The Alpino Dependency Treebank

L. van der Beek, G. Bouma, R. Malouf, G. van Noord
Rijksuniversiteit Groningen

Abstract

In this paper we present the Alpino Dependency Treebanklantbbls that we have devel-
oped to facilitate the annotation process. Annotationdgfby starts with parsing a sentence
with the Alpino parser, a wide coverage parser of Dutch t&tte number of parses that
is generated is reduced through interactive lexical amabsd constituent marking. A tool

for on line addition of lexical information facilitates thparsing of sentences with unknown
words. The selection of the best parse is done efficientli thié parse selection tool. At

this moment, the Alpino Dependency Treebank consists afitt®@®00 sentences of news-
paper text that are annotated with dependency trees. The<aan be used for linguistic

exploration as well as for training and evaluation purposes

1 Introduction

Alpino is a wide-coverage computational analyzer of Dutddt ims at accurate,
full parsing of unrestricted text. In section 2 we preseetsktup of the grammar
and the constraint-based formalism that we have adopted/ntadtically anno-
tated corpus is needed to train the grammar and to evalsapeiformance. For
this purpose we have started to develop the Alpino Dependemebank.

The treebank consists of sentences from the newspaget () part of the
Eindhoven corpus (Uit den Boogaard 1975). The sentencesaafe assigned a
dependency structure, which is a relatively theory indelgen annotation format.
The format is taken from the corpus of spoken Dutclei)® (Oostdijk 2000),
which in turn based its format on the Tiger Treebank (Skut7)9fh section 3 we
go into the characteristics of dependency structures arntiVat® our choice for
this annotation format.

Section 4 is the central part of this paper. Here we explaiahnotation
method as we use it, the tools that we have developed, thentadyes and the
shortcomings of the system. It starts with a descriptiorheffiarsing process that
is at the beginning of the annotation process. Although & good idea to start
annotation with parsing (building dependency trees mayisavery time consum-
ing and error prone), it has one main disadvantage: amlyigbdr a sentence of
average length typically a set of hundreds or even thousafrrses is generated.
Selection of the best parse from this large set of possibiggsds time intensive.

The tools that we present in this paper aim at facilitatirgghnotation process
and making it less time consuming. We present two tools gdece the number
of parses generated by the parser and a third tool thatttteii the addition of
lexical information during the annotation process. Fipalparse selection tool
is developed to facilitate the selection of the best parsmfthe reduced set of
parses.

Lhttp://lands.let.kun.nl/cgn

2 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

The Alpino Dependency Treebank is a searchable treebankxwma format.
In section 5 we present examples illustrating how the stahxiaL query language
XPath can be used to search the treebank for linguisticalgvant information.
In section 6 we explain how the corpus can be used to evalhat&lpino parser
and to train the probabilistic disambiguation componerthefgrammar. We end
with conclusions and some pointers to future work in 7.

2 The grammar

Alpino is a wide-coverage grammar: it is designed to anafa@ences of unre-
stricted Dutch text. The grammar is based on the OVIS gran{usar Noord et
al. 1999), that was used in the Dutch public transportatiborimation system, but
both lexicon and grammar have been extensively modified aiehded.

The lexicon contains about 100,000 entries at this momerareMhan 130
different verbal subcategorization frames are distingeds Lexical information
from the lexical databases Celex (Baayen, Piepenbrock andRijn 1993), Pa-
role? andcGN (Groot 2000) was used to construct the lexicon. Various oakn
word heuristics further extend the lexical coverage of ystem.

The grammar should not only cover the question and answégrpatof the
public transportation information system, but, in prireipall Dutch syntactic
constructions. Therefore the grammar has been greatlyéste At this moment
it consists of about 335 rules. These rules are linguidyicalotivated and
describe both the common and the more specific, complex reatisins such
as verb-raising constructions and cleft sentences. Thesrafte written in a
framework that is based on Head-Driven Phrase Structuren@a (Pollard
and Sag 1994; Sag 1997). Following Sag (1997), we have defimestruction
specific rules in terms of more general structures and olesi

In the lexicon, each word is assigned a type from a small sbasic lexical
types. This type, e.qrounfor the wordtafel (table), specifies the set of lexical
features the word has. Nouns for instance have an agreeeanté and a fea-
ture NFORM, that distinguishes regular nouns from temporal or refliexiguns. A
complementizer in contrast doesn’t have those featuress Bpecified folcTYPE
(i.e. complementizer type). These lexical features areesmted in feature struc-
tures. Fig. 1 shows the feature structures for the wafel, which is a lexical item
(yleX), not derived from a verbndey and not of any special class of nouns such as
temporal or reflexive nounsiorm).

The featureT is shared between all types. It contains information aldoaite-
lations between a word and other words with which it can foreomstituent. With
theDpT values of all words of a sentence a dependency tree isYillis is a struc-
ture in which the various dependency relations between svand constituents in

2http://www.inl.nl/corp/parole.htm

3Strictly speaking, dependency trees are graphs, as caetailons as well as certain long distance
dependency relations are encoded using multiple dominalbe grammar as well as the treebank
encode such multiple dominance relations by means of cexind of nodes.

The Alpino Dependency Treebank 3

noumn

[sc 0
DEVERBAL ndev
AGR sg&thi&de&count
LEX ylex
NFORM norm
[HWRD tafel |
DT |POSTAG noun|
[DE'I’ 0

Figure 1: feature structure for lexical entigfel

a sentence are expressed. More information about dependenctures is found
in section 3.

Handwritten grammar rules define how lexical or phrasal #emay combine
to form larger units. The rules specify for each syntactiocure the type of the
mother node, a head daughter and the non-head daughteré&jdition, the type
of structure that they constitute is specified. Almost alistures are headed struc-
tures (structures in which one of the daughters can be ffilethtis the head daugh-
ter). The class of headed structures is further subdivideleiad-complement,
head-adjunct, head-filler and head-extra structures dowpto the function of the
non-head daughter.

Furthermore, the grammar rules should specify how the &xiformation on
the daughter nodes is passed on to the mother node. Forediffgipes of fea-
tures, different inheritance rules apply. It would be emtedy time intensive, error
prone and opaque if in each rule and for each feature theitahee had to be
specified separately. Therefore, five general principle§@mulated that define
how feature values are propagated up the tree. Each prraglies to a group of
features. For instance, thidead-feature Principlestates that for all features that
are marked abead featuresthe values on the mother node are unified with the
values on théneaddaughter. Thé/alence, Filler, Extrapositiomnd Adjunct and
Dependency principlédefine similar principles for the subcategorization, extra
tion, extraposition and modification and dependency tratifes respectively. For
each syntactic structure that is listed as a headed steuttihe grammar, these
general principles apply.

Lexical information, construction specific rules and geherinciples are the
three basic components of the grammar. This setup allowgrdiramarian to for-
mulate simple rules without specifying all the regular teatvalues on each of the
components. The complete rules can be deduced from theesiomgs through
addition of the information that is conveyed in the generaigples. For exam-
ple, the rule in (1-a) expands to the rule in (1-b), in which thheritance of the
values forvrForM (finite, infinite, participle), subcategorization framec], long
distance dependenciesLasH andexTRA) and the dependency relatiorst] is
specified. In this rule(H|T) is used to denote a list with head H and tail T, and
L&M represents the concatenation of the two lists L and M.

4 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

() a. head-complement structure:-¥ npu

b. VFORM VFORM
sc sc < | >
SLASH - noiEXTRA] SLASH
EXTRA [4B[E EXTRA
DT (6]
DT (6]
verb verb- -

3 Dependency Trees

The meaning of a word or a sentence is represented in stanga@by seman-
tic representations that are added to lexical entries amdspk. Semantic prin-
ciples define the construction of a semantic structure frlo@sé representations.
In Alpino we have added theT features with which we build a dependency tree
instead.

Dependency structures represent the grammatical retatiwet hold in and
between constituents. On the one hand they are more altstaacsyntactic trees
(word order for example is not expressed) and on the othed tiz@y are more
explicit about the dependency relations. Indices denateabnstituents may have
multiple (possibly different) dependency relations witiffetent words. Fig. 2
shows the dependency tree for the sentefite wil weten of Anne komtThe
dependency relations are the top labels in the boxes. Irtiaddithe syntactic
category, lexical entry and string position are added tdhdaaf. The indext
indicates thaKim is the subject of botkvil (wants) andveten(to know).

The main advantage of this format is that it is relativelyatyeindependent,
which is important in a grammar engineering context. A secatvantage is that
the format is similar to the formatGN uses (and that they in turn based on the
Tiger Treebank), which allowed us to base our annotationleliries on theirs
(Moortgat, Schuurman and van der Wouden 2001). The thirdlastdargument
for using dependency structures is that it is relativelgigttforward to perform
evaluation of the parser on dependency structures: onearapare the automat-
ically generated dependency structure with the one in #ebink and calculate
statistical measures such as F-score based on the numbeperidency relations
that are identical in both trees (Carroll, Briscoe and Sgopfd 1998).

4 The annotation process

The annotation process is roughly divided into two partsfivet parse a sentence
with the Alpino parser and then select the best parse fromséteof generated
parses. Several tools that we have developed and implechienitédrug, a graph-
ical environment for natural language processing (van N@ord Bouma 1997),
facilitate the two parts of the annotation process. In secdi.1 we present an in-
teractive lexical analyzer, a constituent marker and a tootemporary addition
of lexical information. The parse selection tool is desedlin in section 4.2.

The Alpino Dependency Treebank 5

top
smain
Su‘ﬁ\
1 hd Ve
verb .
noun wil inf
Kim1 2
hd
Su VC
1 verb cp
wetery
m
cmp body
comp ssub
Of4
— T~
su hd
noun verb
Anneg komg

Figure 2: Dependency tree voor de Kim wil weten of Anne komt

41 Parsing

The annotation process typically starts with parsing aeserd from the corpus
with the Alpino parser. This is a good method, since buildingdependency
trees manually is extremely time consuming and error prayeually the parser

produces a correct or almost correct parse. If the parseratasuild a structure

for a complete sentence, it tries to generate as large atisteuas possible (e.g.
a noun phrase or a complementizer phrase). The main disedy@nf parsing

is that the parser produces a large set of possible parsedi¢sg). This is a

well known problem in grammar development: the more linticighenomena a
grammar covers, the greater the ambiguity per sentenceauBecselection of the
best parse from such a large set of possible parses is tinmugong, we have

tried to reduce the set of generated parses. The interdetiieal analyzer and

the constituent marker restrict the parsing process whéshilts in reduced sets
of parses. A tool for on line addition of lexical informationakes parsing of
sentences with unknown words more accurate and efficient.

4.1.1 Interactivelexical analysis

The interactive lexical analyzer is a tool that facilitateg selection of lexical
entries for the words in a sentence. It presents all postekleal entries for all
words in the sentence to the annotator. He or she may markakerarrect, good

6 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

15000
I

10000
I

Avg. readings
~

5000
I
~__

Length

Figure 3: Number of parses generated per sentence by theoNjgirser

or bad.
e Correct Parse mustinclude it
e Good Parse may include it
e Bad Parse may notinclude it

Onecorrectmark for a particular lexical entry automatically produtes marks
for all other entries for the same word. The parser uses ftheced set of entries
to generate a significantly smaller set of parses in lessgssieg time.

4.1.2 Constituent Marking

The annotator can mark a piece of the input string as a caestitby putting
square brackets around the words. The type of constituenbeaspecified after
the opening bracket. The parser will only produce parsetshthee a constituent
of the specified type at the string position defined in the irgtting. Even if the
parse cannot generate the correct parse, it will producgegahat are likely to be
close to the best possible parse, because they do oblige tegtrictions posed on
the parses by the constituent marker.

Constituent marking has some limitations. First, the dpegticonstituent bor-
ders are defined on the syntactic tree, not the dependercydiependency struc-
tures are an extra layer of annotation that is added to thesia structure). Us-
ing the tool therefore requires knowledge of the Alpino gnaan and the syntactic
trees that it generates.

Second, specification of the constituent type is necessamnoist cases, espe-
cially for disambiguating prepositional phrase attachteeAs shown in fig. 4, a

The Alpino Dependency Treebank 7

top top

T

1 imp it imp

i . /\Vproj i ¢ roj
ziet np vproj 7iet /np\ vproj
q /\ det hil pp/\vproj
et il v | |
| het meisje p/\np \lz
het meisje PP |
/\ in d((\n
p np
het park
in det n
het park

Figure 4: PP attachment ambiguity in Alpino

noun phrase and a prepositional phrase can form a condtiunetifferent levels.
The two phrases can form either a noun phrase or a verbalpimjevith an empty
verb (which is used in the grammar to account for verb secofta first structure
corresponds to a dependency structure with a noun phrasmahtprepositional
modifier, the second corresponds to a dependency tree irhwinécprepositional
phrase is a modifier on the sentence level. Marking the stréigmeisje in

het park as a constituent without further specification does notrdisguate
between the two readings: in both readings the string is attaant. One has to
specify that the string should be a noun phrase, not a verbggtion. This spec-
ification of the constituent type requires even more knogtedf the grammar. If
one specifies a constituent type that cannot be formed atetheted string posi-
tion, the parser treats the specification as an illegal dtaraskips it and generates
partial parses only.

4.1.3 Addition of lexical infor mation

Alpino is set up as a broad coverage parser. The goal is td bmilanalyzer of
unrestricted text. Therefore a large lexicon has been etdeahd extensive un-
known word heuristics have been added to the grammar. iBt8ljnevitable that
the parser will come across unknown words that it cannot leayet. Verbs are
used with extra or missing arguments, Dutch sentences argl@di with foreign
words, spelling mistakes make common words unrecognizéblaost cases, the
parser will either skip such a word or assign an inappropriagtegory to it. The
only way to make the system correctly use the word, is to addiaal entry for it
in the lexicon.

Adding new words to the lexicon costs time: one has to wriésdthtry, save the

8 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

top:hd = vwil
top:su = nKim
top:vc:hd = wvweet
top:vc:su = rKim
top:vc:ve:cmp = compf
top:vc:ve:body:hd = kom
top:vc:vc:body:su = nne

Figure 5: Set of dependency paths for the sentéioewil weten of Anne komt

new lexicon and reload it. It would be far more efficient to adlchew words one
comes across during an annotation session at once, av@pingus reloadings.
Furthermore, not all unknown words the parser finds shouldduked to the lexi-
con. One would want to use misspelled words and verbs withe@ariect number
of arguments only once to build a parse with.

Alpino has temporary, on line addition of lexical informatibuilt in for this
purpose. Unknown words can temporarily be added to the dexigith the com-
mandadd tag oradd _lex . Like the words in the lexicon, this new entry should
be assigned a feature structuagld tag allows the user to specify the lexical type
as the second argument. However types may change and dispfeciaerbs it is
sometimes hard to decide which of the subcategorizationdsashould be used.
For that reason the commaadd _lex allows us to assign to unknown words the
feature structure of a similar word, that could have beeid asethat position. The
commanddd _lex stoel tafel for instance assigns the feature structure of
fig. 1 to the wordstoel The commanadd _lex zoen slaap assignzoenall
feature structures allaap including imperative and 1st person singular present for
all sub-categorization frames efapen The lexical information is automatically
deleted when the annotation session is finished.

4.2 Selection

Although the number of parses that is generated is strorglyged through the
use of different tools, the parser usually still producestao$ parses. Selection of
the best parse (i.e. the parse that needs the least editimg}liiis set of parses is
facilitated by the parse selection tool. This design of thid is based on the SRI
Treebanker (Carter 1997).

The parse selection takes as input a set of dependency pathadh parse.
A dependency path specifies the grammatical relation of alwoa constituent
(e.g. head (hd) or determiner (det)) and the way the comstitis embedded in the
sentence. The representation of a parse as a set of depgmadeing is a notational
variant of the dependency tree. The set of dependencysripl corresponds to
the dependency tree in fig. 2 is in fig. 5.

From these sets of dependency paths the selection tool ¢cempuusually

The Alpino Dependency Treebank 9

s:hd = vzag s:hd = vzag
*s:su = npjan *s:su = nphet meisje
*s:0bj1 = nphetmeisje s:isu:det = dehet
s:objl:det = dehet sisuzhd = mmeisje
s:objl:hd = rmmeisje *s:0bj1 = npjan

Figure 6: Two readings of the senterillaa zag het meisjepresented as sets of dependency
paths. An "* indicates a maximal discriminant

much smaller) set of maximal discriminants. This set of matidiscriminants
consists of the triples with the shortest dependency patitencode a certain dif-
ference between parses. In example 6 the triples:det = det hetands:su =
np het meisjalways co-occur, but the latter has a shorter dependentyagvat
is therefore a maximal discriminant. Other types of disénamts are lexical and
constituent discriminants. Lexical discriminants regrgsambiguities that result
form lexical analysis, e.g. a word with an uppercase firsetatan be interpreted
as either a proper name or the same word without the uppefficssietter. Con-
stituent discriminants define groups of words as consttgiaithout specifying
the type of the constituent.

The maximal discriminants are presented to the annotatw,aan mark them
as either good (parse must include it) or bad (parse may cohtde it). The parse
selection tool then automatically further narrows downghbssibilities using four
simple rules of inference. This allows users to focus onrdigoants about which
they have clear intuitions. Their decisions about theseridisnants combined
with the rules of inference can then be used to make decisibost the less obvi-
ous discriminants.

1. If adiscriminant is bad, any parse which includes it is bad

2. If adiscriminant is good, any parse which doesn'’t inclitde bad
3. If adiscriminantis only included in bad parses, it musbhd
4

. If a discriminant is included in all the undecided parg#sust be good

The discriminants are presented to the annotator in a specier to make the
selection process more efficient. The highest ranked digcants are always the
lexical discriminants. Decisions on lexical discrimingare very easy to make
and greatly reduce the set of possibilities.

After this the discriminants are ranked according to theiwpr: the sum of the
number of parses that will be excluded after the discrimimas been markeohd
and the number of parses that will be excluded after it has besekedyood This
way the ambiguities with the greatest impact on the numbpadses are resolved
first.

10 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

The parse that is selected is stored in the treebank. If teiegagse is not fully
correct yet, it can be edited in the Thistle (Calder 200@) &ditor and then stored
again. A second annotator checks the structure, edits ihafjaecessary and
stores it afterwards.

5 Querying the treebank

The results of the annotation process are storedMn. XML is widely in use
for storing and distributing language resources, and agafigtandards and soft-
ware tools are available which support creation, modifisgtand search ofmL
documents. Both the Alpino parser and the Thiste editorutidppendency trees
encoded irKML.

As the treebank grows in size, it becomes increasingly éstérg to explore it
interactively. Queries to the treebank may be motivatedrmyulistic interest (i.e.
which verbs take inherently reflexive objects?) but can als@ tool for quality
control (i.e. find allPPs where the head is not a preposition).

The XPath standafdmplements a powerful query language fowL docu-
ments, which can be used to formulate queries over the tréeb&ath supports
conjunction, disjunction, negation, and comparison of atiowalues, and seems
to have sufficient expressive power to support a range ollsiirally relevant
gueries. Various tools support XPath and can be used to mgiea query-tool.
Currently, we are using a C-based tool implemented on topnefLibXML li-
brary®

The xMmL encoding of dependency trees used by Thistle (and, for ctibipa
ity, also by the parser) is not very compact, and containsuatayers of structure
that are not linguistically relevant. Searching such doents for linguistically
interesting patterns is difficult, as queries tend to gebese and require inti-
mate knowledge of themL structure, which is mostly linguistically irrelevant.
We therefore transform the originaML documents into a differetmL format,
which is much more compact (the average filesize reduces3@fth) and which
provides maximal support for linguistic queries.

As xML documents are basically trees, consisting of elementshadoatain
other elements, dependency trees can simply be represasitad. documents,
where every node in the tree is represented by an elenwdd . Properties are
represented by attributes. Terminal nodes (leaves) aresadhich contain no
daughter elements. ThevL representation of (the top of) the dependency tree
given in figure 2 is given in figure 7.

The transformation of dependency trees into the formatrgivefigure 7 is
not only used to eliminate linguistically irrelevant sttuie, but also to make ex-
plicit information which was only implicitly stored in theriginal XML encoding.
The indices on root forms that were used to indicate theingtposition are re-
moved and the corresponding information is added in théatasstart and
end. Apart from the root form, the inflected form of the word as jiipaars in

“www.w3.org/TR/xpath
Swww.xmisoft.org/

The Alpino Dependency Treebank 11

<node rel="top" cat="smain" start="0" end="6" hd="2">
<node rel="su" pos="noun" cat="np" index="1"
start="0" end="1" hd="1" root="Kim" word="Kim"/>
<node rel="hd" pos="verb"
start="1" end="2" hd="2" root="wil" word="wil"/>
<node rel="vc" cat="inf" start="2" end="6" hd="3">
</node>
</node>

Figure 7:xmML encoding of dependency trees.

the annotated sentence is also added. Words are annotdte@axi of speech
(pos information, whereas phrases are annotated with categaty)(informa-
tion. A drawback of this distinction is that it becomes imgibte to find allnps
with a single (non-disjunctive) query, as phrasak arecat="np" and lexical
NPs arepos="noun" . To overcome this problem, category information is added
to non-projecting (i.e. non-head) leaves in the tree as Wwéalally, the attributénd
encodes the string position of the lexical head of every grdhe latter informa-
tion is useful for queries involving discontinuous consitts. In those cases, the
start and end positions may not be very informative, andrtimmore interesting

to be able to locate the position of the lexical head.

We now present a number of examples which illustrate how XPanh be used
to formulate various types of linguistic queries. Exampte®lving the use of the
hd attribute can be found in Bouma and Kloosterman (2002).

Objects of prepositions are usually of categary However, other categories
are not completely excluded. The query in (2) finds the objedthin Prs.

(2) /Inode[@cat="pp"]/node[@rel="0bj1"]

The double slash means we are looking for a matching elenmgmiteere in the
document (i.e. it is an ancestor of the top element of the ah@ru), whereas the
single slash means that the element following it must be anddiate daughter
of the element preceding it. Th@sign selects attributes. Thus, we are looking
for nodes with dependency relatiobjl , immediately dominated by a node with
categonpp. Inthe current state of the dependency treebank, 98% (‘®89P62)
of the matching nodes are reguiers. The remainder is formed by relative clauses
(voor wie het werk goed kende, for who knew the work)wels (ot aan de
waterkant, till on the waterfront adverbial pronouns (see below), and phrasal
complementszonder dat het een cent kost, without that it a penny fosts
TheccN annotation guidelines distinguish between three posdigbendency
relations forpps: complement, modifier, or ’locative or directional complent’
(amore or less obligatory dependent containing a semdigtioganingful prepo-
sition which is not fixed). Assigning the correct dependeratgtion is difficult,

12 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

both for the computational parser and for human annotaidrs.following query
finds the head obrs introducing locative dependents:

(3) /inode[@rel="hd" and ../@cat="pp" and ../@rel="1d"]

Here, the double dots allow us to refer to attributes of thmidatingxmML element.
Thus, we are looking for a node with dependency relatidnwvhich isdominated
by appwith ald dependency relation. Here, we exploit the fact that the eroth
node in the dependency tree corresponds with the immeydaehinating element
in thexML encoding as well.

Comparing the list of matching prepositions with a generadjfiency list re-
veals that about 6% of theps are locative dependents. The prepositiaar (to,
toward9 typically introduces locative dependents (50% (74 out®if)lof its us-
age), whereas the most frequent preposition (iag, oj does introduce a locative
in only 1% (15 out of 1496) of the cases.

In PPs containing an impersonal pronoun like (there), the pronoun always
precedes the preposition. The two are usually written asglesiword graan,
there-or). A further peculiarity is that pronoun and preposition demt be adja-
cent (n Delft wordter nogover vergaderd In Delft, one still talks abou)itThe
following query finds such discontinuous phrases:

(4) /Inode[@cat="pp" and
Inode[@rel="obj1"}/@end < ./node[@rel="hd")/@start]

Here, the ¥’-operator compares the value of the end position of thectlgéthe
pPwith the start position of the head of tiee. If the first is strictly smaller than
the second, theris discontinuous. The corpus contains 133 discontinurass
containing an impersonal pronoun vs. almost 322 continpomisoun-preposition
combinations, realized as a single word, and 17 cases whese tare realized
as two words. This shows that in almost 25% of the cases, thpopition +
impersonal pronoun construction is discontinuous.

6 Evaluation and training

The treebank is primarily constructed to evaluate the perémce of the parser.
We do this by comparing the dependency structures that treepgenerates to
the dependency structures that are stored in the treebamkhiB purpose we do
not use the representation of dependency structures a&s traethe alternative
notation as sets of dependency paths that we already saw préious section.
Comparing these sets we can count the number of relatiohstbadentical in
both the best parse that the system generated and the sturedi®. From these
counts precision, recall and F-scoBex(precision * recall /precision + recall)
can be calculated. We also use the meaaaoceiracy which is defined as follows:

Dby
accuracyl maz(Dr DY)

The Alpino Dependency Treebank 13

D; is the set of dependency relations of the best parse thay#tens generated.
D, is the set of dependency relations of the parse that is siortbe treebank. [
is the number of incorrect or missing relations ig.D

The annotated corpus is also used to train the stochastialmofithe Alpino
grammar that is used to rank the various parses for an exasaptence according
to their probability. This ranking is done in two steps: finse construct a model
of what a "best parse” is. For this step, the annotated cagpascrucial impor-
tance. Second, we evaluate parses of previously unseesnsestby this model
and select as most probable parse the parse that best suitsrttraints for "best
parse”.

The model for the probability of parses is based on the pritibab of features.
These features should not be confused with the featuresiirpasfeature struc-
ture. The features in this stochastic parsing model areerhbg the grammarian
and in principle they can be any characteristic of the péraé ¢an be counted.
Features that we use at present are grammar rules, depgnédatons and un-
known word heuristics. We calculate the frequencies of dagures in our corpus
and assign weights to them proportional to their probahilithis is done in the
first step, the training step. In the second step, evaluati@previously unseen
parse, we count for each feature the number of times thatiirsdn the parse and
multiply that by its weight. The sum of all these counts is eamee for the prob-
ability of this parse. We will now describe in more detail tl@ximum Entropy
model that we use for stochastic parsing (Johnson et al.)1888 focusing on
the training step and then turning to parse evaluation.

The training step of the maximum entropy model consists @fssignment of
weights to features. These weights are based on the praleshilf those features.
To calculate these probabilities, we need a stochastisitigiset. We generate
such a training set by first parsing each sentence in the sarping the Alpino
parser. The dependency structures of the parses that aeeadesh by the parser
(also the incorrect ones) are compared to the correct oneeircarpus and eval-
uated following the above described evaluation method. fjdrees are then as-
signed a frequency proportional to the evaluation score.

Given the set of features (characteristics of parses) amdttichastic training
set, we can calculate which features are likely to be inaide parse and which
features are not. This tendency can be represented by amgigeights to the
features. A large positive weight denotes a preferencénfontodel to use a certain
feature, whereas a negative weight denotes a dispreferafam@®us algorithms
exist that guarantee to find the global optimal settingsHesé weights so that the
probability distribution in the training set is best reprated (Malouf 2002).

Once the weights for the features are set, we can use thera gettond step:
parse evaluation. In this step we calculate the probahilfitg parse for a new,
previously unseen, sentence. In maximum entropy modefiregprobability of a
parsex given sentencgis defined as

p(y‘x> = Z(lm) EXFXZZ')‘ifi(x: y))

14 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

The number of times featuiawith weightsA; occurs in a parse is denoted Iy
For each parse the normalization factoxyis the same. Since we only want to
calculate which parse is the most likely one and we do not teekidow the precise
probability of each parse, we only have to maximize

i Aifi(y)

The accuracy of this model depends primarily on two factting: set of fea-
tures that is used and the size of the training set (see ftarine Mullen 2002).
Therefore it is important to expand the Alpino Dependenaebank in order to
improve the accuracy.

7 Conclusions

A treebank is very important for both evaluation and tragnof a grammar. For
the Alpino parser, no suitable treebank existed. For tregara we have started to
develop the Alpino Dependency Treebank by annotating agéahte Eindhoven
corpus with dependency structures. As the treebank groveizi it becomes
more and more attractive to use it for linguistic exploratas well, and we have
developed axmL format which supports a range of linguistic queries.

To facilitate the time consuming annotation process, weeltaveloped sev-
eral tools: interactive lexical analysis and constitueatrking reduce the set of
parses that is generated by the Alpino parser, the tool fditiad of lexical in-
formation makes parsing of unknown words more efficient dredaarse selection
tool facilitates the selection of the best parse from a sqtan$es. In the future,
constituent marking could be made more user friendly. Wdcdtalso look into
ways of further reducing the set of maximal discriminantt ik generated by the
parse selection tool.

The treebank currently contains over 6,000 sentefcbuch effort will be
put in extending the treebank to at least the complete cdbspaper part of the
Eindhoven corpus, which contains 7,150 sentences.

References

Baayen, R. H., Piepenbrock, R. and van Rijn, H.(1993)e CELEX Lexical
Database (CD-ROM)Linguistic Data Consortium, University of Pennsyl-
vania, Philadelphia, PA.

Bouma, G. and Kloosterman, G.(2002), Querying Dependemnegbanks in
XML, Proceedings of the Third international conference on LaagguRe-
sources and Evaluation (LREQ}ran Canaria, Spain, pp. 1686—1691.

Calder, J.(2000), Thistle and interarborBroceedings of the 18th Interna-
tional Conference on Computational Linguistics (COLINGaarbriicken,
pp. 992-996.

6Available onhttp://www.let.rug.nl/"'vannoord/trees

The Alpino Dependency Treebank 15

Carroll, J., Briscoe, T. and Sanfilippo, A.(1998), Parsealeation: A survey and
a new proposaRroceedings of the first International Conference on Lan-
guage Resources and Evaluation (LREG)anada, Spain, pp. 447—-454.

Carter, D.(1997), The treebanker: A tool for superviseéhtray of parsed cor-
pora, Proceedings of the ACL Workshop on Computational Envirorisne
For Grammar Development And Linguistic Engineeriftadrid.

Groot, M.(2000), Lexiconopbouw: microstructuur. Intelrpeoject report Corpus
Gesproken Nederlands, see lands.let.kun.nl/cgn.

Johnson, M., Geman, S., Canon, S., Chi, Z. and Riezler, ${1&stimators for
stochastic "unification-based” grammaPspceedings of the 37th Meeting
of the ACL College Park, Maryland, pp. 535-541.

Malouf, R.(2002), A comparison of algorithms for maximumtrepy parame-
ter estimationProceedings of the Sixth Conference on Natural Language
Learning (CoNLL-2002)Taipei.

Moortgat, M., Schuurman, I. and van der Wouden, T.(2001)NC&yntactis-
che annotatie. Internal project report Corpus GesproketleNands, see
lands.let.kun.nl/cgn.

Mullen, T.(2002) An investigation into Compositional Features and Featuesd4
ing for Maximum Entropy-Based Parse SelectiBhD thesis, Rijksuniver-
siteit Groningen.

Oostdijk, N.(2000), The Spoken Dutch Corpus: Overview amst fvaluation,
Proceedings of the Second International Conference on Liage Re-
sources and Evaluation (LREQ)p. 887-894.

Pollard, C. and Sag, |.(1994)ead-driven Phrase Structure Gramma&amiversity
of Chigago / CSLI.

Sag, 1.(1997), English relative clause constructiodsurmal of Linguistics
33(2), 431-484.

Skut, W., Krenn, B. and Uszkoreit, H.(1997), An annotatiohesne for free word
order languagesroceedings of the Fifth Conference on Applied Natural
Language ProcessingVashington,DC.

Uit den Boogaard, P.(1975)oordfrequenties in geschreven en gesproken Neder-
lands Oosterhoek, Scheltema & Holkema, Utrecht. Werkgroep leeg
tieonderzoek van het Nederlands.

van Noord, G. and Bouma, G.(1997), Hdrug, A flexible and edilele de-
velopment environment for natural language processimgceedings of
the EACL/ACL workshop on Environments for Grammar Devetopm
Madrid.

van Noord, G., Bouma, G., Koeling, R. and Nederhof, M.-B@9Robust gram-
matical analysis for spoken dialogue systedumairnal of Natural Language
Engineerings(1), 45-93.

