
Journal of Membrane Science, 16 (1983) 361-377 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

361 

MACROMOLECULAR STRUCTURE AND SOLUTE DIFFUSION IN 
MEMBRANES: AN OVERVIEW OF RECENT THEORIES* 

NIKOLAOS A PEPPAST and DAVID L. MEADOWS?? 

School of Chemical Engineering, Purdue University, West Lafayette; Indiana 47907 
(1JS.A.) 

(Received August 13, 1982; accepted in revised form November 24, 1982) 

Dedicated to Prof. Edward W Merrill of M.I.T, on the occasion of his 60th birthday. 

Summary 

An overview of macroscopic, mass transfer, Irreversible thermodynamic and macro- 
molecular theories is presented for apphcation in solute dlffuslon through polymeric mem- 
branes Special emphasis 1s given to recent work on solute diffusion through mlcroporous 
and non-porous membranes. 

1. Introduction 

There have been two maJor approaches that have emerged over the past 
several decades for the physical description of transport processes through 
polymer membranes. Accordingly, each theory has led to its own applications 
and its own ways of describmg and modeling transport phenomena in mem- 
branes. There has also been evidence that shows the two approaches can be 
related. 

The first approach for analysis of transport through polymer membranes 
is based on the generalized Fickian diffusion equations. The generalized equa- 
tions are often referred to as Stefan-Maxwell equations. They have been 
most often applied to multicomponent gaseous diffusion processes [ 11, but 
can also be applied to liquid processes [Z] . 

The second approach is based on the principles of irreversible thermo- 
dynamics. It employs phenomenological coefficients to correlate the gradients 
that exist across a membrane and their resulting fluxes. This approach has 
been applied to a wide range of problems, mcluding desalination and waste- 
water treatment by reverse osmosis, ultrafiltration or microfiltration [ 31, 
biomedical and pharmaceutical engineering, [4] , etc. 

Although membranologists and engineers continue studying various ways 
of using these two theories to predict and explain experimental results in 
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separation processes, polymer physicists have concentrated, especially in 
recent years, on a systematic investigation of molecular structural character- 
istics of polymeric membranes, which could be important in understanding 
solute diffusion [e.g. 3,5] ~ In fact, recent physical analyses have attempted 
to relate physical structure and diffusive properties for simple and complex 
polymeric systems. In this short review we attempt to summarize some of 
the important findings of recent work on this subject. 

2. Theories of mass transport in membranes 

2.1. Analysis of mass transport by multicomponent diffusion equations 
Transport properties of gases and liquids are described by several theories 

which owe their development to classical and statistical mechanics. The ac- 
curate evaluation and practical application of transport coefficients have been 
possible for only very few systems. These systems are usually simple and con- 
tain monatomic molecules with binary collisions. The kinetic theory of dilute 
gases has been used to calculate the transport coefficients. An excellent, sum- 
mary of this analysis can be found in Chapters 7 and 8 of Eirschfelder et al. 
[6] . The entire development is based upon the Boltzmann integrodifferential 
equation for the distribution function f(r,u,t,l, This equation has been solved 
for simple systems using various approximations, The most well known is 
the one offered by Chapman [7] which is based on the Enskog series analysis 

Lf31. 
Analysis of complex systems including solutions and multicomponent 

systems is not possible with simple kinetic theories. Therefore, further analy- 
sis was developed for the study of transport phenomena in “dense” systems. 
A good summary can be found in Chapters 9 and 10 of Hirschfelder et al. [6]. 

2.1.1^ Generalized Ste fan-Maxwell equations 
As a result of the analysis described above, a set of mathematical expres- 

sions may be used to describe the relation between fluxes and forces in multi- 
component diffusion, The most general of these forms is referred to as the 
Stefan-Maxwell equations [ l] . Numerous authors have derived different 
forms of the equations, although all derivations are fundamentally identical. 
The derivations are based on the solution of the Boltzmann equation with 
appropriate perturbations and the conservation equations. A preferred analy- 
sis of the Stefan-Maxwell equations can be found in the book by Chapman 
and Cowling [9] . 

The form of the Stefan-Maxwell equations used by Lightfoot [ 101, 
Cussler [ 111 and Krishna and Standart [ 21 is preferred in many investigations 
of membrane processes. This form of the equations is in general agreement 
with some of the classical contributions in the area of multicomponent diffu- 
sion such as the work of Stewart and Prober [ 12], Toor [ 13-151 and Cussler 
and Lightfoot [16, 171. 

For a system of n independent components under isothermal conditions, 
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diffusion of species i through the multicomponent system may be described 
by the Stefan-Maxwell equations, presented as eqns. (l)-(4), and hence- 
forth designated the S-M equations, 

with 

Dij = Dji 

h $j=O. 
i=l 

(2) 

(3) 

(4) 

In these equations subscript i designates the diffusing species and subscript 
j designates any one of all other components. Subscript h may be a reference 
component, although one may choose to use any other species without loss 
of generality, A common practice is to designate the component with the 
highest concentration as k (e.g. solvent for diffusion in solutions, or the mem- 
brane for diffusion through membranes). Also 3 and uk are the velocities of 
components j and k respectively. The mole fractions of components i and j 
are designated 3~; and xj respectively, while the Dij’s are the multicomponent 
diffusivities of the pairs ij. Finally, d_i designates the generalized driving force 
for diffusion. For a system that has chemical potential, pressure, electrostatic 
potential and gravity gradients acting on it, d,i may be written according to 
eqn. (5) 

k=l k=l 

(5) 

Here ,u, p, # and g refer to the chemical potential, pressure, electrostatic 
potential and gr&ty forces, respectively ; ci, Vi, w i and pi refer to the con- 
centration, specific volume, mass fractions and ionic charge of solute (diffus- 
ing species), respectively; F is the Faraday constant, c is the total concentra- 
tion of the system, R is the gas constant and T is the absolute temperature. 

Equation (1) summarizes n-l rate expressions known as the S-M equa- 
tions and is a direct result of the solution of the Boltzmann equation with 
fluxes expressed in terms of velocities. However, contrary to other conven- 
tional diffusion expressions (such as the simplified Fickian diffusion expres- 
sion), in eqn, (1) the forces are presented explicitly in terms of the fluxes. 
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The S-M relations cannot be used without the restraints expressed in eqns. 
(2)-(4). Equation (2) is a direct result of the symmetricity of the diffusion 
coefficient matrix. Equation (4) is a result of the use of the Gibbs-Duhem 
theorem. Equation (5) is an explicitly relation of the driving forces to all 
possible gradients that can be observed in the diffusion process. 

Equation (1) must be recognized as the S-M relations for isothermal pro- 
cesses, because temperature effects have not been included in the expressions. 
Non-isothermal multicomponent diffusion may be described by eqn. (I’), 
where the additional term describes temperature gradients and includes the 
thermal diffusion coefficients, UT [S] _ 

j#k j#i 

Several texts have simplified the S-M equations for the case of ideal ther- 
modynamic systems where the only gradient is a concentration gradient. For 
example, Bird, Stewart and Lightfoot [ 181 simplified the S-M equations in 
the form of eqn. (6) 

Apart from the use of mole fraction gradients instead of chemical potential 
gradients, the major difference between eqn. (6) and eqn. (1) is that the 
former is expressed in terms of the effective multicomponent diffusion coef- 
ficients,Qii. A very important characteristic ofQij is that they are much more 
concentration dependent than the multicomponent diffusivities, D;j of the 
more rigorous S-M relations [ 10, 111. 

Because of the complex nature of S-M equations, many investigators have 
used simplifications of the S-M relations to describe their systems. The three 
simplifications that have appeared in the literature most often are generalized 
Fickian diffusion, Fickian diffusion and Nernst-Planck diffusion. 

2.1.2. Generalized Fickian diffusion 
The generalized Fickian diffusion equation may be described by eqn. (7) 

ji =$ 5 MiMjDij OXij 
j=l 

Here p is the density, Mi and Mj are the molecular weights of component i 
and j respectively, and the other terms are as defined before. Equation (7), 
the generalized Fickian expressions (henceforth designated as GF relations), 
closely resemble the S-M equations except for the fact that in the GF equa- 
tions the fluxes are explicit functions of the forces. This inversion from equa- 



tion (6) to (7) can be done under conditions described elsewhere [6] . Actual- 
ly, in the form written here, eqn. (7) includes only chemical potential gradi- 
ents. Similar expressions can be written for the flux due to pressure gradients 
(pressure diffusion), the flux due to gravity gradients (forced diffusion) and 
the flux due to thermal gradients (thermal diffusion). The total fluxes due to 
these forces are the summation of all the individual fluxes [6] . 

2.1.3. Fickian diffusion 
A further simplification of the GF relations for binary systems leads to 

the well known Fickian equation described by eqn. (8) 

This equation is applicable to binary systems exhibiting thermodynamic 
ideality. The multicomponent diffusion coefficient, DQ, used in the GF 
equations has now become the binary concentrationdependent diffusion 
coefficient,Qij. 

2.1.4. Nernst-Planck analysis 
The third important simplification of the S-M equations was developed 

by Nernst and Planck to analyze systems where the diffusion of one com- 
ponent is the important transport process and all the other components can 
be collectively called the “mixture”. Therefore, the Nernst-Planck equa- 
tions (henceforth designated N-P equations) apply to pseudobinary systems 
which are conveneintly described by eqn. (9): 

pi = -dTDi, d,i + j# i Xi 
?I 

(9) 

j=l 
j#i 

Here N designates molar flux with respect to a stationary coordinate system 
and the other terms are as defined before. 

The diffusion coefficient appearing in the N-P equations,Q im, is the 
pseudobinary diffusion coefficient which is defined according to eqn. (9) in 
terms of the multicomponent diffusion coefficients, Dij, as 

The above description of the S-M equations and several useful simplifica- 
tions was meant to be a brief overview. Several useful forms of the equations 
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exist but are not discussed at this time. Many investigators have used the equa- 
tions presented above to analyze a variety of transport processes. Some of the 
more important problems that have. been solved using S-M concepts will now 
be presented. 

2.2. Irreversible thermodynamics 
In the last forty years the theory of irreversible thermodynamics has been 

vigorously developed and tested. The theory has been able to treat irreversible 
processes in a detailed macroscopic fashion, which was not possible with its 
classical forebear. Although the concepts of irreversible thermodynamics were 
known before the turn of the century, it was not until the statistical mechan- 
ical investigations of Onsager [ 19, 201 that the present macroscopic form of 
the equations appeared [ 211. 

The theory of irreversible processes (henceforth designated as TIP) has 
been a partial answer to the questions raised by classical thermodynamics 
[22] . The development of TIP was inspired by the work of Onsager [ 19, 201 
and expanded by Meixner [ 23,241, Eckart [ 251, Prigogine [ 261 and De 
Groot [27] who developed modified expressions of TIP for thermal diffusion, 
thermoelectricity, viscous flow and heat transfer. 

The dissipation function, Tu’, that is the product of temperature and 
entropy generation, was first recognized by Lord Rayleigh as early as 1873 
[ 271. Rayleigh recognized that the dissipation function calculated for any 
system is of the form, 

TO’ =C JiXi 
i 

(11) 

Here, the fluxes, Ji, are flows of matter, heat or electricity and the generalized 
forces, Xi, are gradients of temperature, chemical potential, electrical poten- 
tial, etc. 

Another relationship between Ji and Xi that has been known for many 
years is that in simple cases the forces and fluxes are linearly related to each 
other. Linear relationships were verified experiment,ally and are still consis- 
tent with the theoretical development of Onsager. For cases where there is 
more than one irreversible process occurring, each flux Ji is linearly related 
to all other forces in the summation of the expression for Tu’. The general 
form of the flux J; is, 

Ji = GLijX; 
i 

(12) 

where Lij is the general linear coefficient or the phenomenological coeffici- 
ents . 

Meixner [24] pointed out that the flows or forces can be chosen arbitrarily 
to a certain extent. He established a set of requirements for determining the 
set of conjugate variables after one set of variables is chosen. The first rule is 
that the product of any flux and its conjugate force have the dimensions of 
entropy production, The second rule states that any transformation of fluxes 
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and forces for a given system does not alter the sum of the products. 
The choice of fluxes and fames in irreversible thermodynamics is similar 

to the choice of coordinate systems for the solution of problems in classical 
mechanics The thermodynamic solution to an irreversible process produces 
useful correlations between observable phenomena only when the fluxes and 
forces correspond to those that lend themselves to experimental determina- 
tion [28] . 

2.2.1. Onsager 3 theory 

Onsager was the first to propose a relationship that. would significantly 
advance the theory of irreversible thermodynamics. Onsager’s principle may 
be stated as follows: for a system of 71 independent components, if Ji and Xi 
are chosen from the expression of I‘D’ and are independent, the phenomenol- 
ogical coefficients Ly of the linear laws satisfy the symmetric relation, 

(13) 

for all components i and j [19,20], Equation (13) is usually referred to as 
““the Onsager reciprocal relations? 

Since the contributions of Onsager, TIP has been used by many investi- 
gators to describe processes in many different areas For example, the applica- 
tion of TIP to ion-selective membranes [29--311 has helped to understand 
and quantify the phenomena of ion transport through a membrane. Another 
closely related application is electrolytic systems. I’IP has been used to de- 
scribe binary 1321 and ternary systems [33] 1 There have been several in- 
vestigations that applied TIP to transport through living membranes. Mam- 
malian red blood cell membranes have often been used to obtain information 
about the passive properties that cell membranes exhibit when exposed to 
different solutes and solvents [34-36-f. Kumar [ 37 1 tried to model complex 
living mernbranes by using ion-exchange membranes, Systems that have reac- 
tions taking place in the membrane have aIso been described using TIP [38-l . 

In all of these examples, Onsager’s reciproca?l relations were used to test 
the data that were obtained. Inherent in this effort is the assumption that 
Qnsager’s theory is always true. Many investigators performed experiments 
to explicitly check which systems and system conditions verify Onsager’s 
theory. This was essential because for many years it was known that the 
reciprocity relations and the linear laws become invalid when the system’s 
forces deviated significantly from equilibrium. 

A system that. was initially expected to invalidate the rules of TIP was ac- 
tive transport. To model the process of active transport, investigators used 
a membrane system which coupled a chemical reaction and a vectorial flow 
caused by electric current [29, 401 j The system proved to be linear over the 
range of affinities that were studied. 

A system that was proposed to be an invalidation of the Onsager theory 
was bulk flow across an open membrane 1411 I The bulk flow was caused by 
an external pressure difference across the membrane, and the open membrane 
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was completely nonselective to both the solute and solvent. Bresler and Wendt 
[41] concluded that reciprocity was not satisfied for their system. However, 
they did qualify their statement by stating that their conclusion could not be 
tested rigorously because of insufficient data on their system, Smit and 
Staverman [42] refuted their analysis by stating that the only condition 
under which reciprocity fails is “large forces and fluxes”, Smit and Staver- 
man went on to say that “the linear region (small forces and fluxes) is rather 
wide for most membranes and certainly it is the region which should be and 
is the subject of most studies on permeabilities of membranes”. 

Miller [ 21 J prepared a review of the experimental data available on a 
variety of different irreversible phenomena. Thermoelectricity, elecko- 
kinetics, transference in electrolytic solutions, isothermal diffusion, heat con- 
duction in anisotropic solids and thermogalvanomagnetic effects were all 
considered in detail, All the dat,a did verify Onsager’s reciprocal relations 
and TIP within experimental error. 

More recent major efforts towards verification of these relations for mem- 
brane processes can be found in refs. [43--501. 

2.2.2. Membrane permeability to nonelectrolytes: Kedem and Katchalsky 
development 

The physical form of the forces and fluxes in eqn. (11) is very important 
for efficient use of these equations in engineering problems. The product of 
the forces and fluxes should be easily measurable, These criteria must also 
be fulfilled for all membrane systems. 

The definition of the fluxes and forces commonly used for membranes 
was successfully done by Kedem and Katchalsky [ 511 in an analysis, hence- 
forth referred to as the K-K theory. By analogy to eqn. (11) one can write 
eqn. (14), where the subscripts s and w refer to solute and solvent, respec- 
tively . 

Tu=J,A~~,+J,A,u,. (14) 

The fluxes and forces defined in eqn. (14) may be transformed into simpler 
quantities. Chemical potentials can be relat.ed to the concentration and the 
applied hydrostatic pressure for an ideal solution. Concentration may in turn 
be transformed into osmotic pressure by van ‘t Hoff’s law. An assumption in 
the K-K development is that of small concentration differences. The assump- 
tion allows the logarithmic average concentration to be approximated by the 
arithmetic average concentration. Finally, the solute and solvent fluxes may 
be related to the total volume flow and the diffusion flow. Consequently, 
phenomenological equations relating flows and forces defined by eqn. (12) 
take the form 

Jv = L,AP + L+Arr 

JD = L,DAP + LDA~ (15) 

LID =LDp. 
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Kedem and Katchalsky further simplified eqn. (13) by using the reflection 
coefficient defined by Staverman [ 521 

An=0 

where v, and v, are the velocities of the solute and solvent, respectively. The 
reflection coefficient, u, is an adequate measure of membrane selectivity and 
can be easily measured experimentally. As it is presently defined, LD is still 
rather difficult to measure. An alternative approach is the use of the coeffici- 
ent of solute permeability at zero volume flow, w , which is defined as 

Js - 

a_ AXJ~=O i-1 = &&,LD - LpD’) 

LP 
(17) 

The parameters defined by Kedem and Katchalsky have important practical 
implications since L,, u and o are easier to measure [53] . Indeed, the mem- 
brane science literature includes excellent experimental studies, too numerous 
to cite here, which have reported values of these parameters for different 
membranes, synthetic and biological. 

Qualitative analysis of the effect of various structural properties of 
polymeric materials on the transport and diffusional behavior of solutes, in- 
cluding diffusivity, L,, u and w has been available for many years [3, 531 . 
For example, we know that any transport barrier of the polymer (e.g. crystal- 
linity, crosslinking, high concentration of polymer, etc.) leads to lower values 
of diffusivity and permeability. However, in recent years, there has been re- 
vived interest in the development of more accurate physical theories which 
could relate solute transport properties to the molecular structure of polymer- 
ic membranes, 

3. Effects of polymer structure on solute diffusion 

In this section recent research relating polymer structure to solute diffusion 
will be reviewed. Basic information about the physical theories which estab- 
lish the dependence of the solute diffusion coefficient on the polymer struc- 
ture will also be discussed. 

3.1. Polymer structure and solute diffusion 
Transport through membranes has been extensively reviewed in recent con- 

tributions which have appeared in the literature [3, 531. In terms of applic- 
ability of theories of solution diffusion in membrane problems, several authors 
prefer to distinguish three types of polymeric membranes. 

(i) Macroporous membranes: these are membranes with large pores, usually 
in the range of 0.1-1.0 pm. They are widely used in waste-water treatment 
and other industrial applications. Membranes with pores as small as 200 a 
may be included in this category. 
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(ii) Microporous membranes: the pore size of these membranes ranges from 
50 to 200 A. The pores are slightly larger than the solute. Under these condi- 
tions the diffusion path of the solute through the pores may be restricted. 

(iii) Non-porous (gel) membranes: as the term implies these are membranes 
that do not have a porous structure. The space between macromolecular 
chains (henceforth referrred to as the “mesh”) is the only available area for dif- 
fusion of solutes. Molecular diffusion is the only mode of mass transport un- 
der concentration gradient only and convection is usually negligible. Non- 
porous membranes are of particular interest in novel laboratory separations of 
expensive specialty chemicals, including -many newly developed genetically- 
engineered molecules. 

Methods of preparing the various types of membranes mentioned above 
have been described in a monograph by Kcsting 1551. 

3.2. Macro- and microporous membranes 
Solute diffusion through porous membranes (macroporous and micro- 

porous) may be described by Fickian or multicomponent diffusion equations 
(see eqns. (I), (7), (8) and (9)). For diffusion through pores the diffusion 
coefficients refer to solute diffusion through the solvent-filled pores. The 
structure of the pores in the membrane is incorporated into the diffusion co- 
efficient by means of the void fraction (porosity), E, and the tortuosity, 7, of 
the membrane. When partition of the solute in the polymer can occur, a pore 
wall partition coefficient, K,, must be incorporated into the diffusion coef- 
ficient. Thus, the final form of the diffusion coefficient is 

whereg iw is the diffusion coefficient of the solute through solvent, and 
‘D,ff is the effective diffusion coefficient of the solute through the membrane, 

In the special case of microporous systems where the size of the diffusing 
species is of the same order of magnitude as the diameter of the pore, special 
simplified expressions have been developed t.o describe the transport process. 
The Fax&n t,heory [ 561 and the Quinn--Anderson theory [ 571 are most often 
used to describe the pore--solute diffusion process. Both theories are based 
on a hydrodynamic analysis of solute diffusion through porous systems in 
the absence of pressure gradients. 

The general form of the Fax&n equation [56] , the earliest of a number of 
equations which relate normalized diffusion coefficients to solute size, is 

:Bim 
- = (1 --A)” (I- 2.1044 + 2.09h3 -0.95h5) 

‘ai, 

where 

(19) 

(20) 
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qitn and ‘Di, are the diffusion coefficients of the solute in the polymer and 
in water, respectively. The radius of the solute is represented by rs, while 
the radius of the pore is represented by rP. 

For microporous systems it is also useful to employ an alternative defini- 
tion of the solute effective diffusivity,geff, as 

‘3 a. eff =’ 
+JG 

lw (21) 
r 

where the parameter K, of eqn, (21) depends upon the value of h (= r,/rp), 
the ratio of molecular diameter to pore diameter. Satterfield et al. [ 581 
studied restricted diffusion using a variety of binary systems of hydrocarbons 
and aqueous solutions of salts and sugars in silica-alumina catalyst beads, 
for which X ranged from 0.1 to 0.5. For solutes that did not preferentially 
adsorb on the catalyst, their results were well correlated by 

TCZ)eff 
log - 

[ 1 = -2.Oh 
‘bi, 

(22) 

In a later study [ 591 using macromolecules, Colton et al. found reasonable 
agreement between eqn. (22) and the effective diffusion coefficient of certain 
compact and relatively rigid proteins. 

3.3. Non-porous membranes 
Optimum design (or selection) of membranes for separation systems re- 

quires understanding of two types of problems, i.e., problems related to the 
structure and morphology of the polymeric material and problems related to 
the diffusion process per se. From a materials point of view, optimum dif- 
fusive conditions can be achieved by controlling the crystalline phase, porous 
structure, degree of swelling, additive concentration, mesh size of the cross- 
linked macromolecular chains and thermodynamic transitions related to 
macromolecular relaxation phenomena, namely glassy/rubbery transitions in 
the presence of a solute and a swelling agent, usually water [60, 611. From 
a diffusion point of view, thermodynamic interactions between the polymer 
and the diffusing species may be important. The nature of intensive variable 
gradients responsible for transport, such as chemical potential, pressure, 
electrostatic potential and temperature gradients must be investigated and 
controlled. 

The solute partition coefficient, K,, is largely a measure of solute prefer- 
ence for the polymer relative to the surrounding diffusion media. If the solute 
has a chemical structure similar to that of the polymer, the partition coef- 
ficient will be high, whereas if the structures are different, K, will be low. 
Sizedependent steric effects can influence K,. 

The effect of the structure of polymers on the solute diffusion coefficient 
is more complex. For crosslinked or uncrosslinked rubbery polymers, Fickian 
diffusion is observed. The solute diffusion coefficient is dependent on the 
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equilibrium polymer volume fraction in the swollen polymer matrix, the 
crosslinking density and the size of the solute. Recent theoretical analyses by 
Yasuda et al. [62,63] and Peppas et al. [61,64], give the general behavior 
of the solute diffusion coefficient,‘9 im, for highly swollen polymers. 

(231 

Here(Di, and ‘Diw are as previously defined, GC and @n are the number 
average molecular weights between crosslinks (for the network membrane) 
and before crosslinking (for the original polymer chains), respectively, Mz is 
the value of aC below which no diffusion of the solute can occur, and rS is 
the characteristic radius of the solute. The swelling ratio, Q, , is expressed as 
V2 -I, where u2 is the polymer volume fraction in a completely swollen mem- 
brane. Finally, kl and 722 are physical parameters characteristic of the polymer 
and the swelling agent. 

It is evident from this analysis that the crosslinked structure of polymer 
membranes creates a “screening effect” on solute diffusion through polymers 
even for highly swollen systems, For uncrosslinked polymers, this “screening” 
is provided by the mesh formed by entangled chains, whereas in semicrystal- 
line polymers the crystallites act as physical crosslinked. Models and new 
molecular theories for concentrated polymer solutions and networks, as well 
as for their screening effect on diffusion, have been recently discussed by 
deGennes [54] and Nystrijm and Roots [5]. 

The main mechanism of solute diffusion is through the water (solvent) 
regions of the membranes, as shown experimentally with a variety of polymers 
/65, 663. Increasing the size of the solute leads to a significant decrease of 
%i,. 

Moderately crosslinked solute carriers deviate from this theory. Recently 
Peppas et al. [67] extended the previous theories to these systems, by de- 
scribing the normalized solute diffusion coefficient -Dim /:Oiw by the follow- 
ing equation : 

(24) 

The parameters used here are the same as in eqn. (23) with the exception of 
the mesh size, Ep, which describes the average size (as length) of the space 
between four tetrafunctional crosslinks or four entanglements in the mem- 
brane. 

In semicrystalline rubbery polymers solute diffusion is significantly slowed 
down by the crystallites. Diffusion may still be treated by Fickian with effec- 
tive diffusion coefficient 9 i, defined as 

(25) 
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where 3 i, is the diffusion coefficient in the amorphous rubbery polymer, 
$ is the “detour ratio”, which accounts for reduction in solute mobility due 
to the tortuosity of diffusion paths between crystallites, and p is an “immobil- 
ization factor” that accounts for physical crosslinking due to the crystallites 

[681. 
In recent contributions in this Journal, Pusch and Walch 169,701 and 

Lonsdale [71] offered an overview of recent work on membrane structure 
and its correlation with permeability and performance, especially for macro- 
porous membranes. Here we examined some recent molecular theories which 
have applicability to microporous and non-porous membranes and are based 
on macromolecular physical, rather than macroscopic analysis. 
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Pore restriction coefficient 
Phenomenological (Onsager) coefficients 
Solute permeability coefficient 
Hydraulic permeability coefficient 
Permselectivity permeability coefficient 
Number average molecular weight between crosslinks 
Threshold value of ac 
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Hydraulic pressure difference 
Pressure 
Equilibrium volume degree of swelling of membrane 
Gas constant 
Radius of membrane pore 
Radius of solute 
temperature 
Specific volume of component i 
Velocity of component i 
Velocity of component k (solvent or membrane) 
Velocity of solute 
Velocity of solvent 
Generalized (conjugate) forces 
Mole fraction of component i 

Greek letters 

P Immobilization factor for diffusion in semicrystalline polymers 
E Porosity of membrane 
x Ratio of solute to pore radii 
IJi Chemical potential of component i 

“i Ionic charge of component i 
tP Mesh size of chains 
A?7 Osmotic pressure difference 
P Density of solution 
0 Staverman reflection coefficient of membrane 
0’ Entropy generation 
7 Tortuosity of membrane 
u2 Polymer volume fraction of membrane 
@ Electrostatic potential 
$ Detour ratio for diffusion in semicrystalline polymers 
w Solute permeability at zero volume flow 
Oi Mass fraction of component i 
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