shares Ei→j(n) units of energy to a consumer home
j, j can receive only a fraction of Ei→j(n) due to energy
transmission loss. The transmission loss rate is mainly de-
termined by the transmission distance, type of power lines,
and the transmission voltage. The distances between homes
are known in advance by homes in the system, which is
a reasonable assumption as the geometric locations of the
homes are hardly changed. Based on the distance, each home
can calculate the energy sharing efficiency between itself and
its neighbors. Consumers can estimate the cost they need to
pay after they know the transmission efficiency. For example,
assuming a consumer j needs 4Ej(n) amount of energy and
gets it from a supplier i. Let ηij be the transmission efficiency
between home i and j, Yi(n) be the energy selling price from
supplier i. Then the consumer j has to pay 4Ej(n) × Yi(n)
/ ηij to the supplier i for the energy sharing. Thus from the
consumer side, the energy sharing price between homes i and
j is Yij(n) = Yi(n) / ηij .

C. Energy Sharing Communication

The main challenge for the distributed energy sharing is
how to design the information exchange among homes to de-
cide the energy sharing home pairs. The design should provide
necessary information for homes while avoiding information
overload. In the energy sharing process, suppliers offer their
surplus energy to consumers with different selling price, then
consumers select the suppliers that provide the lowest sharing
prices. The general steps for the energy sharing are as follows:

(i) Broadcasting Energy Difference: At the beginning of
each time slot, homes calculate the energy difference by
subtracting predicted consumption from predicted harvesting
using Equation (4). The energy difference information should
be known by every home in the microgrid, no matter whether
it belongs to a consumer or supplier set. The reason is that
consumers can get the knowledge of the amount of surplus
energy each supplier has, later on they can request specific
amount of energy from the suppliers. Suppliers can summarize
the energy supply-demand relationship in order to decide the
energy selling price. To summarize, in current phase every
home broadcasts energy difference in the microgrid and keeps
listening to others’ broadcasted messages.

H1

H2

H3

Supplier Consumer

0.3 $/kWh

Price

Fig. 3: An example of a consumer selecting suppliers. H3 will
request energy from H1 as H1’s price is lower.

(ii) Multicasting Energy Price: After the supplier collects the
broadcasted messages, it calculates the energy selling price
based on the energy generation cost and supply-consumer
distribution as introduced in §III-B. In a distributed system,
broadcasting the selling price is not a good design as the sup-
pliers are competitors during energy sharing so other suppliers
may take advantage of the overheard selling price to set a
more competitive price. Thus all the suppliers use multicast to
convey their selling price to the consumers.

(iii) Selecting Energy Suppliers: After consumers receive the
energy selling prices from multiple supplies, they can select
between these suppliers and negotiate. The selecting process
may span multiple rounds due to competition among different
consumers. In order to minimize the consumer’s cost, the
consumer sorts the suppliers in increasing order according
the energy sharing price, then starts with the home with
lowest sharing price Yij(n). An example is shown in Figure
3. Suppliers H1 and H2 can share energy with consumer H3
with a price of 0.3$/kWh and 0.5$/kWh respectively. H3 will
request energy from H1 first, then from H2 if it needs more
energy.

On the supplier side, although the profit is same no matter
which consumers are selected, the energy transmission effi-
ciency is different. The supplier can grant the energy request
from the consumers with less transmission loss. An example
is shown in Figure 4. Because transmitting energy to H3 is
more efficient than to H4, supplier H1 will grant the request
from H3 to reduce the energy loss.

The detailed energy sharing algorithm for suppliers is
shown in Algorithm 1. The supplier sorts the consumer set D
according to the energy transmission efficiency in decreasing
order (Line 1). Then it waits for an energy sharing request
from consumers. When there are incoming requests, it retrieves
requests based on ordered set D (Line 2). If the requested
energy is less than current surplus energy, it grants the amount
of requested energy; otherwise it grants the amount of surplus
energy it has (Lines 4-8). The supplier sends a message to
the consumer to confirm the request, adds energy sharing
instructions into a list, and multicasts the remaining surplus
energy to notify the consumers (Lines 9-12). It continues the
process until the current phase ends (Lines 13-14). Note the
supplier still keeps listening to the incoming requests even if
it has granted all of its surplus energy, in this case, it replies to
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Fig. 4: An example of a supplier accepting offers from
consumers. H1 will accept offer from H3 to minimize energy
loss.
Algorithm 1 Energy Sharing Algorithm for Supplier i
Input: Energy consumer set D, surplus energy 4Ei(n)
Output: Energy sharing instructions list
L

1: Sort D by transmission efficiency;
2: Wait for incoming requests and list them by order in D
3: for Incoming request (assuming from home j with energy

request of Er(n)) do
4: if |4Ei(n)| ≥ Er(n) then
5: Granted Energy Eg(n) is Er(n)

6: else
7: Granted Energy Eg(n) is 4Ei(n)

8: end if
9: Send message to home j to grant Eg(n) energy

10: Add energy sharing instruction [j, Eg(n)] into list L
11: 4Ei(n) = 4Ei(n) - Eg(n)

12: Multicast updated 4Ei(n) to consumers
13: end for
14: go to Line 1 if current phase doesn’t end.

the consumer with the granted energy Eg equals 0. By doing
this, the consumers are able to receive the response and try the
next supplier. In this way, a deadlock on a specific supplier can
be avoided. Note that when the suppliers cannot share their
energy due to too many suppliers in current time, they can
charge the battery using the surplus energy later.

The detailed energy sharing algorithm for consumers is
shown in Algorithm 2. The consumer sorts the supplier set S
according to the energy sharing price in increasing order (Line
1). Then it requests energy from the suppliers sequentially
(Line 2). The amount of requested energy is limited by the
supplier’s surplus energy and consumer’s energy shortage
(Lines 3-7). After sending out the energy request, the consumer
waits until it receives the response from the supplier (Lines
8-9). The supplier may grant exactly the requested amount
of energy, or less due to the competition from other parallel
consumers. Consumer updates its energy shortage, puts the
energy sharing instructions into a list and continues the process
until its energy request is fulfilled or all the suppliers are tried

Algorithm 2 Energy Sharing Algorithm for Consumer j
Input: Energy supplier set S with surplus energy and sharing
price, required energy 4Ej(n)
Output: Energy sharing instructions list
L

1: Sort S by sharing price;
2: for home i in sorted S do
3: if |4Ei(n)| ≥ |4Ej(n)/ηij | then
4: Requested Energy Er(n) is |4Ej(n)/ηij |
5: else
6: Requested Energy Er(n) is 4Ei(n)

7: end if
8: Send message to home i for Er(n) energy
9: Wait and receive message from home i for Eg(n)

amount of energy
10: Add energy sharing instruction [i, Eg(n)] into list L
11: 4Ej(n) = 4Ej(n) - Eg(n) ∗ ηij
12: if 4Ej(n) == 0 break
13: end for

(Lines 10-13). Note that the consumer will also update the
amount of surplus energy once it receives the updated multicast
message from suppliers.

One example of the energy sharing process between one
supplier and two consumers is shown in Figure 5. Supplier
H1 has 10kWh surplus energy, while consumers H2 and H3
need 3kWh and 2kWh energy, respectively. It starts with all
homes broadcasting the energy difference (step 1). Then H1
multicasts the selling price to the consumers (step 2). In this
example, H2 requests 3.2kWh and H3 requests 2.4kWh energy
by considering transmission loss (step 3). Supplier H1 grants
the requests as it has enough energy to share (step 4). In the
end, H1 has 4.4kWh residual energy. Consumers H2 and H3
will pay $0.2 × 3.2 and $0.2 × 2.4 to H1.

(iv) Executing Energy Sharing: After the energy sharing
home pairs are decided, homes will start energy sharing. As
we cannot control or account for the exact energy flow if two
energy sharing are executed at the same time on the shared bus,
generally we have to use the shared bus in a sequential way,
such as the approach in [5]. The limitation on the transmission
speed puts a cap on the amount of energy shared within one
time window. This introduces a challenge for scheduling the
energy sharing. If a fixed sharing sequence is adopted, homes
at the end of the sequence may be deprived of the chance of
energy sharing due to the time limit, which impacts the fairness
and causes either starving or energy waste in these homes.

In order to address the above issue, a dynamic token-ring
approach is adopted. Homes form a virtual ring and are ordered
based on their id. Only the home that holds the token is able to
initiate energy sharing. At the beginning of each window, the
first home that is capable of energy sharing is the last home in
previous window. It will contact its counterparts to execute the
energy sharing. If a home holding the token is not involved in
the energy sharing in current window, it can simply yield the
token to the home next in the ring. An example of this case
is shown in Figure 6. Only three energy sharing processes are
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Fig. 6: An example of dynamic sharing sequence. Each win-
dow only allows three energy sharing processes. All homes
shared energy at least once either in window n or (n+1).

allowed within one window period. In window n, the energy
sharing sequence starts from H1. H1, H2 and H3 shared energy,
while H4 did not due to time limitation. In window n+1, the
energy sharing sequence changes by starting from H4 such as
(H4, H1, H2, H3), as the token is passed down to H4. The
sharing ends by H4, and H1 and H2 share energy. Token is
passed to H3 so H3 will share energy first in next window. In
the end, all homes share energy for at least one window either
in window n or n+ 1.

IV. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the performance of our system.
We collect empirical data from 20 homes in Amherst, MA,
including:

(a) Energy storage unit (large capacity
battery) (b) Solar panel

(c) Home energy consumption mea-
surement

(d) Battery charge & discharge mea-
surement

Fig. 7: Energy storage unit, renewable source and meters
deployment in one home.

• Energy harvesting data: The renewable harvesting devices
we use are Grape Solar 75-Watt Monocrystalline PV Solar
Panels (shown in Figure 7(b)). Figure 8(a) shows six days of
energy harvesting data. The weather forecast data we use are
from NWS (National Weather Station).

• Energy consumption data: Current transducers (CTs) are
added (shown in Figure 7(c)) to monitor homes’ consumption.
Figure 8(b) shows the aggregated energy consumption data
within one day in a deployed home.

• Charging and discharging power of a battery: The energy
storage unit we use is called Xantrex PowerHub 84053. An
iMeter Solo (an INSTEON power meter) is used to measure
the battery charging and discharging rate. We also use a
webcam to record the voltage and current readings using multi-
meters. Figure 7(d) shows our experiment setup. The power
consumption for charging a battery is shown in Figure 8(c).
The average energy that can be charged to the battery is around
160W per hour, which implies that within one hour window
only a limited amount of energy can be transmitted.

To verify the efficiency of our system, we compare our
design in latter evaluation results, with (i) Centralized energy
sharing (CES), where a centralized energy sharing approach
target minimizing the transmission loss ( [5]), (ii) No en-
ergy sharing (NES), where individual homes harvest and
consume energy by themselves without energy sharing. In
the simulation, the battery loss rate we use is 15%; power
line transmission loss rate is around 7.6%, which varies with
different distances among homes. The energy price for CES
and NES is fixed at $0.13/kWh (the utility price in Amherst,
MA). For the battery, the price is around $200/kWh. For solar
panels, the price is around $0.6/kWh.
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Fig. 8: Sensing data in one home.

The system benefit: Figure 10 shows the system cost
and benefit for three systems over five years. The benefit is
calculated by summing up the value of the harvested energy
and the amount of money obtained from energy sharing. The
benefit of our system both surpasses the system cost and show
more than 17% improvement over the NES. Our system is
comparable with CES, although CES is a centralized approach
which can minimize the energy transmission loss.

We also show statistics of profit ratio in Table II. The

Cost CES iDES NES
Average of 20
homes ($)

5109.12 5505.82 5469.82 4643.68

STD of 20 homes 149.21 172.89 82.55 160.32

TABLE II: Cost and benefit: ”Cost” is user investments for
batteries and other relative devices.

CES iDES NES
Average of 20 homes (Hour) 11.586 11.893 12.733
STD of 20 homes 0.696 0.315 0.622

TABLE III: Failure time

average benefits for our system and CES are very close. In
our system, most of the homes could gain profit in less than
five years, which provides incentive for the homes to share
energy. Moreover, the STD (standard derivation) of iDES is
much lower than CES, which means that all the homes in the
system receive similar amount of benefit. That is because in
our approach, the energy sharing scheduling is dynamic so
every home is given a nearly equal chance to share energy;
however, in CES the distant homes can hardly be involved in
energy sharing if the energy sharing time is beyond the time
window.

The average failure time: Figure 9 shows the accumulated
failure time for three systems over six days. When a home runs
out of energy in a window, we indicate it as a failure. The
failure time in our system is almost same for all the homes,
while in CES and NES it varies dramatically. For example,
Homes 3, 5 17 have more than 20% longer failure time than
average in CES and NES, and the failure time for home 3 is
more than twice of home 4 in CES.

Table III shows the average failure time and STD for
three systems. CES and iDES have similar failure time that
is less than 8% compared with NES, which indicates the
performance of our system is comparable with CES. The STD
of iDES outperforms CES by more than 50%, which proves
the effectiveness of the dynamic scheduling.

V. RELATED WORK

Our work is related to the work of three different areas:
energy harvesting, energy efficient systems, economics and
network communication.

Energy harvesting. The renewable energy sources have be-
come an alternative way to consume power and reduce elec-
tricity bills. However, they have limits in some instances when
harvested energy availability typically varies with time in
a non-deterministic manner and power systems surpass the
consumption or vice-versa, which results in a mismatch. To
manage renewable energy, Deborah et al. [9] propose a method
to exploit robotic mobility by having energy producers be
mobile nodes. These nodes try to keep themselves recharged
by moving to locations with abundant energy supply. Once
charged, they migrate to the service areas in the network for
delivering energy to the (static) consumer nodes that have



Fig. 9: Accumulated failure time of 20 homes over six days

Fig. 10: Cost and benefit of 20 homes over five years

requested energy. In essence, mobile energy producers act as
energy equalizers in the network by carrying energy payloads
from areas where environmental ambient energy is plentiful to
areas where it is either unavailable or being used faster than
it can be harvested. In [10], the authors designed perpetual
environmentally powered sensor networks. [11] discussed the
challenges and opportunities for integrating renewable energy.
[12] summarized the applications and challenges of energy
harvesting for wireless sensor network in smart grid. These
approaches have devices owned by single entity. However, in
comparison to them, our work follows the simple idea where
we build an energy sharing microgrid system to share the
renewable energy, which uses the energy sensing data and
novel energy sharing price to decide the energy sharing home
pairs and when to share energy.

Energy efficient systems. This research mainly focuses on (i)
energy auditing [13] [14] and design of control algorithms or
tools to reduce energy consumption inside a single building

[15] [16] [17], (ii) reducing the energy usage of system
[18], energy-efficient building automation, ventilation, and
air conditioning [19] [20]. In smart power grid, researchers
have (i) developed models based on measurement from phase
measurement units to solve the wide area control problem of
large scale power systems [21], (ii) investigated the integration
of renewable energy into power grid [22], (iii) optimized
the packing size of large scale batteries to improve battery
utilization in microgrids [23], (iv) applied stochastic network
calculus to analyze the power supply reliability with various
renewable energy configurations and store that energy into
very large scale batteries [24], (v) combined market-based
electricity pricing models with on-site batteries which are used
to store renewable energy to incentivize distributed generation
[25], (vi) reduced cost of purchasing batteries by smoothing
demand peaks [26], and (vii) used IT technology in design
and operational phases to achieve sustainability [27]. Other
researchers also investigated other types of energy efficient
systems such as (i) energy saving electronics [28] [29], (ii)



energy efficient data centers [30], and (iii) optimal charging of
plug in hybrid electric vehicles [31], (iii) wireless communica-
tion technology to maximize the network life [32]. Researches
have also conducted energy management in other fields, such
as mobile devices [33]–[35], sensor networks [36]–[55], and
smart grids [56]–[61]. Our work is built on previous works, but
homes with renewable devices and small battery are the main
research focus. Also it takes a different approach to reduce
energy cost by sharing the renewable energy. Unlike these
other approaches, our work opens up a new approach where
energy can be gained efficiently and used smartly.

Economics and network communication. Allocation opti-
mization and fair allocation mechanisms are important factors
while doing the workload scheduling. Many complex and
stochastic approaches have been proposed in economics and
network communication area, where allocation optimization
approach is used for flow control to optimize a global measure
of network performance [62] [63] and fair allocation [64]. [65]
utilizes both location and time diversity of electricity price
under multi-regional electricity markets to minimize the total
electricity cost of IDCs. A performance modelling framework
for multihop wireless networks is proposed by [66], and its
network structure is adopted in this approach. Our approach
is built on previous approaches, where the energy sharing
price reflects the supply-demand relationship and the fairness
is achieved by dynamically scheduling the energy sharing
sequence.

Recent work explores reducing the peak load of main
grid and storing AC energy in each homes battery, which
can increase the profit to the homeowners [67]. Different
from the above approach, our system can work under off-
grid deployment and benefit the homes by sharing renewable
energy. Most related work is [5] and [68]; the former paper
minimizes energy transmission loss in a centralized fashion
and does not consider the energy sharing price. The later paper
designed a secure energy routing mechanism for secure and
optimal sharing purpose. While in this paper, we propose a
distributed solution and design the pricing model to incentivize
the energy sharing.

For the energy related information and communication
model, OASIS designed the Energy Interoperation standard for
a smartgrid [69], while our protocol focuses on the minimum
information flow needed in the smart microgrid.

VI. CONCLUSION

In this paper, we proposed a distributed incentive-driven
energy sharing system for a sustainable microgrid. In order
to incentivize energy sharing, we designed a novel pricing
model. We also developed a consumer energy sharing request
algorithm to minimize consumers’ cost and a supplier en-
ergy sharing grant algorithm to improve the energy sharing
efficiency. A dynamic token-ring sharing sequence control
approach is introduced to provide fair energy sharing. To
the best of our knowledge, this work is the first distributed
approach to efficiently share energy in a microgrid and incen-
tivize users by profits. We evaluated our design using real-
world energy harvesting and consumption data. The results
proved the effectiveness of our design compared with other
approaches.
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