
A Multithreading Platform for Multimedia Applications

Rainer Koster and Thorsten Kramp

Distributed Systems Group, Department of Computer Science

University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

ABSTRACT

Complex multimedia applications have diverse resource and timing requirements. A platform for building such
programs therefore should supply the developer with mechanisms for managing concurrency, communication, and
real-time constraints but should remain flexible with regard to scheduling policies and interaction models. We have
developed such a platform consisting of a user-level threads package and operating system extensions. The threads
package offers a message-based threading model uniformly integrating synchronous and asynchronous communication,
inter-thread synchronisation, and signal handling as well as real-time functionality and application-specific scheduling.
To support this user-space flexibility an upcall mechanism links the user-level scheduler to the kernel.

Keywords: User-level threading, application-specific scheduling, message-based inter-thread communication,
scheduler activations, upcalls

1. INTRODUCTION

Complex multimedia applications need to cope with a variety of timing constraints. Data from different sources
needs to be received, buffered, processed, synchronised, and played-out. The resource allocation of these tasks in
general and their timing in particular determine the quality of service (QoS) that is provided to the user. While
threads are widely recognized as a useful abstraction for structuring these different activities, desirable support by a
multithreading platform should take manifold characteristics into account:

• Multimedia applications are largely event-driven: Most actions are taken in response to timers, arriving pieces
of data, or events from the user interface.

• Activities ranging from decoding video frames to transferring samples to the audio device at the right moment
are diverse in terms of execution times and timing constraints. Stream synchronisation and jitter of received
data add dynamic dependencies between different tasks. A scheduler must deal with these timing requirements
in an application-specific way.

• Multimedia applications are I/O intensive. Hence, input and output of data should be well integrated with the
platform.

• Integration with commonly used operating systems facilitates everyday-use on computers also running other
programs. Standard graphics and interface libraries as well as drivers, for network adapters or frame grabbers
for instance, are readily available, in this case.

We are developing a platform addressing these requirements. A key component is a user-level thread package
called Cool Jazz that uses a message-based threading model.1 Threads work like state machines reacting to
messages and sending messages to other threads, either synchronously or asynchronously. Using messages rather
than plain shared memory and semaphores for inter-thread communication and synchronisation is more intuitive for
many applications and less susceptible to errors. Moreover, messagess are a sound basis for discrete notifications as
well as for continuous media streams. Nonetheless, Cool Jazz does not preclude other styles of communication and
also provides locks and semaphores for situations in which they may be more appropriate.

Providing the right scheduler is a critical capability for a thread package. However, there will not be one optimal
scheduler for all applications and in some cases it is even desirable to use a specific scheduler that is aware of
application semantics. To provide this versatility, we have not built one or a few schedulers into Cool Jazz but
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provide a well-defined interface between the thread package and the actual scheduler. In this way, the developer may
plug in an available scheduler suitable for a particular application or even build a specific one.

Extensive real-time support has been integrated with Cool Jazz. Besides thread priorities, constraints such as
deadlines can be attached to messages, automatically associating the scheduling of a thread to the urgency of the
job it is currently performing. To bound priority inversion, support for priority-inheritance has been added to the
message processing and synchronisation primitives with appropriate calls to the scheduler.

User-level threads on their own have some drawbacks such as the impracticality of SMP utilisation and blocking
system calls. With some effort, user-level threads can be mapped onto a set of kernel level threads to run on
multiple CPUs simultaneously. Blocking system calls are typically used for I/O operations. With a plain user-level
thread package these operations would halt the entire application. A work-around is using non-blocking counterparts
that either require polling or asynchronous notifcation by signals. Exclusive use of kernel-level threads avoids these
problems, but solely relies on the scheduler of the operating system. The benefits of application-specific policies
as discussed above cannot be used. In addition, user-level threads provide better scalability due shorter creation,
deletion, and context switching times. Hence, neither pure user-level nor kernel-level threads are satisfactory for a
multimedia platform.

An efficient approach for interaction between kernel and user-level scheduler are scheduler activations.2 The
kernel notifies the scheduler of the application whenever one of its threads could trigger a scheduling decision, for
instance, if a thread blocks or deblocks in the kernel. In these cases, an upcall directly to the user-level scheduler
causes an application-specific scheduling decision, which thread to run next. With activations, both flexible user-
defined scheduling and convenient I/O programming can be provided. Additionally, the upcall mechanism can be
extended to support asyncronous I/O operations more efficiently than signals.

This kind of system support, however, is not commonly found in general-purpose operating systems, but mostly
in specialised multimedia OS such as Nemesis.3 There are, however, several reasons for using an off-the-shelf
OS: Multimedia applications frequently need to control hardware devices such as sound or frame grabber cards,
which require device drivers readily available only for commonly used systems. Also software libraries for image
processing or building graphical user interfaces can be more easily reused on these standard platforms. Moreover,
many multimedia applications are used on desktop computers along with other programs rather than on dedicated
machines with a specialised system. Due to these reasons, we have integrated support for Cool Jazz into the Linux
operating system. The changes in the kernel are limited to few locations in the source code and have virtually no
effect on other applications.

Section 2 discusses the basic principles of our platform. Its funtionality in user- and kernel-space is presented in
Sections 3 and 4 respectively. Section 5 discusses related work and Section 6 outlines conclusions and future work.

2. THREADING MODEL

Complex multimedia applications usually consist of many interacting components, such as a graphical user interface,
some control unit processing user commands, video and audio streams, and so on. Processing of continuous media
streams usually can be further subdivided into tasks such as retrieving data, buffering, decoding, scaling, buffering
one more time, and finally delivery to the output device. Mapping these activities on threads facilitates the design of
this kind of application. Often threads implement a stage of a pipeline reacting to some input events similarly to a
state machine. Starting from this insight, in this section we describe characteristics of a threading model well-suited
for a multimedia platform.

2.1. Message-Based Interaction

A straightforward approach to building an application that reacts to network packets, timer interrupts, and GUI
events, for instance, is running one thread of control in a main loop waiting for events and calling the respective
handler functions. While this design does not require any synchronisation effort and no context switches, there are
two main drawbacks: An event handler that needs to wait for a further event will block the entire system. Moreover,
a long running handler can unacceptably delay the processing of more urgent events. Finally, multiple processors
cannot be used.

With multithreading, in contrast, several threads of control with their own state can act independently of each
other. While one thread needs to wait for some event, others may do useful work. Moreover, a scheduler can interrupt



threads and control the timing of their execution. Communication between threads, however, introduces considerable
complexity.4,5 Data is usually exchanged via shared-memory with access to it being synchronised by semaphores,
for instance. Errors in applying synchronisation primitives easily lead to data corruption or deadlocks – often in
an non-deterministic, hard to debug manner. Additionally, fine-grained locking may introduce significant overhead,
coarse-grained locking may unnecessarily reduce parallelism.

We have proposed a combination of both approaches using an message-based model for inter-thread communica-
tion.1 Each thread has a code function, which, in contrast to conventional threads, is not called at creation time but
each time the thread receives a new message. Hence, it resembles the body of an event loop. In the code function, the
thread can wait for further messages and send messages to other threads. Sending may be done either synchronously
if there remains nothing to do for a thread until a reply is received, or asynchronously whenever a reply is not
needed immediately to continue or no reply is required at all. Messages provide a general means of inter-thread
communication and can be used for synchronising access to shared data. This reactive style of programming tends
to be less prone to synchronisation errors.

In this processing model, threads represent extended finite state machines with the code function implementing the
state transition function. Since this approach closely resembles that of SDL, the transformation of SDL specifications
to implementations is facilitated. Moreover, in contrast to shared memory, message-based communication can be
easily extended to distributed applications. The platform just needs to be able to send messages to threads in
different address spaces and on different nodes. According to RM-ODP,6 events are a suitable infrastructure for
discrete interaction as well as for continuous media streams. Even asynchronous notifications such as signals can be
mapped to messages. By this versatility, the programming model can uniformly handle all types of events.

2.2. Application-Specific Scheduling

It is well known that the conventional UNIX scheduler is not suitable for multimedia applications.7 While the POSIX
real-time extensions provide some more control over scheduling, it still is a very inflexible mechanism. Looking for
better support, a variety of scheduling algorithms for multimedia applications has been proposed.8,9,3,10,11 Being able
to use the kernel scheduler that is most suitable for a paritcular application is highly unlikely, because system-wide
scheduling is necessarily subject to some limitations: The scheduler is hardcoded in the OS, it must work reasonably
well for all types of multimedia applications as well as for interactive and background computations, and the kernel
must protect applications from each other and enforce CPU allocation policies.

In contrast to that, scheduling among threads of one application can be done a lot more efficiently. Threads may
rely on each other to work cooperatively. Moreover, application-specific semantic information can easily be exploited
in scheduling decisions. Consider, for instance, a feedback-driven real-rate scheduler,10 which adaptively schedules
tasks based on their progress. While providing semantics information about progress to the kernel scheduler via
fixed system interfaces in general is not simple, this algorithm can be efficiently used for scheduling threads of one
application. A user-level scheduler can have a clear notion of progress and have detailed information about inter-
thread dependencies. For these reasons, we favour user-level threads for building complex applications with timing
constraints.

For designing a user-level thread package there still is no optimal scheduler for all scenarios. Even providing
a set of predefined policies cannot avoid all design dilemmas. We therefore apply the open implementation design
methodology12,13 and enable the user to control all critical design decisions. All scheduling code has been separated
from the rest of the thread package allowing the user to plug-in a specific scheduler via a well-defined interface.
This scheduler is called whenever some incident might induce a scheduling decision. Typical examples are thread
state transitions or timer interrupts. The platform also needs to support timing constraints, which can also be
defined in an application-specific manner. In this way, for instance, deadlines can be attached to the processing of
messages, or fixed priorities can be associated with threads as needed. Moreover, the thread package should support
the user-defined scheduler in bounding priority inversion by notifying it whenever a higher-priority job waits for a
lower-priority job to make progress.

This flexible approach is beneficial whether or not there are guarantees from the system. The user-level scheduler
has detailed knowledge about timing constraints, slack times, and inter-thread dependencies, and can easily mon-
itor the progress of all subtasks. Hence, it can efficiently use reserved CPU capacity as well as adapt to resource
fluctuations. Nonetheless, kernel support for resource reservation is desirable. As a basis for predictable user-level
platforms, we are investigating proportional share policies such as lottery and stride scheduling.11,14,15



Figure 1. Player with multiple pipelines

2.3. Application Scenario

Consider a video and audio player that shows complex presentations composed of several streams retrieved over the
Internet in real time, for example the player developed in the QUASAR project.16,17 For streams that are played in
parallel, several video and audio pipelines must be run simultaneously as shown in Figure 1. Each of these pipelines
typically consists of stages for receiving and defragmenting data from the network, adapting to network bandwidth,
for decoding, and finally for displaying frames and playing audio samples. Between these stages, frames and samples
need to be buffered, and these shared memory buffers need to be protected by semaphores. A further component is
needed to control the timing and synchronise the streams.

With a platform as proposed above, the design of similar applications of many interacting components is signif-
icantly simplified. Frames and groups of audio samples are put into inter-thread messages and are attached timing
constraints according to their playout time. By modelling the pipeline stages as reactive threads there is no need to
explicitly maintain and synchronise buffers any more, because messages are automatically queued by the platform.
Timing and stream synchronisation can be directly controlled by an application-specific scheduler rather than a clock
component notifying other threads of timing events.

3. USER LEVEL SUPPORT

To implement the threading archtitecture outlined above we have developed a user-level threads package called Cool

Jazz.

3.1. Message-Based Threading

As introduced in the previous section, Cool Jazz threads work like extended finite state machines reacting to
messages received. Unlike conventional threads, their code function is not called at thread creation time, but each
time a message is received. When the processing is finished the code function returns. Unless indicated by a special
return code, however, the thread is not terminated, but waits for further messages. In the code function, a thread
can send messages to other threads either asynchronously or synchronously. In the latter case, it blocks waiting for
the reply. A thread may also explicitly block to wait for new messages.

Figure 2a shows the structure of a thread. Besides a code function, a Cool Jazz thread consists of one new-queue
and at least one save queue. The threading platform places messages to a thread into its new-queue containing all
messages the thread has not looked at yet. Additionally, a thread may maintain save-queues to intermediately store
tasks that can only be completed at a later time, for instance after receiving a reply from a thread performing a
subtask.

A Cool Jazz thread can dynamically enable or disable preemption. If preemption is turned off, the entire
code function becomes the unit of mutual exclusion and a context switch can only occur when the thread finishes
processing a message or blocks. To provide more fine-grained control among threads actually competing for specific
resources, also shared memory synchronisation by locks and semaphores is supported. Hence, developers may choose
the most appropriate interaction model, although Cool Jazz encourages message-based synchronisation.

In addition to local interaction, remote communication can also easily be mapped on inter-thread messages. To
do so, we have developed a flexible binding framework providing ports that forward messages to remote threads
using some transport protocol.18 Moreover, signals from the operating system indicating asynchronous events such



as timer interrupts are transformed into messages. In this way, Cool Jazz messages provide a uniform abstraction
for concurrency, communication, and signal handling.

Modelling threads as extended finite state machines and using explicit messaging for inter-thread communication
has been proven to be an effective means of expressing concurrency and eliminating synchronisation errors. Pre-
decessors of Cool Jazz have been used in a number of larger projects such as a fault-tolerant distributed shared
memory19,20 and within the core of a mobile agent platform.21
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int code(Message *message) {
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return done;
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Figure 2. Cool Jazz threads. a) structure b) state transitions

3.2. Real-Time Support

Cool Jazz provides extensive support for timing constraints. In addition to thread priorities, constraints may be
attached to messages.∗ The priority of a thread is derived from the constraint on the message it currently processes
or, if the thread is in the ready state, on the constraint of the first message in its new queue. If no constraint is
specified for the respective message, the priority statically assigned to the thread is used. That is, whenever an idle
thread receives a message and, thus, its state changes to ready, the scheduler is invoked to calculate an appropriate
priority from the message constraint, and to insert the thread into the ready queue. If further messages arrive, they
are inserted into the new-queue according to their constraint. Then, the scheduler is invoked, only if the new message
becomes the first one in the queue, because in this case a more important message has been received and the priority
of the thread has to be recalculated. The scheduler reorders its ready queue according to the new thread priorities.
The priority of a thread is reset according to the next message whenever it finishes processing a message with a
constraint by sending it to another thread, by storing it in a save-queue, by deleting it, or by explicitly reading the
next message. Note that for having subtasks processed by other threads in parallel new messages with the same
constraint can be created, while passing on a message also transfers the priority derived from its constraint.

This approach supports scheduling based on static priorities by using thread priorities only, on dynamic priorities
by using message constraints only, or on a mixture of both. Additionally, admission tests can be easily integrated in
new-queues by optionally rejecting messages.

To bound priority inversion, priority inheritance22 is supported in semaphores as well as in message queues. A
low-priority thread holding a semaphore inherits the priority of a more important thread waiting in a P-operation.
Similarly, if a thread is processing a message at a priority lower than that mandated by the constraint of the
first message in its new-queue, it also inherits this priority. Both mechanisms deal with priorities and, hence, are
compatible to each other. Note that the scheduler is free to implement other priority inheritance protocols.

In a dynamic real-time environment it may be necessary to asynchronously terminate a thread that cannot meet
its deadline any more. In general, such a thread cannot simply be killed because it may hold some resources that
must be freed again. To handle this case, Cool Jazz provides two mechanisms similar to POSIX cancellation
points. A thread may indicate when asynchronous termination is save. When this flag is not set and a termination
request arrives, the request is queued until termination is enabled again. Additionally, a thread may register an
abort-function, which is called at asynchronous termination and can perform any cleanup tasks such as releasing
resources held by the thread.

∗Priorities as well as constraints are scheduler-specific (and, hence, user-defined) and are not necessarily represented by
mere numbers.



3.3. Application-Specific Scheduling

Since there is no optimal scheduler for all applications that can be built with a thread package, Cool Jazz supports
application-specific schedulers. Hence, the actual scheduling code has been separated from the rest of the thread
package. The platform provides an interface for a user-defined scheduler that is called whenever a scheduling decision
may be necessary. Such events are thread state transitions as shown in Figure 2b, priority adjustments, and external
events such as when a thread becomes ready, when a reassignment of the CPU occurs due to preemption, when
the active thread runs out of messages and becomes idle, when priority inheritance needs to be performed, when a
inherited priority needs to be reset, when a timer expires, or when a signal arrives.

Besides the scheduler itself, other relevant components of the system must be customisable. The type of priorities
or constraints used, for instance, is not defined by Cool Jazz, but may be chosen matching the scheduler. Moreover,
the new queues have to take message constraints into account in ordering its contents and, in this way, schedule
when messages processed by the thread. These queues collaborate with the scheduler and may be user-defined in a
similar way.

4. KERNEL LEVEL SUPPORT

Pure user-level threading approaches incur two main drawbacks: the inability of utilising multiple processors on SMP

machines and the impossibility of using blocking system calls. SMP support can be added by mapping user-level
threads to a few kernel level-threads running on different CPUs. This functionality mainly requires an extension of
the thread package. Convenient integration of blocking system calls, however, requires support by the kernel, which
is discussed in this section.

A user-level thread blocking in the kernel will block the entire application, although other user-level threads may
be runnable. A work-around is using non-blocking variants, where possible. For instance, read and write operations
on sockets on UNIX systems may be configured to always return immediately, indicating that the operation could
not be performed yet, if necessary. By their own, these calls could only be used to periodically poll all applicable
sockets. On most systems a signal can be requested whenever some socket has become ready. If there is support
for POSIX real-time signals, a signal can also carry information what socket caused its generation. In any case,
the actual system call must be performed in addition to the signal processing. While a user-level thread package
can encapsulate this functionality, it incurs some management overhead and inconveniently restricts the application
programmer from utilising synchronous calls. Note that using a central blocking select call is not compatible with
concurrently running user-level threads. For accessing files, a similar work-around is possible only if asynchronous
I/O operations (as defined in POSIX 1003.4,23 for instance) are supported. Moreover, device drivers for hardware
such as a video frame grabber card may exclusively communicate via blocking calls and provide no alternative at all.
Since multimedia applications are typically I/O-intensive, the problems outlined above are very common. Hence, it
is not reasonable to preclude the use of blocking system calls on a multimedia threading platform. The developer
should have the choice of synchronous and asynchronous I/O according to the requirements of the application.

A way for overcoming these shortcomings are upcalls from the kernel to user space that notify the user-level
scheduler of any relevant event in the kernel.2,8 Scheduler activations as proposed by Anderson et al. make upcalls
whenever a kernel thread is made available to the application, has been preempted, has blocked, or has unblocked.
In this way, the user-level scheduler always knows what kernel threads are available and has complete control over
assigning user-level threads to them, while kernel- and user-level scheduling policies remain completely independent
of each other. Hence, the user-level platform can be used with a scheduler that supports some kind of guarantees
or even with the regular UNIX scheduler. Although there is only best-effort scheduling in the latter case, activations
enable the user-level scheduler to optimally assign the allocated CPU among its threads in an adaptive way.

As part of our platform we have developed a similar mechanism for the Linux operating system, which is described
in the following sections. For brevity, the abbreviations u-thread for user-level thread and k-thread for kernel-level
thread are used.

4.1. Design

For clarity, we first describe the design of the activation mechanism for the uniprocessor case. It can be assumed
that only one k-thread of an application is running. SMP support is discussed afterwards.
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Figure 3. Upcalls for a blocking system call. a) with other u-threads b) no other u-threads

An application can register an upcall handler to be notified of all kernel scheduling events affecting its k-threads.
Messages about these events are queued in the kernel. Whenever one of the k-threads of that application returns
from the kernel to user-space (after a system call or after being scheduled, for instance) and messages are pending,
the upcall handler is invoked and passed all event notifications. The user-level threads then can be rescheduled to
reflect the new situation.

There are the following types of upcall messages:

block The k-thread of the application has blocked in the kernel. The message contains an identifier of
the blocked k-thread.

deblock The k-thread has deblocked. The thread only returns to user-space if no other thread of the
application is running. Otherwise it saves its context in the kernel and exits. The other thread
picks up the context and sends it to the user-level scheduler by an upcall.

preemption The k-thread has been preempted. In the uniprocessor case, there is no other k-thread left to do
an upcall at preemption time. This message can merely be used to notify the user-level scheduler
of the elapsed time when the k-thread regains the CPU.

this Any k-thread of an application may be used for performing an upcall. This thread calls the upcall-
handler and does not immediately return to its user-space computation. Since this u-thread is to
be resumed at some time, its context is included in a this message and can later be resumed by
the user-level scheduler.

Figure 3a shows events caused by a blocking system call. k-threads are identified by characters and u-threads by
numbers. Ready queues for kernel- and user-level scheduler are shown as well as threads running in the kernel or in
user space. At the beginning, the application is assigned a k-thread A. The user-level scheduler has scheduled the
u-thread 1 while 2 waits in its ready queue. A:1 denotes u-thread 1 running on k-thread A.

1. A:1 performs a blocking system call. It enters the kernel.
2. A:1 blocks inside the kernel.
3. Another k-thread B is assigned to the application, either from a pool or newly created.
4. Since A is blocked, the kernel schedules B now.
5. B performs an upcall informing the user-level scheduler that A has blocked.



6. The user-level scheduler assigns u-thread 2 to its k-thread B.
7. At some time, A:1 deblocks in the kernel and becomes ready.
8. Some time later, the kernel scheduler will preempt B:2 and run A:1. Two k-threads of one application

would now compete with each other for the CPU, while the user-level scheduler should decide whether 1
or 2 should continue. To induce this decision, k-thread A saves the context of 1 and terminates.

9. The kernel schedules B:2 again.
10. B performs an upcall passing a deblock -message containing the context of 1 and a this-message containing

the context of 2.
11. The user-level scheduler inserts 1 and 2 in its ready queue and chooses, which of them to run on B. In

this example, it schedules B:1.

A slightly different procedure is necessary, if the entire application becomes idle. Figure 3b shows the same
scenario as Figure 3a at the beginning except that 1 is the only runnable u-thread. Steps 1 through 5 are the same
as in the previous example.

6. The user-level scheduler does not have any u-thread to run and, hence, terminates its k-thread B.
7. At some time, A:1 deblocks in the kernel and becomes ready.
8. A:1 is run by the kernel scheduler.
9. Since there is no other k-thread of the application running, A does not terminate, but performs the upcall

with a deblock -message containing the context of 1. In this special case, there is no this message in the
upcall.

10. The user-level scheduler runs its only u-thread as A:1.

In most cases described above, threads returning to user-space carry a u-thread context. These threads have
been set up before they entered the kernel and have their own stack. The case of a blocking thread (as in steps 3
to 5 above) is an exception, because it involves the creation of a new kernel thread. For it, a temporary stack is
necessary. When the upcall has completed, the temporary stack may be reclaimed, because either the application is
idle and the thread has terminated (step 6 in Figure 3b) or a user-level thread with its own stack is assigned to the
new kernel level thread (step 6 in Figure 3a).

On a multiprocessor machine, scheduler activations are even more useful. Consider an application running two
u-threads 1 and 2 with 1 having a higher priority. Also two kernel threads A and B are assigned to that application,
so A:1 and B:2 are run. If now the kernel scheduler decides to preempt A, u-thread 2 is running while 1 with a
higher priority is stuck in the kernel ready queue. Hence, when A is preempted, B needs to be interrupted to perform
an upcall carrying both contexts 1 and 2 to let the user-level scheduler choose again. We have not implemented the
SMP support yet, because we are still working on an SMP version of Cool Jazz.

Some upcall messages contain the context of a thread, which needs to be captured in the kernel. Fortunately,
this state is largely saved by the system, anyway. Whenever a trap or interrupt occurs, the processor switches from
the user-space stack to a stack inside the kernel. Then, the OS saves most registers on the kernel stack from where
they are retrieved at return to user space. This state can be copied into upcall messages and can be manipulated to
perform the upcall, that is, to jump to the registered handler and pass the messages to it.

In user space, care must be taken of locking when calling functions of the thread package itself. The core of
the package including scheduler and dispatcher maintains data structures such as the ready queue that must be
accessed in a synchronised way. Particularly, user-level context switches are performed while access to the core is
locked. Because the upcall handler has to interact with the scheduler and upcalls can be triggered asynchronously
to the thread package, they must be deferred when the scheduling core is locked. Moreover, when dispatching a
u-thread the two types of contexts must be handled separately. When resuming a user-level context that has been
saved inside the core of the thread package, the lock must remain set, because the thread resumes inside the core.
Contexts from an upcall, however, resume outside the core and, hence, the lock must be released when jumping to
them. The scheduling core itself must not do any blocking system calls, because an upcall could be triggered while
the lock remains set resulting in a deadlock.

We are working on a more fine-grained synchronisation mechanism. One approach is to decouple upcall-handler
and the actual scheduler. Reentrant upcall handlers can be called any time and simply queue their messages in the
threads package. They activate the scheduler only if the core is not locked. If the core is locked the the scheduler
itself has to check for new messages whenever the core lock is reset.
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The upcall mechanism has been extended to provide better support for asynchronous I/O as well by replacing
timer and I/O signals. To deliver a signal, the kernel switches to user-space and calls the signal handler. The handler
traps back into the kernel, which then again returns to the point in the user-program where is has been interrupted
by the signal. An upcall, in contrast, jumps from the kernel to the user-level thread package calling the appropriate
handler. Then, the user-level scheduler on its own resumes the execution of its interrupted thread. Hence, there is
only one switch between kernel and user space rather than three. With more elaborate support, upcalls can even be
extended to carry data, from network packets for instance.

4.2. Implementation

At the time of writing, we have implemented the upcalls for uniprocessors in a Linux 2.2.14 kernel. For controlling
them only one system call had to be added: int upcallctr(void* handler,int* lock, unsigned long* stk);

handler identifies the upcall handler for the application, lock points to a flag indicating whether a thread runs in
the scheduling core and no upcalls are allowed at that time, and stk provides the temporary stack mentioned above.

Modifications of the kernel were limited to few places: In the scheduler the relevant events are detected and queued
for upcall. In the exit-syscall the core lock must possibly be reset. Finally, when a k-thread leaves the kernel, it is
checked whether the thread has deblocked or an upcall is pending. A deblocked k-thread saves its context for the
next upcall and exits. Pending upcalls are performed when the user-level scheduling core is not locked. All pending
messages are saved on the stack of the upcalling thread and its return context at the top of its kernel stack is changed
to jump to the upcall handler. Finally, this context is restored when leaving the kernel.

Figure 4 illustrates how upcalls are performed. Figure 4a shows the user-space and the kernel stack, when a
thread runs inside the kernel. At the (logical) bottom of the kernel stack the register contents have been saved and
are restored when returning to user-space. The stack pointer (SP) points to the top of the user stack, the instruction
pointer IP to the user code, from where the kernel was entered by a trap or interrupt. When an upcall is performed
as shown in Figure 4b, the saved registers are put onto the user stack for later retrieval by the user-level scheduler
as part of the this message. Then, the actual messages are pushed onto that stack. Finally, the register contents on
the kernel are manipulated to perform the upcall: IP points to the upcall handler, SP points behind the message
to provide a stack the handler may work on without overwriting data. The upcall handler receives a pointer to the
message buffer structured as described below. Messages consist of an ID and an optional argument:

ID THIS BLOCKED DEBLOCKED END

argument context of upcalling thread thread ID context of deblocked thread

The END message indicates the end of the message queue. While the handler is running the stack typically consists
of the following parts as shown in Figure 4c: The stack before the system call or interrupt, the context of the thread
before exiting the kernel, the upcall messages, and the data put on the stack by the handler function itself.



To suspend and resume u-threads, the thread package uses setjmp and longjmp. These contexts, however, differ
considerably from those captured in the kernel. The latter ones are larger than the few registers saved in setjmp,
because for setjmp the compiler makes sure that only these registers are actually in use. To avoid dealing with two
types of thread contexts in the user-level scheduler, the upcall handler creates for each context from the kernel a
setjmp-compliant context that points to a restore-function that loads the entire context. Moreover, this function
releases the lock of the scheduling core. In this way, in user-space the efficient setjmp-based context switching can
be used and upcall-context can be handled uniformly. Interaction between upcall handler and scheduler becomes
very simple: Each context from an upcall message (this or deblock) is added to the ready queue and the scheduler is
called to dispatch a user-level thread.

Care must be taken when the application becomes idle and the upcalling thread is terminated. A call to exit

would cause the C standard library to perform cleanup tasks and release resources that are still needed. These
functions must be bypassed by exiting directly via the system call exit.

We have performed initial performance measurements on a 350Mhz Pentium II. A context switch between Linux
kernel-level threads takes about 6.7µs, a switch between Cool Jazz user-level threads about 1.5µs. As expected,
user-level switches are considerably faster, but the absolute overhead is small in either case. More importantly for
providing flexible user-space scheduling, the overhead of upcalls is acceptable: From the time a thread initiates a
blocking system call to the time another user-level thread is scheduled it takes about 10µs. This delay includes the
trap into the kernel, scheduling another kernel thread from a pool, performing the upcall, and scheduling another
thread in Cool Jazz.

5. RELATED WORK

In the SUMO project upcall-driven application structuring has been identified as a useful principle in supporting
multimedia applications on micro-kernels.24 Communication events are initiated by the system, which calls user-
level handlers that have been attached to I/O ports. While this approach mandates asynchronous I/O, in our system
upcalls are also used for interaction between kernel and user level scheduler to enable the application to efficiently
use synchronised, blocking I/O operations as well.

Real-time upcalls also use an upcall mechanism as a basis for implementing communication protocols in user
space.25 In this way scheduling and data movement are combined, and a high efficiency is achieved. Moreover, the
system provides QoS guarantees to the protocol handlers.

The original split-level scheduler8 uses upcalls called user-interrupts to directly invoke the user-level scheduler
from the kernel. The scheduling in the kernel takes deadlines of user-level threads into account, tightly coupling both
schedulers and requiring cooperative behaviour. Moreover, this approach focuses on asynchronous I/O, too.

Due to the deficient multimedia support of schedulers in general purpose operating systems such as the commonly
used UNIX scheduler,7 a variety of scheduling algorithms have been proposed.8,9,3,10,11 Although we also investigated
an extension of a stride scheduler,15 our platform does not rely on resource reservation from the kernel. If there are
some guarantees, the user-level scheduler can take advantage of them, if not, it can work adaptively.

Scheduler activations have been proposed as an efficient means of coordinating kernel and user level schedulers
while keeping their actual scheduling policies independent of each other.2 The mechanism allows to combine the
performance and flexibiliy of user-level threads with the possibility to use multiprocessors and blocking I/O supported
by kernel-level threads. Activations have been used in research OS such as Nemesis.3 Recently, a variant has been
implemented in Linux to support a library for parallel multithreaded programming.26,27

On the user-level, Cool Jazz is similar to GOPI, which also aims at providing a middleware platform for
multimedia applications.28,29 It also implements user-level threads and allows for user-defined schedulers. In
contrast to Cool Jazz, however, GOPI uses the conventional threading model and the interface for user-defined
schedulers cannot be easily extended. Moreover, some real-time functionality such as priority inheritance is not
directly supported by GOPI.

With respect to flexible scheduling, our work is particularly related to OpenThreads.30 In this work, also the
notion of an open implementation has been systematically exploited, and a user-defined scheduler is invoked whenever
a thread state transition occurs. OpenThreads, however, has not been developed with real-time environments and
multimedia support in mind.



Message-based inter-thread communication and a real-time scheduler are provided by RTThreads.31 Its schedul-
ing policy, a multi-level approach applying EDF within each priority, supports real time requirements, but the problem
of priority inversion is not addressed. In contrast to Cool Jazz or OpenThreads, the scheduler cannot be easily
modified or replaced by the developer if needed.

6. CONCLUSIONS

We have proposed a platform for multimedia applications based on a message-based threading model and user-
defined scheduling. It aims at leaving as much flexibility with the developer as possible while encapsulating necessary
mechanisms in the system.

The message-based threading model is more versatile than the conventional purely sequential processing in each
thread. The developer can easily model concurrency as it fits best for a particular application. We have shown that
inter-thread messages and a reactive style of programming provide a uniform abstraction for controlling concurrency,
asynchronous communication and external events. The interface to the operating system is extended by upcalls to
efficiently support blocking system calls and asynchronous I/O. Again, the developer has the choice, what type of
communication fits best. In this way, our platform represents a suitably flexible infrastructure to cope with the
diversity of tasks in a multimedia application.

To take application-specific needs for thread scheduling into account, an interface for a user-defined scheduler
is provided. The developer can device scheduling policies tailored for the particular problem while the platform
takes care of mechanisms for managing the timing constraints and bounding priority inversion. Scheduler activations
enable the interoperability of user-level scheduling with blocking system calls and SMP utilisation.

Currently, we are implementing a video player similar to that mentioned in Section 1 to evaluate the performance
of the platform as well as to gain further experience with the programming model and application-specific schedulers.
As future work, SMP support needs to be implemented in kernel and user space. Besides several locking issues, it
should be investigated whether u-threads should freely be mapped on available processors or whether some locality
should be maintained. Moreover, if one k-thread is preempted another one of the application needs to be interrupted
to do an upcall and to inform the user-level scheduler. The overhead of these operations is probably too high for
very short periods of preemption as frequently caused by some system processes. Here, appropriate heuristics need
to be found for an efficient solution.
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