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This article presents a formula for weighted kappa in terms of rater means, rater vari-
ances, and the rater covariance that is particularly helpful in emphasizing that weighted
kappa is an absolute agreement measure in the sense that it is sensitive to differences in
rater’s marginal distributions. Specifically, rater mean differences will decrease the value
of weighted kappa relative to the value of the intraclass correlation that ignores mean dif-
ferences. In addition, if rater variances also differ, then the value of weighted kappa will
be decreased relative to the value of the product-moment correlation. Equality con-
straints on the rater means and variances are given to illustrate the relationships between
weighted kappa, the intraclass correlation, and the product-moment correlation. In ad-
dition, the expression for weighted kappa shows that weighted kappa belongs to the
Zegers–ten Berge family of chance-corrected association coefficients. More specifically,
weighted kappa is equivalent to the chance-corrected identity coefficient.
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If two raters assign the same targets to categories, the ratings can be ar-
ranged in a bivariate frequency table such as Table 1, where for the sake of
concreteness three response categories have been assumed. In case catego-
ries are ordered along a continuum of values, it is desirable to give partial
credit for near agreement. Because weighted kappa (Cohen, 1968) allows for
differential weighting of disagreement, it is an attractive agreement statistic
for ordered categories and preferable to Cohen’s kappa (1960), which distin-
guishes only between agreement and disagreement cases.

Generally, the gravity of a disagreement is related to the number of cate-
gories by which raters differ. One way to implement a weighting scheme that
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reflects this simple idea is to assign successive integers to the ordered catego-
ries. The severity of a disagreement is then determined from the score differ-
ence. Popular choices for so-called disagreement weights are the square and
the absolute value of the score differences (Agresti, 2002, p. 435). Weighted
kappa’s emphasis on score differences makes it sensitive to rater mean differ-
ences in the sense that these mean differences will decrease the value of
weighted kappa relative to the value of the intraclass correlation that ignores
rater mean differences. In addition, if rater variances also differ, then the val-
ues of weighted kappa and the intraclass correlation will be decreased rela-
tive to the value of the product-moment correlation.

To illustrate the sensitivity of weighted kappa to the rater’s marginal dis-
tributions, consider two equally qualified therapists classifying psychiatric
patients at the onset of therapy with respect to expected therapeutic success.
Specifically, suppose raters classify patients into one of the following catego-
ries: positive, neutral, and negative. If the first therapist tends to give optimis-
tic ratings whereas the second tends to give pessimistic ratings, then a signifi-
cant proportion of patients could be classified quite differently depending on
which therapist rates the patient. Nevertheless, if rater agreement is cal-
culated from a statistic which is insensitive to rater mean differences, such
as the product-moment correlation, then the agreement could still attain a
very high value. However, because weighted kappa is not only sensitive to
rater covariation but also to rater mean differences, its value would be de-
creased considerably relative to the product-moment correlation. In this
sense, weighted kappa is an absolute agreement measure.

As soon as scores are assigned to categories, rater agreement can also be
evaluated by arranging the scores in a two-way array such that the rows and
columns correspond to targets and raters, respectively, and then partition the
rating variability based on a two-way ANOVA model (Ebel, 1951; Guilford,
1954; Shrout & Fleiss, 1979). Specifically, if the jth rater, j = 1, 2, assigns the
ith target, i = 1, . . ., n, to the cth category, c = 1, . . ., r, then the target’s score is
denoted xij(c). Because there are no within-cell replications, the additive
ANOVA model
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Table 1
Bivariate Frequency Table of Ratings Obtained From Two Raters

Rater 2

Positive Neutral Negative

Rater 1
Positive 2 1 0
Neutral 0 1 1
Negative 0 1 3



xij(c) = µ + τi + θj + eij (1)

is selected, where the τi represent random target effects and the θj represent
the rater effects, which may either be considered fixed or random. To illus-
trate this alternative representation of the ratings, consider the data in Table 1.
If the scores for the positive, neutral, and negative categories are denoted as
x(1), x(2), and x(3), respectively, then the ratings can be arranged in the two-
way array given in Table 2. To be consistent with Equation 1, the scores in
Table 2 have a subscript indicating the rater, although this is not strictly nec-
essary because the category scores do not vary across raters, that is, xi1(c) =
xi2(c) for all targets and all categories.

Based on the various mean squares of the ANOVA model, one can calcu-
late intraclass correlation coefficients (ICC) to index rater agreement. This
approach has two attractive features. First, whereas weighted kappa has been
defined by Cohen (1968) for two raters only, intraclass correlations can be
calculated for two or more raters. Second, one can define several intra-
class correlations that reflect different rater characteristics by changing the
assumptions underlying the ANOVA model (McGraw & Wong, 1996). In the
present context, two different intraclass correlations result from considering
the rater effects either as fixed or random. These two intraclass correlations
will be denoted as R and R′, respectively. The labels of the two intraclass cor-
relations used in this article are related in the following way to the ICC labels
used by Shrout and Fleiss (1979): R is identical to ICC(3, 1), whereas R′ is
identical to ICC(2, 1).

Because in the case of two raters weighted kappa and intraclass correla-
tions can be calculated from the same data, the question arises as to how these
coefficients are related. This issue was first addressed by Fleiss and Cohen
(1973), who showed that if the number of targets is large, weighted kappa
based on squared disagreement weights is essentially equivalent to the intra-
class correlation obtained from considering rater effects random, in our nota-
tion R′.

The present article gives a simple expression of weighted kappa (see
Equation 5) that involves only the rater means, the rater variances, and the
rater covariance. Although the sensitivity of weighted kappa to rater mean
differences is well known (e.g., Becker, 2000), the expression of weighted
kappa given here exposes this property in a direct way and also makes the role
of rater variance differences explicit.

Weighted Kappa

Assume that two raters assign each of n targets to one of r different cate-
gories. Let nij denote the frequency with which the first and second rater
assigned targets to categories i and j, respectively. Let ni• denote the total
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number of targets assigned to the ith category by the first rater, and let n•j be
defined similarly for the second rater. The observed proportions nij/n, ni•/n,
and n•j/n will be denoted as pij, pi•, and p•j, respectively. Finally, let υij denote
the disagreement weights. Typically, υij = 0 is selected for cells for which rat-
ers agree and υij > 0 if i ≠ j, that is, raters show disagreement. Cohen (1968)
defined weighted kappa as

κw =1 0− q

qe

, (2)

where

q pij ij
ji

0 = ∑∑ υ (3)

q p pe ij
ji

i j= ⋅ ⋅∑∑ υ . (4)

Note that qo can be interpreted as average disagreement and qe can be inter-
preted as average disagreement if both raters randomly assign targets in
accordance with their respective base rates. Froman and Llabre (1985) have
demonstrated the equivalence of weighted kappa and the “del” measure of
prediction analysis (Hildebrand, Laing, & Rosenthal, 1977).

One popular option for selecting disagreement weights is to assign integer
scores to the categories and then use the squared difference between the row
and column scores as the weight for the corresponding cell. More specifi-
cally, squared disagreement weights, which will be considered throughout
the remainder of this article, are calculated as υij = (i – j)2. For the frequencies
given in Table 1, Equations 3 and 4 yield the following:
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Table 2
Two-Way Array Representation of the Frequencies Given in Table 1

Target Rater 1 Rater 2

1 x11(1) x12(1)
2 x21(1) x22(1)
3 x31(1) x32(2)
4 x41(2) x42(2)
5 x51(2) x52(3)
6 x61(3) x62(2)
7 x71(3) x72(3)
8 x81(3) x82(3)
9 x91(3) x92(3)

Note. x(1), x(2), and x(3) denote the scores assigned to the positive, neutral, and negative categories, respec-
tively.



q0
2 2

9
2 1

9
2 1

9
2 3

9
1
3

1 1 1 2 3 2 3 3= − + − + ⋅⋅⋅ + − + − =( ) ( ) ( ) ( ) ,

qe = − + − + ⋅⋅⋅ + − + − =( ) ( ) ( ) ( )1 1 1 2 3 2 3 32 6
81

2 9
81

2 12
81

2 16
81

113
81

,

and therefore, κω = 1 – (1/3)/(113/81) = .761.

Another Expression for Weighted Kappa

Important properties of weighted kappa are exposed by expressing it in
terms of rater means, variances, and the rater covariance. If the data are ar-
ranged as in the two-way ANOVA situation (see Table 2), weighted kappa
can be represented as the following:

w =
s

s s
n

n
x x

12

1
2 1

2
2
2 1

2 1 2
2

1
( ) ( )

,
+ +

−




 −⋅ ⋅

(5)

where x x cj iji⋅ = ∑ ( ) denotes the mean score of jth rater, j = 1, 2;

s n x c xj iji

2 1
1

21= − −−
⋅∑( ) ( ( ) ) denotes the score variance of the jth rater, j =

1, 2; and s n x c x x c xi i12
1

1 11 2 21= − − −−
⋅ ⋅∑( ) ( ( ) )( ( ) ) denotes the score co-

variance between the two raters. Note that the variance and the covari-
ance formulas are unbiased estimators of the corresponding population
parameters.

Equation 5 can be obtained via the following arguments. First, Fleiss and
Cohen (1973, p. 616) have shown that for two raters, weighted kappa can be
expressed in terms of mean squares obtained from the ANOVA model of
Equation 1. Specifically, they gave the expression

w =
TMS - EMS

TMS + EMS +
2

RMS
n -1







, (6)

where TMS, RMS, and EMS refer to the target-, rater-, and error mean
squares, respectively, which are based on (n – 1), (k – 1), and (n – 1)(k – 1) de-
grees of freedom, respectively. Thus, it is sufficient to show that the right
sides of Equations 5 and 6 are identical. It will be convenient to prove the
equality in three steps:

(i) ( )2
1 1 2

2
n

x x− ⋅ ⋅−RMS =
1

n
n -

( ) ,

(ii) TMS + EMS = 1
2 2s + s2 ,

(iii) TMS - EMS = 2 12s .

(7)
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Of course, if all three steps hold, then the equivalence of Equations 5 and 6
follows immediately.

To see that (i) holds simply note that the rater mean squares for two raters
is RMS = [ ]( ..) ( ..)x x x x⋅ ⋅− + −1

2
2

2 , where x.. denotes the grand mean.
Simple algebraic manipulations yield the expression RMS = RMS = (n/2)
( )x x⋅ ⋅−1 2

2 , and the result given in (i) of Equation 7 follows.
To show (i) and (ii), it is natural to consider a table having k columns and

obtain these steps for the special case of k = 2. Both conditions follow from
two results given in Winer (1971, p. 291). These are the following:

TMS = var + (k – 1)cov, (8)

EMS = var – cov, (9)

where var is the average rater variance and cov the average rater covariance
where the average is taken over all possible rater pairs. Calculating the sum of
TMS and EMS using Equations 8 and 9 yields TMS + EMS = 2var + (k – 2). If
k = 2, then (ii) follows immediately. Similarly, calculating the difference
between TMS and EMS yields TMS – EMS = kcov. Clearly, if k = 2, this
expression is equal to (iii).

Equation 5 can also be used to calculate weighted kappa from the array of
scores given in Table 2, where the scores are obtained from assigning succes-
sive integers to the categories. Thus, xij(1) = 1, xij(2) = 2, and xij(3) = 3. The
assignment of integer scores can be expressed more concisely as xij(c) = c for
all i and j. Based on these scores, one obtains for the means x ⋅1 = 2.111 and
x ⋅2 = 2.222, for the variances s1

2 = 0.861 and s2
2 = 0.694, and for the covariance

s12 = 0.597. Inserting these values into Equation 5 confirms κω = .761.

Relations Among κω, R, and r

Consider two special cases of Equation 5 that emerge from equality con-
straints. First, assuming equal rater means yields

w
s

s s
( )

( )
,1 12

1
2 1

2
2
2=

+
(10)

where the superscript is used to indicate that this equation holds only if rater
means are equal. The equivalence of this expression to R, which in case of
two raters is defined as (e.g., Shrout & Fleiss, 1979)

R = (TMS – EMS)/(TMS + EMS), (11)

can readily be verified by noting that because equal rater means imply
RMS = 0, Equation 6 simplifies to Equation 11. Thus, equal rater means
imply w

( )1 = .
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Second, assume that both the rater means and the rater variances are equal.
Cohen (1968, p. 218) noted that these conditions imply the equivalence of
weighted kappa and the product-moment correlation, r, calculated from inte-
ger scores. To see this, note that by equating the means and variances in Equa-
tion 5, one obtains

κw s s( ) /2
12

2= , (12)

where s2 denotes the common variance and the superscript is used to indicate
that this equation holds only under equal rater means and equal rater vari-
ances. Alternatively, one can arrive at this expression by equating the vari-
ances in the usual formula of the product-moment correlation, which is
r s s s= 12 1

2
2
2/ . Thus, these conditions imply κ w r( )2 = .

In addition, the comparison of the intraclass correlation R, which is equiv-
alent to κ w r( )2 = , and the product moment correlation implies that the product
moment correlation establishes the upper limit of weighted kappa. This fol-
lows from noting that the denominator of Equation 10 can be considered
the arithmetic mean of the rater variances, whereas the denominator of the
product moment correlation, r = s s s12 1

2
2
2/ , can be considered the geo-

metric mean of the rater variances. Because the geometric mean is always
lower or equal to the arithmetic mean, it follows that unequal rater variances
will decrease weighted kappa relative to the value of the product moment
correlation.

One can also compare weighted kappa, the intraclass correlation that
ignores rater mean differences, and the product-moment correlation in terms
of score transformations that will not affect their value. First, it is well known
that the product-moment correlation is invariant to linear transformations of
the variables. More specifically, if yi1 = a1xi1 + b1 and yi2 = a2xi2 + b2—where
we assume a1 > 0 and a2 > 0 to avoid pathological cases—then the correla-
tion between the y-scores is the same as the correlation between the original
x-scores. Note that if a1 and a2 as well as b1 and b2 are allowed to differ, then
the transformations can always achieve equal means and variances of the
y-scores. This confirms that the product moment correlation is insensitive to
differences in rater means and variances.

Second, consider the score transformations that maintain the value of
the intraclass correlation R. From Equation 10, which has just been shown
to be equivalent to R, it is easy to see that linear score transformations do
not change the value of R provided a1 = a2. Note that if only b1 and b2 are
allowed to differ, then the transformations can always achieve equal means of
the y-scores, but not equal variances. This confirms that the intraclass corre-
lation R is insensitive to rater mean differences but sensitive to rater variance
differences. Third, it can easily be verified from the defining equation of
weighted kappa (see Equation 2) or from Equation 5 that linear score trans-
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formations do not alter the value of weighted kappa, provided that both a1 =
a2 and b1 = b2. In other words, only if the same linear transformation is applied
to the x-scores is the value of weighted kappa unaffected. Thus, weighted
kappa is sensitive to mean and variance differences between raters. Table 3
summarizes the sensitivity properties of the three coefficients to linear score
transformations.

Finally, the following heuristic argument that is based on the value pre-
serving score transformations can be used to confirm the ordering relations
between κω, R, and r outlined above. Because one may consider each of the
coefficients as measuring the degree to which linear score transformations
are able to produce a close match between the y-scores, the increase in the
restrictiveness of the permissible transformations as one moves from r to R to
κω leads to a decrease in their respective values such that r is at least as high as
R, which is at least as high as κω.

Weighted Kappa in the Context of the
Zegers–ten Berge Family of Association Coefficients

Zegers (1986) presented chance-corrected versions of association coeffi-
cients suggested by Zegers and ten Berge (1985). This theory presents a gen-
eral formula for association coefficients for metric scales and derives four
special cases that correspond to different scale levels. First, absolute scales
do not allow any score transformation (other than the trivial identity transfor-
mation); second, additive scales allow the addition of a constant to all scores;
third, ratio scales allow the multiplication of all scores with a positive con-
stant; and fourth, interval scales allow linear scale transformations. For abso-
lute, additive, ratio, and interval scales, the coefficients of identity, additivity,
proportionality, and linearity are defined, respectively. In the context of rater
agreement data, the Zegers–ten Berge theory has been applied by Stine
(1989) and Zegers (1991).

It has been shown that numerous association coefficients for metric scales
are members of this family of coefficients. In fact, R and r are identical to the
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Table 3
Sensitivity of r, R, and ω to Linear Score Transformations

Sensitive to Changes in

Coefficient Scale Location

r No No
R Yes No
κω Yes Yes



coefficient of additivity and linearity, respectively. It will now be shown that
weighted kappa also belongs to the Zegers–ten Berge family of association
coefficients. To see this, consider the biased variance estimator that is ob-
tained by dividing the sum of squared deviations by the sample size n instead
of n – 1. Similarly, the biased covariance estimator will be considered that is
obtained by dividing the sum of deviation products by the sample size n in-
stead of n – 1. If the biased versions of the variance and the covariance are de-
noted as~s j

2 , j = 1, 2, and~s12 , then the unbiased and biased versions are simply
related by~ ( ) / , ~ ( ) /s s n n s s n n1

2
1
2

2
2

2
21 1= − = − , , and~s12 = s12(n – 1)/n. Replac-

ing the unbiased estimators with the biased estimators in Equation 5 yields
the following:

κw= ( )
~

~ ~ ( )
,

s

s s x x
12

1
2 1

2
2
2 1

2 1 2
2+ + −⋅ ⋅

(13)

which is almost identical to Equation 5. In fact, Equation 13 is conceptually
simpler because it does not involve the factor n/(n – 1) in the denominator of
Equation 5.

This alternative expression for weighted kappa shows that weighted
kappa belongs to the Zegers–ten Berge family of association coefficients
because it is identical to the chance-corrected identity coefficient of Zegers
(1986, p. 560, Equation 6). In addition, Equation 13 is identical to the coeffi-
cient of equality proposed by Jobson (1976, p. 272, Equation 2).

Whereas weighted kappa was originally defined for scales having only a
relatively small number of categories, the Zegers–ten Berge theory applies
equally well to continuous scales. However, one can also define the average
disagreement and average chance disagreement (see Equations 3 and 4)
based on the squared distance between the rater scores more generally as

q0 = E(X – Y)2 (14)

qe = Ec(X – Y)2, (15)

where Ec indicates that the expectation should be taken assuming X and Y are
independent in their joint distribution. Rewriting q0 as

q0 = E{(X – µ1) – (Y – µ2) + (µ1 – µ2)}
2, (16)

where µ1 and µ2 denote the population means of the X and Y scores, respec-
tively, yields after some algebra:

q0 = σ1
2 + σ2

2 + (µ1 − µ2)
2 −2σ12 , (17)
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where σ1
2 , σ 2

2 , and σ12 denote the population variances of the X and Y scores
and the population covariance, respectively. Because qe can be obtained as
the special case of q0 for which σ12 = 0, the defining equation of weighted
kappa (see Equation 2) yields the following:

κw =1
21

2
2
2

1 2
2

12

1
2

2
2

1 2
2

− + + − −
+ + −

σ σ µ µ µ
σ σ µ µ

( )

( )
(18)

=
σ

σ σ µ µ2
2

12
1
2 1

2 1
2 1 2

2( ) ( )+ + −
(19)

which is identical to Equation 13 except that the sample estimates have been
replaced with the corresponding population quantities.

Practical Considerations

It is important that researchers are aware that by selecting among popular
rater agreement statistics discussed in this article, they decide on whether
mean differences and/or variance differences in ratings should be ignored or
accounted for. Stine (1989) as well as Zegers (1991) have commented on the
rationale for selecting one statistic over another.

Stine (1989) has argued that, in general, association coefficients should be
based only on meaningful relations between ratings. Therefore, if ratings lie
on an interval scale, then because the origin and the scale unit are arbitrary the
proper agreement statistic is r. If the ratings lie on an additive scale, then
because the origin is arbitrary the proper agreement statistic is R. Finally, if
the ratings lie on an absolute scale, then because neither the scale origin nor
the scale unit is arbitrary the agreement statistic should be sensitive to rater
differences in the scale location as well as rater differences in the scale units.
Because weighted kappa fulfills these requirements, it is the proper agree-
ment statistic for absolute scales.

However, because it is impossible to determine the scale level of ratings,
Zegers (1991) advocated a pragmatic approach in which the researcher
decides which information is meaningful and which is irrelevant. For in-
stance, if a pass/fail decision has to be reached by comparing a score against a
certain cutoff value, then rater mean differences are important. Thus, a rater
agreement statistic should reflect such rater response tendencies by decreas-
ing its value relative to agreement coefficients that ignore response tenden-
cies. However, if a graded performance reward should be given to individu-
als, then perfect agreement between raters would be reached if raters agreed
only on the performance ordering of the individuals. Thus, only the relative
location of individuals within each of the two orderings would be important;
therefore, the assessment of the rater agreement should ignore response ten-
dencies between raters.
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