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ABSTRACT
MIMO beamforming technology can scale wireless data rate
proportionally with the number of antennas. However, the
overhead induced by receivers’ CSI (channel state informa-
tion) feedback scales at a higher rate. In this paper, we
address this fundamental tradeoff with Adaptive Feedback
Compression (AFC). AFC quantizes or compresses CSI from
3 dimensions — time, frequency and numerical values, and
adapts the intensity of compression according to channel
profile. This simple principle faces many practical chal-
lenges, e.g., a huge search space for adaption, estimation or
prediction of the impact of compression on network through-
put, and the coupling of different users in multi-user MIMO
networks. AFC meets these challenges using a novel cross-
layer adaptation metric, a metric extracted from 802.11 packet
preambles, and uses it to guide the selection of compres-
sion intensity, so as to balance the tradeoff between over-
head reduction and capacity loss (due to compression). We
have implemented AFC on a software radio testbed. Our
experiments show that AFC can outperform alternative ap-
proaches in a variety of radio environments.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communications; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols

General Terms
Algorithms, Design, Theory, Performance

Keywords
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1. INTRODUCTION
MIMO beamforming, also referred to as closed-loop MIMO

technology, has the potential to scale wireless data rate pro-
portionally with the number of transmit antennas. In fact,
it has become a hallmark of recent high-throughput 802.11
standards. In particular, 802.11n adopted single-user MIMO
(SU-MIMO) beamforming, where multiple transmit anten-
nas precode one packet, so that the precoded signals coher-
ently combine at a receiver to enhance SNR. The ongoing
802.11ac further incorporates multi-user beamforming (MU-
MIMO), which precodes different receivers’ packets, so that
they can be transmitted simultaneously without interfer-
ence. The precoding operations in SU- and MU-MIMO are
essentially a weighted combination of outgoing packets, and
the weights must be carefully designed based on the channel
state information (CSI), i.e., the channel matrix from trans-
mit antennas to all receive antennas. Hence, a transmitter
must obtain timely CSI feedback from all receivers. As CSI
is needed for different transmit antennas, frequency bands
and receivers, the resulting information grows with a mul-
tiplication of all these parameters, which causes formidable
overhead and may even nullify the MIMO capacity gain.
Therefore, managing feedback overhead is critical to the per-
formance of MIMO beamforming.

The 802.11n/ac standards propose to compress the CSI
along three dimensions: time — sending CSI less frequently;
frequency— allowing adjacent spectrum units (called sub-
carriers) to share the same CSI; and numerical values —
quantizing CSI values into a small number of bits. Though
promising for reducing feedback overhead, such compression
comes with a loss in CSI accuracy and may adversely af-
fect the MIMO network throughput. Therefore, it is critical
to strike a balance between overhead reduction and capac-
ity loss. But finding such a sweet spot is non-trivial as it
involves sophisticated coupling of all three dimensions. Sim-
ilar to the bit-rate options, the choice of compression options
and levels remains vendor-specific in 802.11, and to the best
of our knowledge has not been explored before.

This paper attempts to fill the gap in this space through:
a comprehensive measurement study of the impact of com-
pression on network performance, and the design of Adap-
tive Feedback Compression (AFC) - a feedback management
mechanism for SU-/MU-MIMO networks. Our measure-
ment study is based on a comprehensive software-radio im-
plementation of the 802.11n SU-MIMO and 802.11ac MU-
MIMO OFDM PHY layer. The results reveal that although
CSI compression can save substantial overhead, it may sig-
nificantly degrade link capacity if too aggressive. More im-



portantly, a link’s tolerance to CSI compression depends not
only on its channel stability, but also on SNR, spectrum lo-
cation, and user pairing (for MU-MIMO) — a number of
factors unreported in previous works. This calls for an au-
tomatic configuration scheme that maximizes compression
intensity without losing too much capacity.

AFC is designed to meet this goal with a simple principle.
It quantizes or compresses CSI from 3 dimensions: time,
frequency and numerical values, and adapts the intensity
of compression according to channel profile. Realizing this
principle involves non-trivial challenges: (1) The 3 dimen-
sions together constitute a huge parameter space. Hence a
comprehensive search algorithm is inefficient and may never
converge. In fact, when searching over one dimension, the
channel profile w.r.t. the other two dimensions may have al-
ready changed. (2) Compression intensity can be configured
according to a certain metric that reflects channel stability
over time or frequency. Coherence time/frequency is widely
used for this purpose. But through experimental study, we
find that there does not exist a fixed mapping between such
a metric and the optimal compression intensity. (3) An ef-
ficient adaptation algorithm must be able to estimate the
link capacity change due to CSI compression over a certain
dimension. However, the effects of different dimensions on
capacity loss are coupled.

AFC meets these challenges using CNo, a novel cross-layer
adaptation metric that can model the information loss (or
errors) due to compression. Upon each packet arrival, AFC
can instantaneously extract the CNo metric from the CSI of
802.11 packet preambles, and evaluate the errors and SNR
reduction caused by each dimension of compression respec-
tively. As CNo decouples the 3 dimensions of adaptation,
it substantially reduces the search space. It also helps iso-
late the effects of compression from channel fading, which
can both result in changes in link capacity. Based on CNo,
AFC can easily identify the appropriate compression level
that optimizes the overall network throughput, taking into
account both capacity loss and overhead reduction.

We have implemented AFC on top of the SU-/MU-MIMO
OFDM module that we built on WARP. This PHY mod-
ule closely follows the 802.11n/ac specifications, and real-
izes linear precoding based beamforming, OFDM modula-
tion/demodulation, CSI estimation as well as symbol-level
decoding. Experiments on a WARP testbed show that AFC’s
adaptation metric leads to fast and effective selection of com-
pression levels along all 3 dimensions. In contrast, no single
static configuration of compression intensity can fit all chan-
nel/network profiles. Overall, by balancing the capacity-
overhead tradeoff, AFC’s throughput performance is compa-
rable with the best fixed compression scheme for any given
channel profiles, and 40% to 120% higher than the non-
adaptive scheme in 802.11n/ac.

In summary, we make the following contributions in this
paper.

• We present the first comprehensive measurement study
of the effects of feedback compression in 802.11 SU-
/MU-MIMO networks.

• We propose AFC, which introduces effective cross-layer
metrics to trigger the adaptation of compression lev-
els along 3 dimensions, and strike a balance between
overhead reduction and capacity loss.

To our knowledge, AFC represents the first algorithm that
provides guidelines to address this tradeoff for SU-/MU-
MIMO beamforming in wireless networks.

2. BACKGROUND

2.1 SU-/MU-MIMO networks
MU-MIMO systems are commonly realized use Zero-Forcing

Beamforming (ZFBF), a low-complexity linear precoding sch-
eme that is amenable for practical transceivers. Consider a
network with a n-antenna AP and n single-antenna receivers.
Let X be a n × 1 vector, representing the data symbols to
be sent to n receivers, then the vector of received symbols
corresponding to the n receivers is:

Y = HWX + V (1)

where H is the n × n channel matrix, and V the n × 1
noise vector. W is the precoding matrix, with each row W∗k
corresponding to the precoding vector of transmit antenna k.
In ZFBF, W is obtained via a pseudo-inverse of the channel
matrix:

W = H∗ · (H ·H∗)−1 (2)

where (·)∗ is the complex conjugate operator.
With precoding, it is straightforward that the received

symbols become Y = X +V , i.e., data symbols of different
receivers are decoupled — each receiver only obtains its own
symbol plus some noise. In practical MIMO transceivers,
each antenna is accompanied by one radio back-end and has
a maximum power constraint Pm. To satisfy this constraint,
the precoding vector of each transmit antenna k should be
scaled by: arg maxj

√
Pm/||W∗j || [1].

SU-MIMO can be considered as a MU-MIMO network
with one receiver but n transmit antennas. The pseudo-
inverse precoding will result in n copies of the receiver’s
symbols added up, boosting the signal power to n2.

To perform precoding, however, both SU- and MU-MIMO
transmitters need to know the CSI, i.e., the channel matrix
H, which can only be obtained from receivers’ feedback. In
this paper, we only consider precoding for single-antenna re-
ceivers, but multi-antenna precoding is also feasible through
block-diagonalization [2]. The adaptation algorithm pro-
posed in this paper is not limited to any precoding scheme
as it only leverages vanilla 802.11 preambles.

2.2 CSI feedback and compression in 802.11
SU-/MU-MIMO

In 802.11n/ac, before beamforming a data packet, a SU-
/MU-MIMO transmitter follows a polling procedure to ob-
tain CSI from the receiver(s). Fig. 1 illustrates an example
for a MU-MIMO network with 2 transmit antennas and 2
receivers. The transmitter first sends an NDP announce-
ment to initiate the procedure, and then polls the intended
receivers one by one and obtains CSI feedback from them.
Afterwards it precodes the data packets based on the CSI.
CSI feedback for SU-MIMO follows the same procedure.

The accuracy of CSI determines how effectively the inter
data-symbol interference can be cancelled for MU-MIMO,
and whether copies of a symbol can align their phases to
enhance received SNR in SU-MIMO. Hence, it is critical to
the SNR and consequently network capacity.

However, accuracy comes at the cost of overhead. To
bound the CSI overhead, 802.11 allows CSI to be compressed,
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Figure 1: CSI feedback and MU-MIMO beamform-
ing in 802.11ac.

with multiple levels of intensity, along three dimensions: i)
Time, i.e., instead of per-packet feedback, allowing CSI to
be shared among multiple subsequent packets. ii) Frequency,
i.e., instead of collecting CSI for each subcarrier (the small-
est spectrum unit in an 802.11 OFDM band), group neigh-
boring subcarriers and use one subcarrier’s CSI to represent
its neighbors’. iii) Numerical values, i.e., instead of send-
ing float-point complex numbers directly, quantizing the CSI
into a small number of bits.

To compress CSI in frequency-domain, 802.11 allows 1, 2,
or 4 subcarriers to be grouped and share the same CSI1. In
addition, for each CSI value, its real and imaginary com-
ponents can be quantized into 4, 5, 6 or 8 bits [3]. As
channel stability and inter-packet time are hard to charac-
terize, 802.11n/ac employs per-packet CSI feedback, leaving
the time-domain compression as an open option.

3. MOTIVATION
In this section, we use simulation and testbed measure-

ment to evaluate the MAC-layer overhead reduction and
PHY-layer capacity loss due to compression, which moti-
vates the need for an mechanism that automatically config-
ures compression intensity to address this tradeoff.

3.1 How much can compression save?
We provide an account of all factors that contribute to the

CSI feedback overhead – defined to be the ratio between the
time spent in obtaining CSI (including the NDP and polling
packets) and that in data transmission. To this end, we ex-
tend the ns-2 simulator with a SU-/MU-MIMO MAC mod-
ule, following the 802.11n/ac MAC specifications. We then
evaluate the CSI overhead for UDP transmissions in a MIMO
WLAN. By default, the simulation is configured to 20MHz
bandwidth (with 52 data subcarriers), 1.5KB packet size, 4
transmit antennas and 1 receiver, 32-bit float-point CSI (for
both real and imaginary components), and per-packet CSI
feedback. We first isolate the PHY layer effect by config-
uring an intermediate data rate of 18Mbps for all receivers.
Note that CSI feedback is always sent with 6Mbps data rate
in 802.11. Fig. 2 plots the CSI overhead when varying each
factor while keeping others to the default values.
Bandwidth (number of subcarriers). CSI overhead

increases linearly with the spectrum width, which in turn
depends on the number of subcarriers. For a typical 20MHz
spectrum, the CSI feedback overhead can be 3.4× compared
to data transmission, and increases linearly with bandwidth
(Fig. 2(a)). Note that the NDP, polling packets, and their
inter-frame spacing also contribute to the overhead. How-
ever, these are fixed, resulting in the CSI overhead dominat-
ing. By compressing CSI in frequency domain, the feedback
overhead decreases sharply, on the same order as the number
of subcarriers grouped together to share CSI.

1A 20MHz band in 802.11 contains 52 data subcarriers. The
number of subcarriers increases linearly with bandwidth.
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Figure 2: Various parameters affect CSI feedback
overhead. y-axis is the ratio between channel time
usage of CSI feedback and that of data frames.

CSI bits. Representing CSI with full-resolution float-
point numbers is clearly inefficient (Fig. 2(b)) — it induces
an overhead of 0.96 under the default network setting. Quan-
tization of the numerical values can reduce the overhead al-
most linearly, to 0.33 with the most aggressive 4-bit quanti-
zation defined in 802.11.
Feedback period. Similar to the above two factors, by

compressing the CSI over time, i.e., increasing the feedback
period, an inverse-linear reduction in overhead is achieved,
as shown in Fig. 2(c). CSI feedback overhead is only 0.096
with an 8ms feedback period and 0.019 with 40ms. Note that
our simulation isolates the compression along these three di-
mensions. As they can be done independently, a combina-
tion would achieve a multiplicative reduction.
Number of TX antennas and receivers. These two

factors independently account for an almost linear increase
of overhead (Fig. 2(d) and (e)), as the channel from each
transmit antenna to each receiver needs to be estimated
and fed back. Unfortunately, no CSI compression is feasible
w.r.t. these two factors.
Data rate. For small packet sizes, CSI induces formidable

overhead, e.g., 2.46× for a 200B and 0.48 for a 1KB packet
sent at 6Mbps (Fig. 2(f)). Increase of data rate amplifies the
relative overhead, to 2.88× for a 1KB packet at 36Mbps.

From the above simulation results, we can infer that the
relative overhead of CSI feedback is roughly linear w.r.t.:

#SubcGroups×#CSIbits×#TXantennas ×#Receivers×DataRate

Feedback period × Pkt size

Among these factors, the number of subcarrier groups,
CSI bits and feedback period can be compressed. 802.11’s
standard linear compression over the three dimensions can
contribute to a multiplicative reduction in feedback over-
head. With more sophisticated compression schemes, such
as a Givens rotation [4, Section 20.3.12] of channel matrix,
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bars show the max and min SNR among 10 experi-
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feedback overhead can be further reduced. Besides compres-
sion, frame aggregation can also reduce the relative overhead
of CSI by amortizing it over concatenated data frames. But
large frames may incur unacceptably long buffering delay,
which compromises the performance of real-time applica-
tions such as VoIP and interactive web sessions. Such effects
limit the practical usage of frame aggregation.

We will now study the associated impact of feedback com-
pression on the link capacity of MIMO networks.

3.2 Why adaptive compression?
Feedback compression, if too aggressive, can severely de-

grade the accuracy of CSI and lower the achievable SNR or
bit-rate. The extent to which compression affects network
performance varies with the radio environment (channel pro-
file), which we will study through comprehensive experi-
ments below. Our experiments are conducted on a testbed of
5 WARP MIMO software radios, located in an office build-
ing. We have implemented a full-fledged MIMO-OFDM
communication module on WARP, following the 802.11n/ac
specification for SU- and MU-MIMO networks (Sec. 5 pro-
vides a detailed description of our implementation). With
this testbed implementation, we perform a quantitative study
to identify the channel characteristics that lead to the posi-
tive and negative effects of CSI compression. These in turn
contribute to the factors that AFC should monitor and react
appropraitely.
Effects of time domain compression. The time-domain

accuracy of compressed CSI depends on how frequently it is
refreshed, relative to the channel variation over time. In
Fig. 3, we allow a transmitter to periodically initiate CSI
polling, obtain feedback from receiver(s), and send one beam-
forming packet. We then compute the SNR2 by varying the
feedback period.

We consider two scenarios: i) static environment: a re-
search lab with negligible human movement. ii) mobile nodes:
receiver(s) are moving around the transmitter (along a cir-
cle) at walking speed. From the results in Fig. 3(a), we
see that in static environment, SU-MIMO link SNR is vir-
tually unaffected by time-domain compression, even with a
2-second feedback period. This implies substantial space for
CSI overhead saving: for each link, packets separated by
within 2 seconds can share the same CSI.

2Our testbed implementation allows us to obtain SNR from
decoded symbols. This leads to an accurate estimation,
which accounts for not only ambient noise, but also receiver-
induced noise due to, e.g., imperfect channel estimation.

The impact of stale CSI becomes pronounced as the ra-
dio environment becomes more dynamic, as reflected in the
large variation of SINR. When nodes are moving at walk-
ing speed, we observed that average SINR may reduce by 1
to 2 dB when feedback period is below 300ms. But the re-
duction may vary significantly across different experiments.
We have observed in certain experiments that even a 20ms
feedback period can reduce SNR by up to 5.3dB compared
with an oracle scheme with zero feedback delay.3 Clearly,
an aggressive time-domain compression will hurt the MIMO
beamforming performance for mobile nodes. However, due
to packet transmission delay (e.g., caused by contention),
inter-packet arrival time can easily reach 20ms. Hence, per-
packet feedback becomes inevitable for mobile nodes, which
necessitates compression from alternative dimensions.

Fig. 3(b) shows the performance of a MU-MIMO network
with a 2-antenna AP and two receivers (one mobile, the
other static). MU-MIMO is more sensitive to CSI than SU-
MIMO, since the channel variation of multiple receivers are
independent, and therefore their CSI errors add up and ex-
acerbate the impact of stale CSI. Remarkably, mobility only
affects the mobile receiver itself. This is because when run-
ning linear precoding, the transmitter only needs to ensure
signals from all its antennas combine coherently at each in-
tended receiver, which is only related with the channel gains
between transmit antennas and that receiver. This also im-
plies that in MU-MIMO networks, different receivers can
perform time-domain compression and adaptation indepen-
dent of each other, which is critical for a scalable solution.
Effects of frequency domain compression. Theoret-

ical wireless channel models [5] have shown that neighboring
subcarriers of a wide spectrum may be highly correlated with
each other, hence it is sufficient to use one subcarrier’s CSI to
represent that of a group. Subcarrier correlation is roughly
inversely proportional to multi-path delay spread, i.e., the
maximum separation between multiple reflected copies of a
signal. In environment with rich reflections and obstacles,
delay spread is small and channel may be correlated over a
wide spectrum with many subcarriers, making it possible to
compress CSI aggressively in frequency domain. Our experi-
ments in Fig. 4 indeed verify this effect. In a small laboratory
environment, compressing neighboring 4 subcarriers results
in negligible SNR loss. A lobby – a relatively open-space
environment, experiences a larger delay spread (consistent
with theoretical channel models [5]) and is hence more sen-
sitive to compression. Compressing 4 subcarriers degrades
SNR by 3 dB on average and up to 3.3dB in certain cases
(MU-MIMO in Fig. 4 (b)).

Interestingly, our experiments reveal several other factors
governing the effectiveness of frequency-domain compres-
sion. First, different spectrum bands (with different carrier
frequencies) reveal different levels of sensitivity to subcarrier
grouping. A typical 2.4GHz band exhibits high sensitivity,
since it may experience different level of leakage noise (in-
terference) from neighbors across its spectrum. Even across
the 5GHz bands, which are unused around our testbed, the
sensitivity varies. We suspect this to be the result of imper-
fect radio hardware, which causes unequal RF/antenna gains
across the spectrum. Finally, mobility does not affect the
impact of frequency-domain compression, implying it can

3We create the oracle case by collecting CSI and then replay-
ing the channel distortion effect (Sec. 5). The transmitter is
an oracle which knows the CSI without polling and feedback.
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be decoupled from time-domain compression. MU-MIMO is
more sensitive to subcarrier grouping than SU-MIMO, for
the same reason as in time-domain compression.
Effects of numerical quantization. Fig. 5 plots the

MIMO network capacity as a function of the number of
quantization bits used to represent CSI4. It reveals a sub-
linear relation: capacity grows sharply as quantization bits
increases from 2 to 3, but shows marginal improvement be-
yond that. In addition, low SNR links are less sensitive to
quantization, as channel noise dominates the quantization
errors. Again, MU-MIMO is more sensitive to quantization
due to the additive quantization noise of multiple receivers.

To summarize, although compression can save substantial
overhead, it may come at the cost of capacity loss. This
tradeoff manifests differently depending on the radio envi-
ronment and network dynamics. Clearly, an autonomous
algorithm is needed to guide the 3-D compression and hence
balance the overhead reduction and capacity loss, thereby
resulting in maximium network throughput.

4. ADAPTIVE FEEDBACKCOMPRESSION

4.1 Overview
AFC is a systematic approach to balancing CSI compres-

sion intensity with SU-/MU-MIMO network capacity, thereby
helping achieve optimized network throughput under various
network (channel) conditions. The core component of AFC
is a cross-layer adaptation algorithm that extracts the chan-
nel dynamics from 802.11 packet preambles, and approxi-
mates a throughput-optimal point by choosing an appro-
priate compression configuration over 3 dimensions: time,
frequency and numerical values.
Cross-layer adaptation. Fig. 6 showcases AFC’s adap-

tation procedure for a SU-MIMO network. CSI feedback is
reactive in AFC. By default, the transmitter uses the previ-
ous (most recent) CSI feedback for beamforming precoding.

4802.11 defines three algorithms for quantizing CSI values.
Without loss of generality, we adopt the direct quantization
approach [4, Section 20.3.12.2.1] which compresses the real
and imaginary components into a few number (4, 5, 6 or 8)
of bits.

CSI stale?

MIMO 
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to update CSI

Notify sender
to start CSI poll
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Receive ACK
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Figure 6: Cross-layer adaptation protocol in AFC.

It initiates the CSI polling only if the receiver indicates a
need to do so. The receiver is able to refresh its channel
estimation whenever it receives a new packet. It evaluates
the CSI therein in comparison with its last CSI feedback to
the transmitter, and, upon identifying a trend of severe CSI
staleness, requests the transmitter to initiate a polling for
next beamforming transmission. It conveys this request to
the transmitter by setting the “Protected Frame” bit in the
ACK for current data packet. The Protected Frame bit is
an unused field in legacy 802.11 ACK packets.

For frequency-domain compression, AFC extracts per-sub-
carrier CSI from the 802.11 Long-Training-Field (LTF) pream-
ble, which precedes the data portion of each packet, and is
sent by each transmit antenna sequentially without beam-
forming. Based on the LTF, AFC designs an estimation
algorithm to quantify the expected compression error and
resulting capacity loss when several subcarriers are grouped
to share the same CSI. The estimation of compression er-
ror induced by numerical quantization follows a similar pro-
cedure. With such estimations, AFC can select the com-
bination of subcarrier grouping and quantization with the
highest expected throughput, taking into account overhead,
capacity loss as well as the time-domain feedback period. If
this combination differs from the current grouping, the re-
ceiver again dictates the transmitter to reinitiate the polling
for next beamforming packet. As in 802.11n/ac, informa-
tion about the subcarrier group size or quantization bits are
embedded in the receivers’ CSI feedback packet.

For a MU-MIMO network, each receiver performs adapta-
tion as if it forms a SU-MIMO link with the multi-antenna
transmitter. Decoupling of their operations enables decen-
tralized AFC and precludes complicated message exchanges
between clients, which can be costly especially in large net-
works. We note, however, that the adaptation of quantiza-
tion bits may be coupled among MU-MIMO receivers, and
can lead to unfair power allocation. This problem will be
elaborated in Sec. 4.3.2.
A unified metric for compression. The above adap-

tation mechanism entails a key question: How does a certain
level of compression affect throughput? AFC proposes a uni-
fied metric, called CNo (compression noise), to evaluate the
error introduced by each dimension of compression. CNo
is obtained by inspecting the per-subcarrier CSI from the
802.11 LTF preamble. With CNo, AFC can instantaneously
estimate the expected data-rate and weigh it against feed-
back overhead, to determine the optimal compression in-
tensity. This evades the complexity of an intuitive search
algorithm that attempts all combinations of compression in-
tensities and leads to a huge search space, especially along



0
2
4
6
8

10
12
14

0 200 400 600
0

0.2

0.4

0.6

0.8

1

S
IN

R
(d

B
)

C
ha

nn
el

co
rr

el
at

io
n

Time (ms)

correlation

SINR

Figure 7: Channel correlation and link SINR change
over time. The receiver is moving at walking speed.

the time dimension. In addition, CNo can be estimated sep-
arately for time, frequency and numerical values. Such isola-
tion is important as it guarantees the total compression noise
introduced by all dimensions is simply the sum of their CNo
metrics.

In what follows, we detail AFC’s adaptation mechanisms
along three-dimensions, based on the CNo metric.

4.2 Time-domain adaptation

4.2.1 Is coherence time a good adaptation metric?
A channel’s tolerance to time-domain compression strongly

depends on channel stability. A widely used stability met-
ric is coherence time, defined as the interval within which
channel gain remains highly correlated. According to the
802.11ac recommendation [6], correlation between two in-
stances of channel estimations, separated by T , is defined
as:

K(T ) =
L

L− T
· |

�L−T−1
t=0 h(t)h∗(t + T )|
�L−1

t=0 |h(t)||h∗(t)|
(3)

where L is the total length of the sequence of sampled chan-
nel gains. Coherence time is defined as an instance T0.5 when
correlation drops to 0.5, i.e., T0.5 = K−1(0.5). Occasionally,
T0.9 is also used as a coherence time definition.

It is tempting to use coherence time as an update interval
for CSI — CSI feedback can be initiated periodically, with
a period equal to coherence time. All packets can share
one CSI obtained in the beginning of each period. However,
through extensive experiments, we found coherence time to
be a poor gauge for predicting the effect of such CSI com-
pression. In particular, the experiment in Fig. 7 shows that,
even though channel correlation remains above 0.5 within a
400ms interval (corresponding to the T0.5 definition for co-
herence time), SNR is already severely degraded before that
(at around 260ms). On the other hand, the T0.9 definition
of coherence time is too conservative. Channel correlation is
above 0.9 within 100ms, but SNR remains relatively stable
within 200ms. Thus sending CSI at a peroid of 100ms incurs
unnecessary overhead.

In addition, we found that this tradeoff manifests differ-
ently for different channel profiles (static, human moving
around, or node mobility). Hence, no single definition of
coherence time can be used as the period for time-domain
compression.

An additional limitation of the coherence time metric is
that the statistical correlation (3) is relevant only with a
large number of channel gain samples, each corresponding
to one packet. To adapt compression intensity, however, a
responsive metric is needed that can be obtained from one
or two packets. The CNo metric is designed to satisfy this
requirement.

4.2.2 CNo metric for the time domain
Compression noise. In AFC, a receiver uses a Com-

pression Noise (CNo) metric to overcome the limitations of
conventional channel stability metric. CNo gauges how cur-
rent CSI (at time t) differs from the last CSI feedback (at
time t0). Suppose there are K subcarriers whose CSI needs
feedback and Hk(t) is the channel gain for subcarrier k at
time t. Due to channel variation, Hk(t) can be considered
as a noisy version of Hk(t0):

Hk(t) = Hk(t0) + Nk(t) (4)

We model the noise Nk, (k ∈ K) as complex Gaussian
random variables with a similar level of variance (i.e., noise
power). This is reasonable as the staleness of CSI applies
equally to all subcarriers. Consequently, we can model the
time-domain compression-induced noise power as:

NT (t) =
K�

k=1

���
�
Hk(t)−Hk(t0)

��
Hk(t)−Hk(t0)

�∗���

This is exactly the CNo metric we use in time-domain.
The receiver stores Hk(t0), and directly obtains Hk(t), the
per-subcarrier channel gain, from the 802.11 LTF preamble
for each packet. Therefore, NT (t) becomes an instantaneous
gauge for time-domain compression error. Taking into ac-
count the signal power Pr(t) and channel noise power Nr(t),
the expected SNR after compression becomes:

SNR(t) =
Pr(t)

Nr(t) +NT (t)
(5)

An AFC receiver compares SNR(t) with SNR(t0). If for
any channel between a transmit antenna and a receive an-
tenna, the difference is sufficient to cause data rate to drop
from the current level to a lower level, then the receiver will
request for CSI polling. Note, however, that channel fad-
ing may cause unpredictable SNR decrease/increase, which
must be isolated in order to evaluate the true effect of time-
domain compression.
Isolating fading effects. To solve this problem, the re-

ceiver also stores the nominal expected SNR (without com-
pression noise) at t0: SNR

�(t0) = Pr(t0)/Nr(t0). It com-
pares SNR�(t0) with SNR�(t). If the difference exceeds the
SNR threshold for boosting data rate to a higher level (thresh-
old SNRth

h ), or degrading it to a lower level (threshold SNRth
l ),

then the receiver will also request for a CSI polling. This
helps the transmitter to select the bit-rate that fits the chan-
nel condition5. The SNR threshold for each data rate can
be readily obtained from WiFi chip specifications (e.g., [7]).

Note that a link may become idle for a long time. Without
data transmission, the transmitter cannot receive any ACK
or CSI update indication from the receiver, and is unaware
of CSI staleness. AFC overcomes this problem by setting a
maximum update interval Tm, which equals the average in-
terval of the past 5 CSI update indication from the receiver.
If the link becomes idle for more than Tm, the transmitter
will initiate CSI polling without a request from the receiver.
Signal and noise power. So, how does AFC estimate

the signal power Pr(t) and noise power Nr(t)? We remark
that such estimation should be isolated from the beamformed
data portion of a packet, which mixes the channel gains from
multiple transmit antennas to the receive antenna. Towards
this end, we again leverage the LTF preamble which is sent
by each transmit antenna sequentially. Fig. 8 illustrates the

5AFC’s adaptation algorithm does not depend on the bit-
rate adaptation mechanism.
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Figure 8: Time-domain structure of the LTF pream-
ble in an 802.11 packet.

structure of an LTF preamble, which comprises two dupli-
cated sequences (each containing 64 samples) and an OFDM
cyclic prefix (32 samples). At the receiver side, it runs FFT
over each sequence to estimate the frequency-domain chan-
nel distortion:

Y 1
k = HkXk + N1

k ; Y 2
k = HkXk + N2

k

Xk is a known symbol carried by subcarrier k. Although
N1

k and N2
k are instances of two random Gaussian variables,

they can be considered to have the same variance, which
equals the noise power per-subcarrier. Thus the channel
noise power over an entire bandwidth can be estimated as:

Nr(t) =

K�

k=1

|(Y 2
k − Y 1

k ) · (Y 2
k − Y 1

k )∗| (6)

Subtracting noise power from total received power, we ob-
tain:

Pr(t) =

K�

k=1

|Y 1
k |2 −Nr(t) (7)

Combating random phase offset. Ideally, if channel is
stable, the receiver should experience a similar Hk for each
packet. Due to the CSMA-based MAC layer, however, each
transmitted packet has a random starting time and when
modulated, will result in a random initial phase offset rela-
tive to the receiver. This causes a large NT (t) even though
the CSI does not change. We observe that transmit anten-
nas on a MIMO radio share the same clock, and thus we use
the phase of the differential channel HA

k /HB
k between trans-

mit antenna A and B, instead of that of Hk directly when
computing NT (t), which removes the random phase offset.

4.3 Adaptive frequency-domain compression
and numerical quantization

4.3.1 Is coherence bandwidth a good adaptation met-
ric?

Coherence bandwidth is a classical metric for evaluating
channel stability over frequency. Specific to 802.11 OFDM
systems, it is defined as the range within which subcarri-
ers’ channel gain correlation is larger than 0.5 (B0.5) or 0.9
(B0.9). The correlation can be obtained in the same way as
time correlation as in (3), except the separation is in fre-
quency (number of subcarriers).

As channel gains of the subcarriers within B0.5 or B0.9 are
highly correlated, one may wonder if they can be compressed
and represented by a single subcarrier’s CSI. The testbed ex-
periments in Fig. 9 invalidate this perception. While B0.9 is
too conservative, B0.5 is over-optimistic, incorporating more
subcarriers than should be compressed, thus degrading ca-
pacity. Consistent with the experiments in Fig. 4, we found
such effects to differ among different carrier frequencies and
locations. In addition, correlation does not always decrease
monotonically with subcarrier separation. Clearly, no sin-
gle, static definition of coherence bandwidth can be used as
a threshold for frequency-domain compression.
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Figure 9: Channel correlation over frequency (in a
lab environment), and SU-MIMO link capacity when
K� subcarriers share the same CSI. PHY param-
eters are configured following 802.11 specification:
20MHz bandwidth, 52 data subcarriers (each occu-
pying 312.5KHz).

4.3.2 CNo metric for subcarrier grouping and nu-
merical quantization

We generalize the time-domain CNo metric to predict the
link throughput for a certain level of frequency-domain com-
pression and numerical quantization. Suppose Hk(f0, q0) is
the true CSI for subcarrier k without compression, which is
obtained from the receiver’s LTF preamble. Hk(f, q) is the
compressed CSI for subcarrier k with subcarrier group size
f and q-bit quantization. All subcarriers inside each group
share the CSI of the group’s first subcarrier, following the
802.11 specification. Then, given a fixed quantization level
q, the frequency domain CNo metric is:

NF (f) =
K�

k=1

���Hk(f, q)−Hk(f0, q)
��
Hk(f, q)−Hk(f0, q)

�∗��

Similarly, given a subcarrier group size f , the quantization
noise with q-bit quantization is:

NQ(q) =
K�

k=1

|(Hk(f, q)−Hk(f, q0))(Hk(f, q)−Hk(f, q0))
∗|

Then, the receiver estimates the effective SNR with com-
pression intensity f as SNR�(f, q) = Pr

Nr+NF (f)+NQ(q)
. As

Pr and Nr are obtained from packet preambles, they can-
not reflect the power increase due to beamforming or noise
increase due to multi-user cross-talk interference. Neverthe-
less, the receiver can estimate the true SNR based on the
decoded SNR of the current packet, accounting for the SNR
loss due to compression, i.e.,

SNRdB(f, q) = decodedSNRdB + SNR�
dB(f, q) − 10 log10

Pr

Nr

This can be mapped to data rate typically provided by
WiFi vendors [7]. Then, we can estimate the increase of
data packet transmission time, compared with the current
compression intensity, say (f1, q1), as:

ΔTd(f, q) = D/Rate(SNR(f, q)) −D/Rate(SNR(f1, q1))

where D is the average data packet size (estimated by aver-
aging over past 10 packets in AFC).

Owing to compression, the decrease of time in transmit-
ting CSI, amortized over each packet, is:

ΔTo(f, q) = Kq1Mt(f1R0Tp)
−1 −KqMt(fR0Tp)

−1

where Mt is the number of transmit antennas, and R0 the
data rate of feedback packet (default to 6Mbps in 802.11).
Tp is the number of recent packets that shared one CSI over
time, which reflects the current time-domain compression
intensity.



AFC compares ΔTo(f, q) with ΔTd(f, q). A positive dif-
ference implies benefit for changing the compression inten-
sity. This comparison is made for each possible combina-
tion of subcarrier group size and quantization level (in total
there are only 12 such combinations in 802.11 as introduced
in Sec. 2), and the receiver will select the combination with
largest ΔTo(f, q)−ΔTd(f, q). If it is positive and differs from
the current one, the receiver switches to this new compres-
sion level and notifies the transmitter. Again, the above es-
timation is performed for each transmit antenna separately.
CSI feedback will be triggered whenever one antenna passes
the test.
Isolating different users’ CSI quantization. A unique

problem in MU-MIMO is that different users’ CSI quantiza-
tion may affect each other’s performance. When users choose
different quantization levels, their CSI will be scaled dispro-
portionally. Suppose user A and B have a similar level of
channel gain. If user A adopts 8-bit quantization whereas
user B adopts 4-bit, then A’s CSI feedback will have 24 = 16
times as high magnitude as B’s, causing the transmitter to
think A has much better channel quality. Since zero-forcing
precoding implicitly projects the same received power to-
wards both receivers (Sec. 2), the transmitter will allocate
only 1√

16
= 1

4
as high power to user A as the case without

quantization, resulting in unfair capacity loss for A.
In AFC, the transmitter solves this problem by normaliz-

ing the real and imaginary components with the maximum
possible value (2q−1−1 for q-bit quantization), for each user
respectively. This prevents the unfair CSI scaling and thus
isolates the quantization choices of different users. Note that
AFC’s adaptation algorithm is immune to such an effect, as
it only leverages the non-beamformed LTF preamble.

4.4 3-D joint adaptation
Algorithm 1 summaries AFC’s adaptation over all three

dimensions. Note that the CNo metric serves as a unified
function for estimating compression noise for each dimen-
sion. It naturally isolates the effects of each dimension, and
reduces the search space for throughput-optimal compres-
sion. It is also decentralized with respect to each user, who
only needs to evaluate CNo between itself and the transmit
antennas. In addition, unlike traditional metrics (e.g., coher-
ence time), it can be obtained instantaneously after receiving
each packet. The complexity of AFC’s adaptation depends
on the number of subcarriers and transmit antennas, all of
which are limited in 802.11n/ac. Thus AFC involves a con-
stant computation time and is amenable for implementation
in real WiFi drivers.

5. IMPLEMENTATION

5.1 Testbed implementation
We have implemented a full-fledged 802.11ac-compatible

MU-MIMO OFDM system on the WARP [8] platform, based
on the WARPLab driver which provides interfaces to the
WARP software radio. Fig. 10 illustrates the main compo-
nents in our system. The transmitter uses linear precoding
(ZFBF, Sec. 2) to pre-cancel inter-user interference. Pre-
coded data symbols are divided into Mt streams (equal to
the number of transmit antennas), each subject to OFDM
modulation. The modulated data symbols are prepended
with the 802.11 LTF, and STF (a preamble for synchroniza-

Algorithm 1 3-D cross-layer adaptation in AFC.

1. Transmitter module:
2. if “Protected Frame” bit in ACK equals 1 or link idle

time exceeds Tm

3. Initiate CSI polling and request for next packet
4. Run SU-/MU-MIMO beamforming with latest CSI
5. endif
6.
7. Receiver module:
8. /* Time-domain adaptation */
9. Compute CNo metric NT (t) and SNR(t)

10. if SNR(t)−SNR(t0) > SNRth
l or SNR�(t)−SNR�(t0) >

SNRth
h or SNR�(t0) − SNR�(t) > SNRth

l

11. Request CSI update; update Tp

12. endif
13. /* Adaptive subcarrier grouping and CSI quantization*/
14. Compute CNo metric NF (f) and NQ(q)
15. Compute expected TX time increase ΔTd(f, q) and over-

head time decrease ΔTo(f, q)
16. Search for (f∗, q∗) = arg maxf,q ΔTo(f, q) − ΔTd(f, q)
17. if ΔTo(f

∗, q∗) − ΔTd(f
∗, q∗) > 0

18. Switch to new subcarrier group size f∗ and quantiza-
tion level q∗

19. Request CSI update; continue to next transmission.
20. endif

tion). Note the SU-MIMO is a special case of MU-MIMO
implementation, as introduced in Sec. 2.

The receiver uses an auto-correlation algorithm to detect
the STF and identify exact starting time of each packet.
It then leverages the LTF to estimate the channel matrix
between itself and each transmit antenna. This channel ma-
trix (CSI) will be compressed by the receiver using AFC and
then fed back to the transmitter when needed. As inter-user
interference is pre-cancelled, the receiver is able to decode
the data portion of the packet using a standard OFDM de-
modulator.

The 3-D cross-layer adaptation algorithm is implemented
at the receiver side following the description in Sec. 4. It
extensively leverages the LTF to compute CNo along three
dimensions, and decides if an adjustment of compression in-
tensity is needed and in which dimensions. As the round-trip
time between the PC (the central MAC/PHY processor run-
ning AFC and MU-MIMO OFDM modulation/demodulation)
is several orders of magnitude longer than real WiFi hard-
ware, we do not directly implement real-time control mes-
sages such as ACK, NDP and CSI feedback. Instead, as all
WARP nodes in our testbed share the same central proces-
sor, control messages are directly realized as function calls.
The exact transmission duration and inter-packet spacing
(defined in 802.11) are implemented using a virtual timer.
In addition, all MIMO data packets are sent through real
channels by the WARP radios, and polling packets are ini-
tiated if AFC dictates a CSI refresh.

5.2 Trace-driven emulation
Through benchmark tests, we found it takes 127ms for a

pair of WARP radios to finish an entire SU-MIMO transmis-
sion involving CSI polling, precoding, data transmission and
data decoding. The latency is mainly caused by the hard-
ware interface between WARP and its PC host. Such hard-
ware latency is incompatible with real WiFi radios, and can-
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Figure 10: Implementation of an 802.11-compatible
MU-/SU-MIMO OFDM system.

not faithfully reproduce AFC’s behavior in dynamic/mobile
scenarios. To overcome this limitation, we adopt a trace-
driven emulation approach, which is inspired by [9] but har-
nesses WARP’s flexibility to collect raw channel traces.

We fill a WARP transmitter’s transmit buffer with an
802.11 MIMO preamble (containing STF and LTF sequences),
and configure it to repeatedly send the preamble over the air.
The receivers log the raw digital samples to a file, and per-
forms packet detection and channel estimation offline to ob-
tain a sequence of channel traces. With this setting, we are
able to obtain fine-grained sampling of the MIMO channel
every 8.7ms, which is sufficient for evaluating mobile chan-
nels with walking speed [10].

To evaluate the feedback compression algorithms, we re-
place the WARPLab interface to the WARP radios with an
interface to an emulated channel, whose time variation fol-
lows the collected traces. The MU-/SU-MIMO OFDM and
AFC module that we implemented can run directly over this
emulated channel. When a packet’s arriving time does not
exactly match any instances of the channel trace, the closest
instance is used to represent its channel distortion. We will
show in Sec. 6 that the trace-driven emulator can faithfully
reproduce the results from realtime experiments.

6. EVALUATION
In this section, we first evaluation AFC’s adaptation mod-

ules through micro-benchmark experiments. Then we inte-
grate all the modules and validate the system-level perfor-
mance under various channel conditions.

6.1 Micro-benchmark evaluation

6.1.1 Validation of trace-driven emulation.
Part of our experiments are conducted under mobile/dynamic

channel profiles, and rely on trace-driven emulation. Thus,
we first validate the accuracy of such trace-driven emulation,
using real-time runs as a benchmark.

T1 Tc Freq 1 Freq 52 Qbits 2 Qbits 8

Trace 20.206 20.041 20.262 16.131 18.662 20.315

Real 20.142 20.074 19.825 15.148 17.599 20.066

Error 0.32% 0.16% 2.20% 6.49% 6.04% 1.24%

Table 1: Trace-driven emulation can faithfully repro-
duce the SINR results from realtime experiments.
T1 and Tc denote per-packet and per-coherence-time
CSI feedback, respectively. Freq denotes subcarrier
group size 1 and 52. Qbits denote quantization bits.

Following the steps in Sec. 5.2, we first run SU-MIMO
transmission between a 2-antenna WARP transmitter and
single antenna receiver, while logging the per-packet channel
matrices between them. Then we replay the transmissions
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Figure 11: Time-domain adaptation: SU-MIMO.

in the emulator based on the traces. Table 1 compares the
results from real-time runs and trace-driven emulation. We
create 6 traces, each lasting 1 minute and representing the
case with or without compression (or with minimum com-
pression) along three dimensions. For the majority of cases,
relative error of emulation is well below 3%. When SINR is
low, the relative error tends to be magnified (to around 6%).
However, the absolute error remains below 1.1dB. Therefore,
the trace-driven emulator can reproduce real-time experi-
ments with a sufficient level of accuracy.

6.1.2 Time-domain adaptation
The effectiveness of AFC’s time-domain compression and

adaptation depends on channel stability. Thus we evaluate
this component under three representative channel profiles:
static, ambient mobility (human moving around the nodes)
and node mobility (node moving at walking speed). All ex-
periments run over the 2.4GHz WiFi channel 14, which is
unused by nearby wireless devices. The static case runs di-
rectly on the WARP testbed. The other two cases are based
on trace-driven emulation, since WARP’s latency may ex-
ceed the time-resolution needed for real-time CSI feedback.

We compare AFC against two alternative CSI feedback
schemes: per-packet feedback and Per-Tc feedback. The
former is the default scheme in 802.11n/ac. In the latter
scheme, we first collect channel traces, compute the coher-
ence time T0.5, and then use T0.5 as the feedback period
when replaying the traces.
SU-MIMO network. In a typical small or medium

sized network, contention overhead is much smaller com-
pared with data transmission. Thus, without loss of gener-
ality, we first consider a single receiver SU-MIMO network6,
where the transmitter has 2 antennas and receiver 1 antenna.
Fig. 11 plots the resulting network throughput.

In static case, channel variation is negligible, and thus per-
packet CSI feedback incurs huge overhead. AFC only needs
to opportunistically feed back CSI without affecting link ca-
pacity noticeably. Its mean throughput is 25.4% higher than
that of per-packet feedback. Per-Tc feedback results in a
similar level of throughput as AFC.

With ambient mobility, per-packet feedback degrades even
with per-Tc feedback in terms of throughput, as the former
maintains link capacity whereas the latter attempts to re-
duce feedback overhead. In contrast, AFC strikes a balance
between these two objectives, improving average throughput
by 17% over the other two schemes.

When receiver is mobile, Per-Tc feedback underestimates
channel variations, leading to even lower throughput than
per-packet feedback. On the other hand, per-packet feed-
back incurs more overhead. AFC’s time-domain adapta-

6Even for a single-link WLAN, contention backoff is required
after each transmission attempt [4].
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tion mechanism can effectively estimate the instances when
CSI feedback is needed. Its throughput is 18.2% and 38.5%
higher than per-Tc and per-packet, respectively.
MU-MIMO network. We further evaluate AFC in a

MU-MIMO network with a 2-antenna AP and 2 single-antenna
receivers. Fig. 12 plots the receiver’s throughput under dif-
ferent channel profiles and feedback schemes. Similar to SU-
MIMO, per-Tc achieves a comparable level of throughput
with AFC. However, for per-packet feedback, since the over-
head doubles compared with SU-MIMO, the throughput loss
is substantial. In particular, AFC can achieve 39.7% higher
throughput over per-packet — a much higher gain compared
with SU-MIMO case.

Under channel dynamics, MU-MIMO is expected to be
more sensitive to CSI feedback errors. Fig. 12 testifies this
intuition. With ambient mobility, per-Tc induces long feed-
back delay and large CSI error, resulting in significant through-
put loss. AFC can achieve 61.5% and 123% higher through-
put, for receiver 1 and 2, respectively.

AFC’s performance gain is most remarkable in mobile case
(Fig. 12(c)). It achieves 69.1% and 269% higher throughput
for the two receivers, compared with per-Tc; and a 13.2%
and 71.3% gain compared with per-packet feedback.

In summary, none of the static CSI feedback mechanisms
are appropriate for all channel profiles. On the other hand,
by triggering CSI updates only when needed, AFC can achieve
up to multi-folds of throughput gain over static schemes.

6.1.3 Frequency-domain adaptation
We proceed to evaluate whether AFC can effectively adapt

to an appropriate level of compression for the frequency do-
main, i.e., the subcarrier group size. Our investigation of
channel traces in a lab environment reveals that even for
the same spectrum band, coherence bandwidth may change,
e.g., due to minor change of location or antenna orientation.
Thus we create frequency domain dynamics by running mul-
tiple experiments with minor adjustment of transmitter’s lo-
cations. We isolate the effect of the other two adaptation
dimensions by assuming default configuration in 802.11n/ac
(per-packet CSI feedback and 8-bit quantization).

Fig. 13 plots the throughput of AFC compared with two
alternative schemes with fixed subcarrier group size 1 and
52, respectively. For SU-MIMO, AFC’s throughput is 19.8%
higher than Size1, implying that a fixed subcarrier group size
of 1 underutilizes the channel correlation between subcarri-
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ers, which could have been harnessed to compress the CSI.
In our lab environment, Size52 achieves a similar level of
throughput with AFC.

However, a MU-MIMO network is more sensitive to CSI
compression errors, since severe inter-receiver interference
can occur when CSI is noisy. In particular, Fig. 13(b) shows
that for one receiver (Rx2), AFC’s throughput can be 5.2×
that of Size52, and 1.36× for Rx1. In this case, a fixed
subcarrier group size of 1 outperforms Size52.

Therefore, from frequency domain perspective, static sub-
carrier grouping can be either very conservative or aggres-
sive. AFC can effectively strike a balance, selecting the best
compression level to optimize the network throughput.

6.1.4 Adaptive quantization
To evaluate AFC’s adaptive quantization mechanism, we

compare it against static quantization algorithms with ag-
gressive (3-bit) and conservative (32-bit, essentially no com-
pression) quantization algorithms. Accordingly, we allow
AFC to choose from these two quantization levels along with
the default options in 802.11n/ac (4, 5 6 and 8 bits). Fig. 14
shows the experimental results for a SU-MIMO network. It
can be seen that for both high and low SINR7 cases, the sav-
ing of feedback overhead dominates the capacity loss, even
with a very aggressive 3-bit quantization. However, there
is still sufficient space for AFC to optimize the choice of
quantization levels. An examination of experimental results
reveals that AFC tends to choose the quantization level of 6
bits, which is close to 3-bit but avoids the capacity loss due
to excessive compression.

In addition, as we noted above, in high SINR case, closed-
loop MIMO transmission is more sensitive to compression,
hence aggressive compression tends to suffer more from ca-
pacity loss. Indeed, Fig. 14 shows that AFC improves through-
put by 15.1% over 3-bit compression in high-SNR region, and

7We adjust link distance to ensure the receivers’ SINR level
satisfy the requirement of the minimum level of modulation
in 802.11, which is 9dB for BPSK modulation [7].
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4.5% in low-SINR region. Owing to its intelligent overhead
reduction, performance gain over fixed 32-bit reduction is
more prominent (52.2% and 28.3% for high and low-SINR
case, respectively).

Experimental results from a MU-MIMO network (Fig. 15)
show a similar trend. In particular, for low-SINR case, chan-
nel noise dominates CSI error, and thus 3-bit quantization
achieves comparable throughput as AFC. But in high SINR
region, AFC achieves 18.5% higher throughput. The gain is
even higher than in SU-MIMO, because aggressive quanti-
zation amplifies the effects of inter-receiver interference.

6.2 Field test of AFC
In this section, we integrate all three components of AFC

and evaluate its network performance on our WARP radio
testbed.

6.2.1 AFC in action
We first check whether AFC can react to changes in a

real wireless link with unpredictable dynamics. To this end,
we evaluate a 2-receiver MU-MIMO network, and vary the
transmitter’s location and link distance, such that a variety
of channel profiles can be generated for both receivers. We
collect the per-packet channel traces during this process and
then replay them in our emulator.

Fig. 16 plots the throughput variation of AFC over time,
in contrast with the legacy configuration in 802.11ac (per-
packet feedback, subcarrier group size 1, 8-bit quantization).
Throughput is calculated for each inter-packet arrival inter-
val. The results show that AFC can react instantaneously to
the change of channel state, and effectively adapt its com-
pression levels accordingly. It consistently achieves higher
throughput than 802.11ac under any channel dynamics. The
throughput gain ranges from 1.4× to 2.2× in general, and
varies depending on the channel profile and users. Occasion-
ally, the fixed configuration in 802.11ac may work as well as
AFC when it is appropriate for the channel state.

6.2.2 Other factors
As mentioned in Sec. 3, besides time, frequency and quan-

tization, there are a number of other factors that determine
the CSI overhead, which may in turn affect AFC’s choice
of compression. Below we use testbed experiments to verify
such effects.

We first evaluate packet length, which affects relative over-
head of CSI feedback and hence throughput. To isolate the
effects of bit-rate change, we vary packet duration instead
of size. Experiments in a SU-MIMO network (Fig. 17) show
that for shorter packet durations, AFC achieves higher gain
(e.g., 2.14 × for 100 µs). In such cases, balance between
overhead and capacity becomes more important, which can-
not be handled by the legacy scheme.
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Figure 16: Field test of AFC in a MU-MIMO net-
work. “newCH” indicates a change of spectrum
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high-SNR scenarios created by adjusting transmit
power.
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Fig. 18 further shows how this balance manifests under
different number of antennas. The experiment is done in
a lab environment with receiver moving at walking speed.
AFC’s throughput gain is around 47% higher than legacy
for both 2 and 4 antenna cases. Under 2 antenna case, Per-
Tc feedback underestimates channel variation, resulting in
72% lower throughput compared with AFC. With 4 anten-
nas, feedback overhead plays a greater role, and thus Per-
Tc feedback enjoys throughput improvement due to its ag-
gressive time-domain compression, but its throughput is still
45% lower than AFC.

7. RELATEDWORK
CSI feedback has been a critical issue in broadband cellu-

lar networks such as LTE [11]. For CSI quantization, early
generations of LTE adopt codebook based approach, which
prescribes a set of precoding vectors, such that the receiver
only needs to feed back an index of the best precoding vec-
tor [12]. Latest generation of LTE (Release-10) proposes
quantized CSI feedback, which is shown (via simulation)
to achieve comparable performance with the same number
of CSI bits [13]. But even for LTE, the adaptive selection
of quantization levels or feedback delay remains an open
problem. There exists a vast literature of work on limited
feedback MIMO communications (see [11] for a comprehen-
sive survey), which focuses on the design of effective CSI
quantization mechanisms to restrict the feedback overhead.
In [14], Huang et al. analyzed the effect of time-domain
compression, based on a theoretical model of channel cor-
relation over time. Pohl et al. [15] simulated the SNR and
BER of MIMO communication systems under Rayleigh fad-
ing model. However, a systematic approach is still lacking
that adapts various quantization and compression mecha-
nisms in realistic LTE channel conditions.

Relatively less work has been devoted to the CSI feed-
back mechanism in wireless LANs. In [16], Sun et al. sim-
ulated the 802.11n SU-MIMO performance in time-varying



and frequency-selective channel conditions. Crepaldi et al.
[17] proposed a sampling algorithm that can efficiently esti-
mate the channel matrix of a MIMO link. To our knowledge,
there does not exist any experimental work that addresses
the tradeoff between CSI compression and capacity loss for
WLANs.

Recently, there has been a number of software-radio based
prototypes of multi-user MIMO [18] or distributed MIMO
networks [19], which verified the practicality of theoreti-
cal MIMO communication algorithms, but ignored the CSI
feedback overhead. In [20], Shepard et al. built a massive
multi-user MIMO system, based on implicit CSI feedback
— an alternative feedback mechanism defined in 802.11n,
which leverages channel reciprocity of uplink/downlink to
reduce CSI overhead. Implicit beamforming involves sophis-
ticated calibration that is not amenable for handheld WiFi
devices [21, 22]. In addition, it cannot be used in many
practical wireless transceivers that have more receive an-
tennas than transmit antennas [21,23]. The new generation
of 802.11ac has discarded implicit beamforming, leaving ex-
plicit CSI as the only option for CSI feedback.

8. CONCLUSION
In this paper, we have conducted a comprehensive mea-

surement study that characterizes the tradeoff between feed-
back compression and capacity loss in SU-/MU-MIMO wire-
less networks. We then address this tradeoff by proposing
AFC, a simple mechanism that adapts compression inten-
sity to optimize network throughput. AFC’s adaptation is
steered by CNo, a unified metric that can be extracted from
802.11 packets’ preambles, and used to estimate the noise
effects due to compression in time, frequency and numerical
values. We implemented AFC on the WARP software radio
testbed and validated its performance under various channel
dynamics and network scenarios. We believe AFC can be a
general mechanism for other non-802.11 MIMO networks,
such as those based on interference alignment [24]. Such
extension is left for our future exploration.
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