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ABSTRACT
Motivation: High-throughput technologies such as DNA sequencing
and microarrays have created the need for automated annotation of
large sets of genes, including whole genomes, and automated identi-
fication of pathways. Ontologies, such as the popular Gene Ontology
(GO), provide a common controlled vocabulary for these types of auto-
mated analysis. Yet, while GO offers tremendous value, it also has
certain limitations such as the lack of direct association with pathways.
Results: We demonstrated the use of the KEGG Orthology (KO), part
of the KEGG suite of resources, as an alternative controlled vocabulary
for automated annotation and pathway identification. We developed a
KO-Based Annotation System (KOBAS) that can automatically annot-
ate a set of sequences with KO terms and identify both the most
frequent and the statistically significantly enriched pathways. Results
from both whole genome and microarray gene cluster annotations
with KOBAS are comparable and complementary to known annota-
tions. KOBAS is a freely available standalone Python program that can
contribute significantly to genome annotation and microarray analysis.
Availability: Supplementary data and the KOBAS system are
available at http://genome.cbi.pku.edu.cn/download.html
Contact: weilp@mail.cbi.pku.edu.cn

INTRODUCTION
In recent years, high-throughput technologies such as DNA sequen-
cing and microarrays have created the need for the automated
annotation and analyses of large sets of genes, including whole
genomes. To this end, an ontology, which is defined as a spe-
cification of a conceptualization, provides a common controlled
vocabulary to facilitate electronic communication and sharing of
information across different research groups and enables comparison
of annotations across different genomes and different gene sets.

Several ontologies have been developed for genome annotation
and expression analysis such as the Gene Ontology (GO) (Ashburner
et al., 2000), GeneX (http://www.ncgr.org/genex/) and eVOC (Kelso
et al., 2003). One of the most widely used ontologies is the Gene
Ontology (GO). The Gene Ontology organizes functional terms into
three top-level categories: molecular function, biological process and
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cellular component. Each category is structured as a directed acyclic
graph (DAG) in which a term may have more than one parent and
more than one child. The Gene Ontology has been used in the annota-
tion of many genome databases, including SGD, CGD, FlyBase,
MGI, TAIR, ZFIN, DictyBase, WormBase and RGD. Researchers
annotating these databases use a combination of automation and
manual curation to assign GO terms to genes in these genomes.
Computational tools that have been developed include OntoBlast
and Goblet, which assign GO terms to a new sequence based on its
similarity (often measured by BLAST E-values) to a sequence with
a known GO assignment (Hennig et al., 2003; Zehetner, 2003), and
InterPro, which assigns GO terms to a new sequence based on the
known GO assignments of the functional domains identified in the
sequence (Mulder et al., 2003).

Other tools have been developed to discover significantly enriched
GO terms among a given set of sequences such as a set of genes found
to form a cluster in a microarray analysis. They include the web-based
applications FatiGO (Al-Shahrour et al., 2004), GFinder (Masseroli
et al., 2004), Gostat (Beissbarth and Speed, 2004), NetAffx GO Min-
ing Tool (Cheng et al., 2004a), Onto-Express (Draghici et al., 2003),
the JAVA application GoMiner (Zeeberg et al., 2003), the R package
OntologyTraverser (Young et al., 2005) and the Perl command-line
tools GeneMerge (Castillo-Davis and Hartl, 2003) and TermFinder
(Boyle et al., 2004). These tools calculate the p-value for each GO
term seen in the given set of sequences using one or more of the
following statistical methods: binomial distribution, hypergeometric
distribution, Fisher’s exact test and/or chi-square test, using either the
entire probe set on the microarray or the complete genome sequence
for the background distribution. They also often apply one or more
multiple hypotheses correction strategies, such as Bonferroni correc-
tion, to control the false discovery rate (FDR). Two other methods
have used a knowledge-based approach (Cheng et al., 2004b) or
DAG (directed acyclic graph ) structure (Lee et al., 2004) to find
meaningful GO terms.

While GO offers tremendous value, it also has certain limita-
tions. Firstly, the GO hierarchy has highly varied depths along
different branches—from two levels (e.g. GO:0001662 behavioral
fear response) to 15 levels (e.g. GO:0030607 mitotic spindle ori-
entation). Some of the variation is inherent in different functional
families, while some may be an artifact of the uneven contribu-
tion by different groups participating in GO’s development and may
affect the reliability of statistical significance tests of GO terms.
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Table 1. Examples of genes that had no annotation in KEGG but similar annotations by KOBAS and in SGD (the Saccharomyces genome database)

Gene ID Annotation in KEGG Annotation by KOBAS Annotation in SGD

YBL075C None K03283, TC.HSP70; heat shock protein 70, Hsp70 family Heat-inducible cytosolic member of the 70 kDa heat
shock protein family

YCR068W None K01046, E3.1.1.3; triacylglycerol lipase Lipase, required for intravacuolar lysis of autophagic
bodies

YDL160C None K01509, E3.6.1.3; adenosinetriphosphatase Cytoplasmic DexD/H-box helicase, stimulates mRNA
decapping

YER103W None K03283, TC.HSP70; heat shock protein 70, Hsp70 family Member of 70 kDa heat shock protein family

Secondly, because GO was originally developed for the annotation of
eukaryotic genomes, the functional categorization in GO, and gen-
ome annotation using GO, is not as accurate for some prokaryotes
as for eukaryotes. Thirdly, because GO terms do not correspond dir-
ectly to known pathways; it is difficult to identify pathways directly
from GO annotations.

We have investigated alternative controlled vocabularies for auto-
mated annotation of sets of genes and propose the KEGG Orthology
(KO), part of the KEGG suite of resources (Kanehisa, 1997; Kanehisa
and Goto, 2000) as such an alternative. KEGG is best known for its
large pathway database and KO was developed to integrate pathway
and genomic information in KEGG. Historically, enzyme commis-
sion (EC) numbers were used to describe common gene products
in metabolic pathways. The ortholog identifiers were later intro-
duced to overcome limitations in the enzyme nomenclature. The
KEGG Orthology is a further extension of the ortholog identifiers,
and is structured as a DAG hierarchy of four flat levels. The top level
consists of the following five categories: metabolism, genetic inform-
ation processing, environmental information processing, cellular
processes and human diseases. The second level divides the five
functional categories into finer sub-categories. The third level corres-
ponds directly to the KEGG pathways, and the fourth level consists
of the leaf nodes, which are the functional terms.

Our research demonstrates that KO is effective as a controlled
vocabulary for automated annotation of sets of sequences, including
whole genomes, and since KO links directly to known pathways,
KO annotations enable concurrent pathway identification. Surpris-
ingly, there are few published investigations using KO for automated
annotations of new sequences, and the only existing tool is GFIT
(Bono et al., 1998), which assigns EC numbers to query sequences
based on orthologous genes in KEGG GENES. Unfortunately, the
available GFIT package is obsolete and KO is significantly more
complicated than EC numbers.

Several existing tools use the KEGG pathway database to identify
enriched pathways in microarray data. PathProcessor (Grosu et al.,
2002) and PathMAPA (Pan et al., 2003) map genes to KEGG path-
ways through their enzyme nomenclature, while ArrayXPath (Chung
et al., 2004) maps to pathways in KEGG, GenMAPP (Dahlquist et al.,
2002) and BioCarta (http://www.biocarta.com/), through sequence
identifiers. Knowing the EC number or sequence identifier a priori
is required to use these tools.

Here we present KOBAS, a KO-Based Annotation System written
in Python that uses KO as a controlled vocabulary to auto-
matically annotate, based on BLAST similarity searches, sets
of new sequences. KOBAS also identifies the most frequent

and the most significantly enriched pathways in a given set of
sequences. We demonstrate the effectiveness of KO and KOBAS
by evaluating KOBAS on two previously annotated genomes, one
newly sequenced genome and gene clusters from a microarray
experiment.

METHODS

Selection and parsing of original datasets
We used two datasets available in Release 32.0 of the KEGG suite of
resources. First, we extract the KO hierarchy and the known associations
between genes and their corresponding KO functional terms from the KO
data set. The KO dataset is a single complex flat file containing entries for all
of the KO functional terms (the leaf nodes at the fourth level of the KO hier-
archy). An example is shown in Supplementary Table 1. Each entry includes
the ID, functional description and hierarchy location of the KO term, links to
other databases (e.g. GO, COG, enzyme) and the IDs of genes in all annot-
ated genomes that have this KO function. Second, we extract the amino acid
sequences of all the annotated genes from the KEGG GENES dataset, which
consists of one flat file for each annotated genome of gene entries. Each
entry contains the gene’s ID, definition, genomic location, KO assignments
(if available), and amino acid and nucleotide sequence. An example is shown
in Supplementary Table 2. About one-third of all sequences in the genomes
in KEGG GENES have been assigned KO terms. We observed that while
it was possible to extract known associations between genes and KO terms
from both the KO and the KEGG GENES datasets, our detailed comparison
of the set of associations extracted from the KO dataset versus that from the
KEGG GENES dataset showed that they are not identical (Supplementary
Table 3). In Release 32.0, the associations extracted from the KO dataset
are an almost perfect superset of the associations extracted from the KEGG
GENES dataset. Thus we chose to use the KO data set for the KO hierarchy
and gene-KO associations and the KEGG GENES dataset for the amino acid
sequences only.

We implemented a complex regular expression to parse the KO dataset and
a series of regular expressions to parse the KEGG GENES dataset. Parsed
information was converted into an intermediate XML format using the Simple
API for XML (SAX) and then stored in an embedded relational database
using SQLite.

From Release 32.0 we extracted 5540 KO leaf nodes of functional
terms, 179 pathways, 748 177 genes (from 19 eukaryotes, 168 bacteria
and 19 archaea), and 232 637 documented associations between genes and
KO terms.

Automated annotation of new sequences with KO
Given a new DNA or protein sequence, we assign it KO terms based on its
similarity to amino acid sequences in the KEGG GENES dataset. We calculate
similarity using BLASTX for a new DNA sequence and BLASTP for a new
protein sequence (Altschul et al., 1990, 1997). As choosing the right threshold
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Table 2. Most frequent pathways in P.acnes, containing more than 20 genes,
identified by KOBAS

Pathway Number of genes

ABC transporters, prokaryotic 128
Ribosome 60
Phosphotransferase system (PTS) 47
Porphyrin andchlorophyll metabolism 46
Oxidative phosphorylation 43
Other replication, recombination and repair factors 40
Purine metabolism 38
Glycerolipid metabolism 37
Glycolysis/gluconeogenesis 34
Pyrimidine metabolism 33
ABC transporters, ABC-2 and other types 32
Other ion-coupled transporters 30
Starch and sucrose metabolism 30
Ubiquinone biosynthesis 28
Glycine, serine and threonine metabolism 28
Pentose phosphate pathway 25
Arginine and proline metabolism 24
Pyruvate metabolism 23
Glutamate metabolism 23
Aminoacyl–tRNA biosynthesis 23
Butanoate metabolism 23
Fructose and mannose metabolism 23
Folate biosynthesis 23
Citrate cycle (TCA cycle) 22
Histidine metabolism 22
Reductive carboxylate cycle (CO2 fixation) 21

is critical for achieving the most accurate assignments for the most sequences,
we tested a variety of different thresholds and combinations of thresholds.
In the end we chose as default,

E-value < 10−5 AND rank � 5,

meaning that a new sequence is assigned the KO terms of the first BLAST
hit that (1) has known KO assignments, (2) has BLAST E-value < 10−5 and
(3) has less than five other hits with a lower E-value. The requirement of
rank � 5 reduces the possibility of wrong KO assignments and, while it may
miss some KO assignments, our evaluation and comparison results (presented
in the Results section) indicate that the increase in precision exceeds the loss
in sensitivity. These default thresholds can be easily customized by users of
KOBAS. Any set of sequences, including whole genomes, can be annotated
with the above procedure.

Identification of frequent and enriched pathways
It is often important to identify pathways involved in a set of sequences,
such as a cluster of genes from microarray analysis. Since the third level in
the KO hierarchy corresponds to KEGG pathways, once we find the right
KO terms for a gene, we can trace back through the KO hierarchy to its
associated pathways. Given a set of gene (or protein) sequences, we can
identify the most frequently occurring pathways. For each pathway that
occurs in the set of genes, we count the total number of genes in the set
that are involved in the pathway and then rank the pathways by the number
of genes.

Since some pathways are larger (i.e. involve more genes) than others,
they tend to show up more frequently in any set of genes. Thus it is often
valuable to identify the statistically significantly enriched pathways in a set
of sequences, given a background distribution. We use the whole genome
as the default background distribution (though users can define their own

background distribution in the KOBAS system). For each pathway that occurs
in the set of genes, we count the total number of genes in the set that are
involved in the pathway. We then calculate the p value using a hypergeometric
distribution. If a whole genome has N total genes, among which M are
involved in the pathway under investigation, and the set of genes has n total
genes, among which m are involved in the same pathway, the p value for the
pathway is calculated as follows:

p = 1 −
m−1∑
i=0

(
M

i

) (
N − M

n − i

)
(

N

n

) . (1)

Because a large number of KEGG pathways are considered, multiple hypo-
theses tests are performed, which in some cases could result in a high overall
Type-1 error (i.e. false positive discoveries) even for a relatively stringent
p value cutoff. To reduce the Type-1 errors, we perform an FDR correction
(Benjamini and Hochberg, 1995) with default cutoff of 0.05.

KOBAS
We implemented the above methods in KOBAS. It is a standalone command-
line program written in Python (2.3.4). It consists of three modules: kparser,
blast2ko and pathfind. Kparser uses BioPython (1.3.0) and Martel (0.9.0)
to parse the KO and KEGG GENES datasets. The parsed information is
managed with SQLite, a small C library that implements a self-contained,
embeddable and zero-configuration SQL database engine. Blast2ko auto-
matically annotates a set of new sequences (in FASTA format) with KO
functional terms. Pathfind identifies both the frequent and the enriched path-
ways in a given set of sequences. It calculates the FDR value by invoking
the GeneTS (2.3) (Wichert et al., 2004) package of the R (2.00) language
(Storey et al., 2002) through RPy, an interface from Python to R. KOBAS
will run on most Linux systems, and executables are freely available at
http://genome.cbi.pku.edu.cn/download.html.

RESULTS
To evaluate the automated annotation of genes using KO as a con-
trolled vocabulary, we first applied KOBAS to two whole genomes,
one eukaryotic and one prokaryotic, that have existing KO annota-
tions in KEGG, and compared our automated KO annotations with
the existing KO annotations. We then applied KOBAS to a newly
sequenced whole genome that has not yet been annotated in KEGG
and compared our automated KO annotations with the textual annota-
tions available in the NCBI genome database. To validate the use of
KO annotations as an intermediate to identifying metabolic path-
ways, we applied KOBAS to 14 clusters of genes generated from
a microarray experiment and compared our automatically identified
pathways with the experimenters’ original manual annotations. We
also compared annotations of a well-annotated dataset using KO
versus GO.

Evaluation of automated KO annotation of the
Saccharomyces cerevisiae and Synechocystis genomes
To evaluate the automated annotation of genes using KO as a con-
trolled vocabulary, we applied KOBAS to annotate the complete sets
of genes in a eukaryotic genome, S.cerevisiae, and a prokaryotic
genome, Synechocystis sp. PCC6803. Both genomes are well annot-
ated in KEGG, although not all the genes have been annotated with
KO terms, with 1478 (24%) of 6183 total genes in the S.cerevisiae
genome and 1202 (36%) of 3314 total genes in the Synechocystis
genome having existing KO annotations. To ensure a rigorous eval-
uation, we always remove the genome under study from the original
KEGG datasets before applying KOBAS.
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Table 3. The most frequent and statistically significantly enriched pathways identified by KOBAS for clusters of genes resulting from the microarray
experiment

Clusters (annotated by Saldanha et al.) Ten most frequent pathways identified by KOBASa Statistically Significant (FDR<0.05) pathways
identified by KOBASb

3. Stress induced Starch and sucrose metabolism (10) Butanoate metabolism (0.003)
Butanoate metabolism (9) Fructose and mannose metabolism (0.003)
Glycolysis/gluconeogenesis (8) Pentose and glucuronateinter conversions (0.032)
Fructose and mannose metabolism (7) Tetra chloroethene degradation (0.032)
Galactose metabolism (6)
Alanine and aspartate metabolism (5)
Glycerolipid metabolism (5)
Tetrachloroethenedegradation (4)
Bile acid biosynthesis (4)
Benzoate degradation viaCoA ligation (4)

6. Leucine induced, sulfate repressed Valine, leucine and isoleucine biosynthesis (11) Valine, leucine and isoleucine biosynthesis (3 × 10−12)

Histidine metabolism (7) Pantothenate and CoA biosynthesis (2 × 10−6)

Phenylalanine, tyrosine and tryptophan biosynthesis (6) Histidine metabolism (4 × 10−5)

Pantothenate and CoA biosynthesis (6) Phenylalanine, tyrosine and tryptophan biosynthesis
Aminoacyl-tRNA biosynthesis (5) (0.001)
Alanine and aspartate metabolism (4) C5-Branched dibasic acid metabolism (0.005)
Urea cycle and metabolism of amino groups (4) Urea cycle and metabolism of amino groups (0.008)
Pyruvate metabolism (4) Aminoacyl-tRNA biosynthesis (0.018)
Lysine biosynthesis (3) Alanine and aspartate metabolism (0.035)
Other ion-coupled transporters (3) Other ion-coupled transporters (0.040)

7. Leucine induced Phenylalanine, tyrosine and tryptophan biosynthesis (3) Cysteine metabolism (0.028)
Cysteine metabolism (3)
Nicotinate and nicotinamide metabolism (2)
Alanine and aspartate metabolism (2)
Histidine metabolism (2)
Selenoamino acid metabolism (2)
Glycine, serine and threonine metabolism (2)
Arginine and proline metabolism (2)
Methionine metabolism (2)
Urea cycle and metabolism of amino groups (2)

11. Stress repressed, ribosome assembly Translation factors (17) Translation factors (2 × 10−6)

Purine metabolism (14) Purine metabolism (6 × 10−4)

Amino acyl–tRNA biosynthesis (10) RNA polymerase (0.003)
RNA polymerase (9) Aminoacyl–tRNA biosynthesis (0.003)
One carbon pool byfolate (5)
Glutamate metabolism (5)
Lysine degradation (5)
Glycine, serine and threonine metabolism (5)
Ribosome (5)
Glyoxylate and dicarboxylate metabolism (4)

aNumbers in parentheses are the number of genes in the cluster that are part of the pathway.
bNumbers in parentheses are the FDR value of the pathway;

We used different evaluation criteria for genes with and without
existing KO annotations. For genes with existing KO annotations in
KEGG, we used their existing KO annotations as the gold standard
for comparison with the automated annotations by KOBAS. We used
two measures of annotation quality, precision and coverage, defined
as follows:

precision = TP

TP + FP
(2)

coverage = TP

N
(3)

where TP (true positive) is the number of the sequences for which
KOBAS’ annotation is the same as the original KO annotation, FP
(false positive) is the number of the sequences for which KOBAS’
annotation is different from the original KO annotation and N is
the total number of sequences in the genome that have existing KO
annotations. precision measures the proportion of sequences with
correct KOBAS annotations among all KOBAS annotations, whereas
coverage measures the proportion of sequences with correct KOBAS
annotations among all KEGG-annotated sequences.

There is a tradeoff between high precision and high coverage.
We tested a variety of thresholds, including identity, E-value and
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(a)

(b)

Fig. 1. Evaluation of KOBAS’ automated annotation of two genomes using
different E-value and rank cutoffs. The plots show the coverage (X-axis)
and precision (Y -axis) of KOBAS’ automated annotation of the S.cerevisiae
and Synechocystis genomes while different (E-value, rank) cutoffs are used.
The circle in each plot shows the default cutoffs. (a) S.cerevisiae, (b)
Synechocystis.

rank, and found that a combination of E-value and rank cutoffs
gives the best overall result. Figure 1 shows the precision and cov-
erage of KOBAS’ annotation of the S.cerevisiae and Synechocystis
genomes using different E-value and rank cutoffs. With the default
threshold, E-value < 10−5 and rank � 5, the precision and coverage
are respectively 94.3 and 90.3% for S.cerevisiae and 96.2 and 91.8%
for Synechocystis.

For genes that have no existing KO annotations in KEGG, we
manually compared KOBAS’ annotations to the functional descrip-
tions in other databases such as SGD (the Saccharomyces genome
database, http://www.yeastgenome.org/). We found that KOBAS
is capable of automatically creating meaningful annotations not
available in KEGG. Several examples are given in Table 1.

Automated KO annotation of the new Propionibacterium
acnes genome
We then applied KOBAS to a newly sequenced whole genome that
is not yet annotated in KEGG: P.acnes, a commensal microbe of
the human skin (Bruggemann et al., 2004). KOBAS automatic-
ally annotated 1177 (51%) of a total of 2297 genes in the P.acnes
genome. This percentage is high compared to the percentages

Fig. 2. KOBAS’ annotation of the newly sequenced P.acnes genome. The
indentation, shown with ‘|’, denotes a hierarchical annotation of the genome
consisting of five levels. The first three levels correspond to the functional
categories in the first three levels of KO, and the fourth level corresponds to
the KO ID. The numbers in parentheses are the total numbers of genes that
are mapped to each functional category or KO ID. The fifth level lists the
gene IDs of all the genes that are annotated with each KO ID.

of annotated genes versus all genes in the annotated whole gen-
omes currently in KEGG. Figure 2 shows a sample of KOBAS’
annotation of P.acnes. We manually compared KOBAS’ annota-
tions with the functional annotations in the NCBI genome database,
and found most of KOBAS’ annotations to be correct. In par-
ticular, KOBAS was able to automatically identify a number of
genes known to be important in P.acnes’ ability to cope with
changing oxygen tension. Examples include oxidative phosphoryla-
tion (PPA175-176), F-type H+-transporting ATPases (PPA1238–
1243 and PPA1245), nitrate reductase (PPA507–510), anaerobic
dimethyl sulfoxide reductases (PPA515 and PPA517) and glycerol-
3-phosphate dehydrogenase (PPA2248–2250). Using the pathway
identification function, KOBAS automatically discovered the most
frequent pathways in P.acnes, as shown in Table 2, including the crit-
ical oxidative phosphorylation and nitrogen metabolism pathways.
These findings are consistent with what is known about the biology
of P.acnes (Bruggemann et al., 2004).

Identification of frequent and enriched pathways in
microarray gene clusters
To evaluate KOBAS’ ability to automatically identify frequent and
enriched pathways in a set of genes, we applied it to the clusters
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of genes resulting from a recently published microarray experiment
(Saldanha et al., 2004). In their experiment, Saldanha et al. stud-
ied the physiological response of S.cerevisiae to the limitation of
different nutrients in batch and steady-state (chemostat) cultures
using a whole-genome microarray. They identified 14 clusters of
co-expressed genes and manually annotated the biological relevance
of each cluster. For each cluster, we applied KOBAS to first annotate
all the genes with KO and to then identify both the most frequent
and the statistically significantly enriched pathways. With the rather
strict cutoff of FDR < 0.05, KOBAS found statistically significantly
enriched pathways in four of the clusters, as shown in Table 3. These
automated results are consistent with the authors’ annotations of the
clusters in the original paper (Saldanha et al., 2004).

Comparison of KO and GO annotations on a
well-annotated prokaryotic protein set
We compared the KO versus GO annotations of the important pho-
tosystems I and II protein family in Anabaena (PCC 7120). The
dataset consists of 46 proteins, extracted from CyanoBase (http://
www.kazusa.or.jp/cyano/) and carefully manually curated. It is avail-
able for download at http://genome.cbi.pku.edu.cn/download.html.
We annotated the proteins with KO and then with GO. For KO annota-
tions, we used KOBAS with the default parameters, as described in
the Methods section. For GO annotations, we used one of the most
popular GO annotation approaches which is to BLAST the query
sequence against GOA UniProt sequences and select the GO terms of
the top hit. KO annotated 44 out of the 46 proteins and all annotations
were correct, whereas GO annotated 33 proteins with 28 correct.

DISCUSSION
KOBAS is the first open-access system to use KO as a controlled
vocabulary to automatically annotate a set of sequences, such as
the complete set of genes in a whole genome or clusters of genes
resulting from microarray analysis, and to identify both frequent
and significantly enriched pathways. Evaluation results from both
whole genomes and microarray gene clusters demonstrate the effect-
iveness of KOBAS. KOBAS is a standalone application written in
Python and is highly modular, making it easy to incorporate into
other applications either in part or as a whole.

In transferring KO annotations from known genes to new genes,
we used a combination of E-value and rank as a threshold rather
than E-value alone. Because only one-third to half of the genes in
whole genomes currently have existing KO (or GO) annotations,
we intentionally generated the BLASTable dataset using the collec-
tion of all gene sequences in whole genomes in KEGG, rather than
using just those with KO annotations. Thus, for example, should
a new gene be found to be similar to 100 top BLAST hits without
KO annotations and a 101st hit with KO annotation, we would not
assign this KO annotation to the new gene. It is more likely that
the new gene is homologous to one of the top 100 genes that have
not yet been annotated, rather than the 101st gene that happens to
have been annotated. We found that by doing this, even though
the total number of KO assignments made by KOBAS is lower,
the number of false assignments is also dramatically lower, and we
chose to value quality over quantity. Users can easily change this
threshold in KOBAS to fit their own analysis goals. In future work we
will consider adding more parameters such as percentage of align-
ment length over the length of the whole genes and concurrence

of functional domains, and test their effect on precision and
coverage.

A key function of KOBAS is automated identification of pathways
in a set of genes or proteins and linking the genes directly to KEGG
pathways. KOBAS identifies both the most frequent and the signi-
ficantly enriched pathways. In determining the latter, KOBAS can
use the whole genome, the whole probe set or any user-defined set
of genes as the background distribution, and we implemented FDR
correction to reduce the number of false positives introduced by mul-
tiple hypothesis testing. It is important to note that existing pathway
identification systems, such as PathProcessor (Grosu et al., 2002),
PathMAPA (Pan et al., 2003) and ArrayXPath (Chung et al., 2004)
map genes to pathways based on EC numbers or gene identifiers and
thus require that the genes already be in the KEGG pathway data-
base. In contrast, KOBAS uses its automated KO annotation module
to identify pathways in sets of genes that are not yet annotated in
KEGG, making it especially valuable when analyzing genes in a
newly sequenced genome or custom-made cDNA arrays.

Our results indicate that KO is effective as a controlled vocabulary
and, although it would be premature to make general conclusions
about the power of KO versus GO annotations without further
large-scale, in-depth comparisons, some advantages of KO can be
observed. At least for some biological systems, such as the import-
ant photosystems in the prokaryote genome we tested, KO seemed
to provide better annotations in terms of both the total number of
proteins annotated and the quality of the annotations. This may be
due to the fact that historically KEGG has had a stronger focus on the
prokaryotic species than has GO. The biggest limitation of KO is per-
haps the fact that it does not yet have as many functional terms in its
hierarchy as does GO, although this is improving as KO continues
to grow. Overall, we believe that KO-based annotations are com-
plementary to GO-based annotations and systems like KOBAS can
make a significant contribution to genomic and proteomic analysis.

CONCLUSION
We developed a KO-Based Annotation System (KOBAS) that can
automatically annotate a set of sequences and identify both the
most frequent and the statistically significantly enriched pathways.
Results from both whole genome and microarray gene cluster
annotations with KOBAS are comparable and complementary to
existing annotations and demonstrate the use of KO as an alternative
controlled vocabulary for automated annotation and pathway iden-
tification. KOBAS is a freely available standalone Python program
that can contribute significantly to genome annotation and microarray
analysis.
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