
ar
X

iv
:c

on
d-

m
at

/0
10

41
32

v1
  [

co
nd

-m
at

.s
of

t]
  8

 A
pr

 2
00

1

Two–point microrheology and the Electrostatic Analogy

Alex J. Levine and T.C. Lubensky

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104

(Dated: February 1, 2008)

The recent experiments of Crocker et al. suggest that microrheological measurements obtained
from the correlated fluctuations of widely-separated probe particles determine the rheological
properties of soft, complex materials more accurately than do the more traditional particle
autocorrelations. This presents an interesting problem in viscoelastic dynamics. We develop
an important, simplifing analogy between the present viscoelastic problem and classical elec-
trostatics. Using this analogy and direct calculation we analyze both the one and two particle
correlations in a viscoelastic medium in order to explain this observation.

PACS numbers: PACS numbers: 83.50.Fc 83.10.Nn 83.10.Lk

I. INTRODUCTION

The utility of microrheology in probing the structure of
soft materials has been recognized for some time[1]. This
experimental technique uses the position correlations of
thermally fluctuating, rigid probe particles embedded in
a soft medium to measure the response of those particles
to an external force[2]. From that response function one
can determine the rheological properties of the material.
In addition to this passive form of measurement, the re-
sponse function can also be obtained directly by applying
an external force to the probe beads. Such active versions
of the experiment have been performed using magnetic
particles[3]. It may be pointed out that sedimentation
experiments used to measure the viscosity of fluids can
be thought of as the zero-frequency limit of the active
form of microrheology experiments.

The fundamental assumption underlying the data re-
duction in these measurements is the relation between
the response function of a bead (rigid, spherical particle)
to an externally applied force and the rheological proper-
ties of the medium in which that bead is embedded. The
form of the single sphere (of radius a) response func-
tion, α(1,1)(ω), that is commonly used is the generalized
Stokes–Einstein relation (GSER), which has the form:

α
(1,1)
ij =

1

6πaG(ω)
δij , (1)

where G(ω) is the complex shear modulus of the medium.
The superscript points out that the we are considering
the position response of a sphere to a force applied to
that same sphere. The subscripted indices are the usual
vectorial indices.

This response function owes it name to the fact that,
for a Newtonian, viscous fluid where G(ω) = −iωη, α(1,1)

reduces to the Stokes mobility of a sphere of radius a.
A microrheological experiment in such a one–component
Newtonian medium consists of measuring the position

auto-correlations of a sphere diffusing in the Newtonian
fluid. These correlations are controlled by the sphere’s
diffusivity, which is obtained from the Stokes mobility
via the Einstein relation. Thus, the measured position
autocorrelations of the sphere allow one to calculate, us-
ing the response function, Eq. (1), the fluid’s viscosity.
This viscosity encodes all the rheology of the Newtonian
fluid.

We have already examined the validity of the general-
ization of the GSER to a viscoelastic medium in previous
articles [5, 6] and have found that in many experimental
systems there is a significant frequency range over which
Eq. (1) is a good approximation to the single-sphere re-
sponse function. At frequencies where the single particle
response function deviates significantly from Eq. (1), the
breakdown of the GSER can be attributed to one of two
sources: i) inertial effects at high frequencies, or ii) the ef-
fective decoupling of network and fluid dynamics at very
low frequencies. We have found that inertial effects typi-
cally become significant at such high frequencies that we
may safely ignore them here. Moreover, in this article, we
will incorporate the appearance of non-shear modes by
giving our course-grained model of a viscoelastic medium
a complex, frequency–dependent bulk modulus in addi-
tion to its frequency-dependent, complex shear modulus.

Nevertheless, there still remain fundamental questions
regarding the interpretation of microrheological data. In
this article we address one such question: Given that
the presence of the probe sphere can locally perturb the
micro-structural and, therefore, the rheological proper-
ties of the medium, how can one extract information
about the bulk, unperturbed medium? In other words
we imagine that each probe sphere is surrounded by a
pocket of perturbed material with rheological properties
diferent from those of the bulk. For microrheology to be a
useful experimental probe, it must be possible to extract
the bulk, unperturbed viscoelastic moduli of the medium
from the measured correlation functions. However, given
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that the probe sphere is coupled to the bulk medium by a
pocket of material whose rheological properties are modi-
fied by the introduction of that particle, one must assume
that the correlations actually measure some convolution
of the perturbed and bulk material properties.

The assumption of the presence of such pockets is quite
reasonable in many complex liquids. The pocket, for ex-
ample, may be a result of the equilibrium distribution
of polymers near an impenetrable bead in solution; or
it may be the result of quenched inhomogenities pro-
duced by the action of the probe during the formation of
the medium. For example, in microrheological studies of
polymerized F-actin, monomeric G-actin is polymerized
in a solution already containing the probe particles[10].
The proximity of the probe particle may locally affect
the polymerization kinetics and lead to a positionally de-
pendent F-actin density near the probe spheres that is
independent of equilibrium effects such as the steric in-
teraction between the actin rods and the probes. We do
not consider this situation is detail, but later in this arti-
cle we do explore the consequences of polymer depletion
near the surface of the bead in equilibrium. In this exam-
ple the steric interaction of the polymers with the probe
particle produces regions surrounding the beads with a
softer shear modulus than the bulk. Recently Crocker et

al.[7] have proposed a modification of the standard mi-
crorheological technique that can remove the effect of the
perturbed pockets by studying the inter–particle position
correlations of rather distant probe spheres. This claim
can be reexpressed in terms of the two–particle response

function or compliance tensor, α
(n,m)
ij , defined by

r
(n)
i (ω) = α

(n,m)
ij (r(m) − r

(n), ω)F
(m)
j (ω), (2)

where r
(n)(ω) is the displacement of the nth sphere and

F
(m) is the external force applied to the mth sphere. The

claim is that when the spheres (of radius a) are separated

by a distance r, r ≫ a, α
(n,m)
ij (r, ω) for n 6= m depends

upon only the bulk properties of the material.
In this paper we demonstrate the validity of the

Crocker hypothesis by solving the elastic problem of two
spheres embedded in an inhomogeneous elastic medium.
We calculate the mutual response function of these beads,

α
(1,2)
ij and show, in the limit mentioned above, that this

response function measures the bulk rheological proper-
ties of the medium independently of the rheological prop-
erties of the regions immediately surrounding the two
beads.

The remainder of the paper is organized as follows. In
section II we identify an analogy between the viscoelas-
tic problem that we posed and the physics of embed-
ded conductors in an inhomogeneous dielectric. We use
this analogy in combination with well-known results for
the mutual capacitance of two spheres to elucidate the
more complex viscoelastic problem. This heuristic anal-
ogy guides our approach to the full viscoelastic problem
which is studied in section III. We approach the full prob-

lem in stages by first considering a rheologically homoge-
neous material in section III A and then by studying, in
section III B a simple model of a rheologically inhomoge-
neous material consisting of the bulk medium and “pock-
ets” of rheologically perturbed material surrounding each
probe sphere as depicted in figure 1. We show, in the
limit that the radii of these anomalous pockets are small
compared to the separation of the probe spheres, that the
inter–particle response function can be obtained with a
minimum of computational effort through the use of a
global property of the stress tensor. Most importantly,
the leading term in the inter–particle response function is
determined solely by the properties of the bulk medium.
Following up this result we turn to the more computa-
tionally complex problem of finding the single particle
response function in this composite medium. This is ac-
complished in section III C. This result will be shown
to depend on the rheological properties of both the bulk
material and the perturbed material in the pockets. It is
interesting to note that the combination of the results of
sections III B and III C suggest that one can experimen-
tally determine the material properties of both the bulk
and perturbed media through a combination of single–
particle and two–particle microrheology experiments.

Motivated by this realization we study in section III D
a more physical model of the probe particle in a soft,
complex medium. We now assume that the rheological
properties of the medium vary continuously with the dis-
tance from the probe sphere. Our previous algebraic so-
lution to the two material problem (bulk and perturbed
pocket material) now has to be generalized to a integral
technique. As an example, we apply this technique to
a polymer solution with concentration slightly above c⋆

in order to study the effect of polymer depletion near
the probe sphere. This problem is revelent to recent ex-
periments on DNA solutions[12]. Finally, we summarize

λ µ

∆r2
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µλ
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FIG. 1: Diagram of the simplest inhomogeneous elastic
medium consistent with the assumed rotational symme-
try of the problem. Each rigid sphere of radius a is sur-
rounded by a spherical pocket with radius b, b > a of
material with elastic constants: λ̄, µ̄. The bulk material
has elastic constants: λ, µ. A force F is applied to sphere
1 (on the left). We seek the resulting displacement of
sphere 2 (on the right), ∆r2. In the following we will
assume that the separation of the two spheres, r is large
compared to b; the picture is not drawn to scale.
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TABLE I: Correspondence between the electrostatics and
viscoelastics

Electrostatics Viscoelastics

potential φ(x) displacement ui(x)
charge density ρ(x) force density fi(x)
dielectric tensor ǫij(x, ω) elastic tensor Kijkl(x, ω)

these results and conclude in section IV.

II. THE ELECTROSTATIC ANALOGY

To keep our treatment as simple as possible, we will
assume that our viscoelastic medium is characterized by
a local relation between the stress σij and the strain uij

described by a local, frequency–dependent, but possibly
spatially varying elastic constant tensor Kijkl(x, ω). The
analysis we present here will have to be modified if the
local stress–strain relation does not hold as is argued to
be the case in systems of experimentaly interest such as
actin networks[11]. Under our assumptions, the equation
of force balance in a linear viscoelastic medium can be
written as

−∂j [(Kijkl(x, ω)∂kul] = fi(x, ω), (3)

where ul(x, ω) is the local displacement variable and
fi(x, ω) is a local force density at x. We compare the
above expression to the Gauss’s law in an inhomogeneous
dielectric medium:

−∂j [ǫjk(x, ω)∂kφ(x, ω)] = 4πρ(x, ω), (4)

where ǫjk(x, ω) is the local frequency–dependent dielec-
tric constant tensor, ρ(x, ω) is the frequency–dependent
charge density and φ(x, ω) is the electric potential at x.
In Eq. (4) we have assumed, as we have done with the
elastic constant tensor, that the dielectric tensor is lo-
cal. We consider the above electromagnetic problem at
low enough frequencies so that that we may ignore the
transverse electric fields.

Comparing Eqs. (3) and (4), we note that the follow-
ing correspondence table (see table I) may be drawn: The
charge density in Eq. (4) is the scalar analog of the vector
source, fi(x, ω) in Eq. (3). Similarly the electric poten-
tial, φ(x, ω) in Eq. (4) is analogous to vector displacement
field, u(x, ω) in Eq. (3), and the position–dependent di-
electric tensor, ǫij(x, ω), has as its analog in Eq. (3) the
elastic constant tensor, Kijkl(x, ω).

Finally, we note that the rigidity of objects embedded
in the inhomogeneous viscoelastic medium requires that
the displacement field, u, be constant on their surfaces.
Therefore, in order to maintain the analogy between the
viscoelastic problem and the electrostatic problem, we
study collections of embedded conducting objects so that
the electric potential is constant on their surfaces.

Recall that the goal of our calculation is to determine
the compliance tensor introduced in Eq. (2). This re-
sponse function relates a set of forces applied to rigid
objects embedded in an (in general inhomogeneous) di-
electric to the displacements of those objects. In order
to discuss this calculation in terms of the simpler elec-
trostatic problem, we need to consider the electrostatic
quantity that is analogous to the compliance tensor. This
quantity is the inverse capacitance tensor of a collection
of conducting objects embedded in an inhomogeneous
dielectric. Since the electrostatic problem is a simpler,
scalar version of the viscoelastic problem, we begin an
with analysis of the that system. Afterward, insights
drawn from the electrostatic problem should lead to com-
plimentary results in the elastic problem, which remains
the actual problem of interest.

We study a particularly simple realization of the so far
arbitrary inhomogeneous dielectric medium. The simple
model is meant to begin the study of the “pocket model”
discussed in the introduction (See figure 1.) from within
the electrostatic analogy. We consider that the inhomo-
geneous dielectric is made up of two materials. The bulk
material has dielectric constant ǫij(x) = δijǫ. However
in concentric pockets around the conducting spheres (of
radius a) there are spherical shells of material (a < r < b)
with a different dielectric constant: ǫij(x) = δij ǭ. Here-
after we assume that the dielectric tensor is diagonal and
suppress its tensorial indices.

To support the notion that the off-diagonal elements

of the compliance tensor, α
(n,m)
ij , n 6= m, in the elas-

tic problem depend only on the bulk values of the elas-
tic constants and not on their values in the anomalous
shells around the rigid spheres, we will calculate the off–
diagonal component of the inverse capacitance tensor,
C−1

nm, n 6= m, for this system of two spheres and check
that it does not depend on the values of the dielectric
constant (ǭ) near either of the conducting spheres.

To compute the mutual capacitance of two conducting
spheres one generally employs the method of images to
iteratively fix the boundary conditions (φ = const) on
each sphere in turn. This procedure leads to a conver-
gent series for the capacitance tensor of two conducting
spheres[9]. We apply a similar technique. To obtain just
the component of the two by two inverse capacitance ma-
trix that we seek we will study the problem where one
sphere (say n = 1) has a unit charge on it and the other
sphere (say m = 2) is charge neutral. The matrix ele-
ment in question (C−1

12 ) is then simply the potential of
sphere two. Furthermore, since we intend to show that
this component of the inverse capacitance tensor is inde-
pendent of the value of the inner dielectric constant (ǭ)
only in the limit that the sphere–sphere separation (L) is
large compared to the both the sphere and cavity radii,
we may truncate the series generated by the method of
reflections at the first term. The higher–order reflections
will contribute corrections to our result that are smaller
by factors of a/L or b/L. We will return to the issue
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of higher order corrections in b/L due to subdominant
terms in the elastic displacement field and higher order
reflections.

At the lowest order reflection we may ignore sphere two
while we discuss the free and polarization charge distri-
bution on sphere one and its surrounding cavity. That
distribution is equivalent to a unit charge at the center of
sphere one and two shells of bound, polarization charge.
One shell is at the interface of the sphere and the inner
dielectric (r = a) and the second shell is at the interface
of the inner and outer dielectric (r = b). These two po-
larization charge densities, σinner and σouter respectively,
are both spherically symmetric, and due to the neutrality
of the dielectric layer, a < r < b, we have the relation

∮

dΩa2σinner +

∮

dΩb2σouter = 0. (5)

Thus, at distances r > b, including the position of sphere
two and its surrounding pocket, the electric field due to
this charge distribution is simply that of a unit charge at
the center of the sphere one.

We now consider the potential of sphere two in this
electric field. Because the spheres are conductors, the
potential of sphere two is the same as the potential at its
center. That potential is due to the linear superposition
of the potential of a unit charge a distance L away (at the
center of sphere one) and that of two spherical shells of
polarization charge centered on sphere two. One shell is
at the interface between sphere two and the medium with
dielectric constant ǭ while second shell is at the interface
between that dielectric material and the bulk dielectric
(with dielectric constant ǫ). These surface charge distri-
butions, unlike those of sphere one, are not spherically
symmetric. However, the surface integrals of the two po-
larization charge densities over the two surfaces vanish
independently of each other. Thus the net effect on the
potential at the center of sphere two due to each shell
of polarization charge density is zero. The potential at
the center of sphere two is then solely due to the distant
charge on sphere one; we find that the potential of sphere
two is simply 1/(4πǫL). To lowest order in reflections we
have shown that

C−1
12 =

1

4πǫL
+ · · · (6)

where the additional terms (not shown) come from higher
order reflections. These higher order reflections will
generically depend on both a, b and ǭ. A more detailed
discussion of this derivation in addition to a discussion
of the form of the higher order reflections is given in ap-
pendix A.

It is worth while at this stage to point out that to the
same level of approximation (lowest order reflections) the
potential on sphere one due to a unit charge on sphere
one does, in fact, depend on the properties of the inner,
dielectric layer. The potential on sphere one given by the

diagonal element of the inverse capacitance matrix is

C−1
11 =

4πabǭ

b + a
(

ǭ
ǫ − 1

) + · · · . (7)

Once again, the additional terms not shown come from
higher order reflections.

Based on this simple analysis it seems reasonable to
explore the elastic problem in more detail to determine if
this basic result holds in the actual problem of rheological
interest.

III. THE VISCOELASTIC PROBLEM

A The homogeneous medium

We begin the study of the viscoelastic problem by con-
sidering the displacement field produced by the displace-
ment of a rigid spherical particle embedded in a homoge-
neous, elastic medium. A sphere of radius a is displaced
by ǫẑ. We now calculate the resulting displacement field.

Local force balance in the medium demands that the
displacement field obey the partial differential equation

0 = µ∇2
u + (µ + λ)∇∇ · u (8)

where µ and λ are the two Lamè constants characterizing
the isotropic, elastic medium. Eq. (8) is supplemented by
boundary conditions at the surface of the sphere and at
infinity:

u (|x| = a) = ǫẑ (9)

lim
|x|−→∞

u (x) = 0. (10)

Our solution of this problem is aided by two basic points:
(i) the solution must be azimuthally symmetric, and (ii)
the solution must be linear in ǫẑ. With their aid, we
immediately write the most general possible form of the
displacement field

u (x) =
∑

n

An
r̂ cos θ

rn
+

∑

m

Bm
ẑ

rm
. (11)

We have chosen these two sets of terms since they con-
stitute the only solution of Eq. (8) that are azimuthally
symmetric. As we will see, An and Bn are proportional
to ǫ so that u satisfies the requirement of linearity in ǫ.
We now put our ansatz, Eq. (11), into the partial differ-
ential equation, Eq. (8). Writing the radial (r̂) and polar

(θ̂) components of that expression separately we find:

M(n, ζ) ·

(

An

Bn

)

= 0 (12)

where the 2 × 2 matrix M(n, ζ). depends on the Lamé
constants only through the dimensionless ratio, ζ =
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(µ + λ) /µ. This matrix is given by:

(

[(1 + ζ)(n − 2)(n + 1) − 2] [(1 + ζ)n(n + 1) − 2n]
(1 + ζ)(n − 2) − n (1 + ζ)n − n2

)

.

(13)

A necessary and sufficient condition for Eq. (12) to
be satisfied for nontrivial values of An, Bn is that
detM(n, ζ) = 0. There are four such solutions: n =
−2, 0, 1, 3. By finding the eigenvectors associated with
these eigenvalues we may write the most general solution
of Eq. (8) consistent with the two conditions discussed
above,

u(x) =
aC1

r
[γ1r̂ cos θ + ẑ] +

a3C2

r3
[3r̂ cos θ − ẑ]

+C3ẑ +
C4r

2

a2
[γ2r̂ cos θ − ẑ] (14)

where the constants Cm are determined from boundary
conditions and the two dimensionless constants

γ1 =
1

3 − 4σ
(15)

γ2 = 2

(

2 − 3σ

3 − 2σ

)

(16)

are functions of the Poisson ratio:

σ =
1

2

λ

µ + λ
. (17)

Since the Poisson ratio can vary between −1 and 1/2[4],
1/7 < γ1 < 1 and 1/2 < γ2 < 2. In the incompressible
limit (λ −→ ∞) σ −→ 1/2, γ1 −→ 1, and γ2 −→ 1/2.
Since we are considering complex, frequency–dependent
bulk and shear moduli, σ = σ(ω) depends on frequency
and is in general complex.

Examining the solution we see that the first term on
the RHS of Eq. (14) decays only as 1/r away from the
rigid sphere. The second term is a dipole field. The
third term is simply a constant shift of the entire medium
which is clearly a solution, but cannot contribute to the
stress tensor. The fourth term grows as r2 as one moves
away from the sphere. In order to satisfy the boundary
conditions at infinity for the problem under consideration
we must set C3 = C4 = 0. The remaining two constants
are determined by the boundary conditions at the surface
of the rigid sphere. We find

u(x) =
ǫ

2

[

3
a

r
(η1r̂ cos θ + η2ẑ) − η1

a3

r3
(3r̂ cos θ − ẑ)

]

(18)

where η1 = 1/(5 − 6σ) and η2 = (3 − 4σ)/(5 − 6σ). We
note that in the incompressible limit, the displacement
field around the displaced sphere takes the form of what
would be the perturbation of the velocity field of an in-
compressible fluid produced by the same sphere inserted
in a uniform flow in the ẑ direction (at low Reynolds
number).

Since we wish to calculate the response of the sphere to
an applied force we need to determine the force applied
to the sphere that resulted in the imposed displacement
of ẑǫ. To do this we calculate the restoring force of the
medium on the sphere. The external force F is the neg-
ative of the force the medium exerts on the sphere. We
can calculate the latter force, which by symmetry must
point in the ẑ–direction by integrating the stress tensor
over the surface of the sphere to obtain

Fz = −

∮

a2dΩ [σrr cos θ − σrθ sin θ] , (19)

From this result we obtain the response function[10]

α(ω) =
∂ǫ

∂Fz
=

1

6πaµ(ω)

[

1 +
σ(ω) − 1/2

2 (σ(ω) − 1)

]

. (20)

We note that in the incompressible limit, σ(ω) −→ 1/2,
we recover the form of the Stokes mobility of the sphere
in an incompressible fluid. The only difference between
that result and Eq. (20) in the incompressible limit is the
substitution of the shear modulus, µ(ω), for iωη.

B The inhomogeneous medium: the results for

distant particles

Having solved the single–sphere problem, we are in
a position to extend the analysis to the two–sphere
response function in a spatially inhomogeneous elastic
medium. As in the analogous electrostatic problem, we
approach this problem via the method of reflections. To
compute the response function to lowest order, we simply
need to calculate the displacement field at the location
of the second sphere due to a force applied to the first
sphere. Once again, we model the inhomogeneous elas-
tic medium by the simple, anomalous pocket discussed
in our study of the analogous electrostatic problem. We
assume that the spheres are surrounded by a spherical
pocket of material (of radius b) with elastic properties
characterized by the Lamé coefficients, λ̄, µ̄. See figure 1.
The bulk material, far from the rigid spheres has Lamé
constants: λ, µ.

Using Eq. (14) we write down solutions to the force
balance equations that apply in the inner, anomalous re-
gion, and the outer bulk material respectively,

u
i(x) =

aCi
1

r
[γ̄1r̂ cos θ + ẑ] +

a3C i
2

r3
[3r̂ cos θ − ẑ] +

+C i
3ẑ +

C i
4r

2

a2
[γ̄2r̂ cos θ − ẑ] (21)

u
o(x) =

bCo
1

r
[γ1r̂ cos θ + ẑ] +

b3Co
2

r3
[3r̂ cos θ − ẑ] . (22)

In the above equation, γ̄1,2 are identical to the γ’s de-
fined in Eqs. (15)–(16) with the Poisson ratio equal to
that of the inner material. Using the boundary condi-
tion at infinity, Eq. (10), we have set Co

3,4 = 0. We
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are left with six remaining constants that are determined
by two boundary conditions at the surface of the sphere
[see Eq. (9)] and four boundary conditions at the inter-
face of the two different elastic media, |x| = b. These
four conditions enforce the continuity of the displace-
ment field: u

i(|x| = b) = u
o(|x| = b) and stress tensor:

σi
rj(|x| = b) = σ0

rj(|x| = b) , j = r, θ at that interface.
These conditions are sufficient to determine the six re-
maining constants.

Recall that we wish to show that the long–range part
of the interparticle response function measures the bulk
material properties of the medium independently of the
local modification of the material’s elastic properties by
the rigid spheres. In order to do this we first concentrate
on the part of the displacement field u

o(x) that varies
as 1/r. We will independently solve for the coefficient of
this term. Such a solution allows a good approximation
to the displacement field in the far–field regime and will
test the ideas discovered via the electrostatic analogy.

To calculate the coefficients Co,i
1 we employ a global

constraint on the stress tensor: the integral of the flux
of the stress tensor, σijdSj , over any closed surface (with
local outward normal parallel to dSj) enclosing the rigid
sphere, which applies a force F to the elastic medium,
must be equal and opposite to that applied force. The
integral of the stress tensor over such a surface is −F.
Thus we may write this condition, for a particular spher-
ical surface of radius r, with r > a in the following form:

Fz = −

∮

r2dΩ σi,o
rz , (23)

where choice of the appropriate form of the stress tensor,
σi

rz or σo
rz, is determined by magnitude of r, i.e. whether

the surface of integration is contained in the inner region
or in the bulk material. In the above equation we have
taken the force on the sphere to be in the ẑ–direction
and the integral is over all solid angles. Counting powers
of r in the stress tensor and noting that σ ∼ ∇u, we
find that only the part of the stress tensor coming from
the term in u proportional to Co

1 can contribute to the
result. This term, which depends on the radial distance
from the sphere as 1/r2 is the only one that will lead to
an r–independent result on the RHS of Eq. (23). Since
the LHS of this equation is clearly r–independent, the
other contributions to the stress tensor coming from Cn,
n > 1 must all vanish under the angular integration.

From the global stress constraint [Eq. (23)] and our
solution for the displacement field we determine the co-
efficient Co

1 to be

Co
1 =

1

8πaµ

[

λ + 3µ

λ + 2µ

]

. (24)

The analogous coefficient in the inner region, C i
1, is given

by the same expression, however, the Lamé coefficients
take the values of the inner region: µ̄, λ̄. We may use
the above result to eliminate one variable from the set
of six that must be determined to completely solve the

present elastic problem. Before we continue this pro-
gram, however, it is useful to calculate the far-field part
of the viscoelastic, interparticle response function. We
have already seen, from the electrostatic analogy, that
only the dominant long-range part of the sphere–sphere
interaction is expected to be free of the influence of the
anomalous pockets. We seek, therefore, to demonstrate,
in a manner analogous to the problem of the inverse ca-
pacitance of two conducting spheres in an inhomogeneous
dielectric, that the inter–particle response function is in-
dependent of the rheological properties of the local pock-
ets surrounding the particles in the visco–elastic problem.

To do this we again use the lowest–order term in the se-
ries solution of the two–sphere problem that is generated
by the method of reflections. This lowest–order term sim-
ply gives the displacement of sphere 2 in response to an
applied force on sphere 1 as the value of the displacement
field at the location of sphere 2 due to the displacement
of sphere 1, where that displacement field is calculated
without regard to the boundary conditions on sphere 2
or its surrounding shell of perturbed material. Thus the
solution of the far-field part of the single–sphere problem
is precisely the result that we need. The corrections to
this result coming from higher–order reflections will be
smaller than the previously calculated part by a non-zero
power of b/r, where r is the separation vector between
the two spheres. These corrections are discussed in ap-
pendix A. Ignoring higher–order corrections coming from
both higher order reflections and the dipolar part of the
far-field u, we find

α
(21)
ij = α||(r)r̂i r̂j + α⊥(r) (δij − r̂ir̂j) , (25)

where the response along the line of centers is given by

α||(r) =
1

4πrµ(ω)
, (26)

and the response perpendicular to the line of centers is

α⊥(r) =
1

8πrµ(ω)

[

λ(ω) + 3µ(ω)

λ(ω) + 2µ(ω)

]

. (27)

We have explicitly written the frequency dependence of
the Lamé to emphasize the applicability of this calcula-
tion to the complete viscoelastic problem. We note, how-
ever, that by neglecting inertial terms (which has been
justified previously in the single–sphere case at frequen-
cies of experimental interest[6]), we are here imposing a
more stringent requirement. The above result assumes
that two spheres are close enough that there is no signifi-
cant phase shift between the oscillation of the two spheres
at the probing frequency, ν i.e. |r| ≪ c/ν, where c is the
speed of sound in the medium. Even for soft materials
with relatively high compressibility, it is possible to have
the necessary separation of length scales, b ≪ r ≪ c/ν
for Eq. (25)– (27) to hold at all experimentally accessible
frequencies.

Finally it is interesting to observe that in the incom-
pressible limit, λ(ω) −→ ∞, the ratio of the response
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along the line of centers to that perpendicular to the line
of centers is 2 : 1. The experimental determination of the
deviation of this ratio from 2 : 1 measures the compress-
ibility of the material at the frequency of observation.

C Single particle response in the composite

medium

It is interesting to compare the above results for the in-
terparticle response function in the composite (two-shell)
medium with the single–particle response in the same
medium. From the electrostatic analogy we expect to
find that the single–particle response function depends
on the elastic properties of both types of materials mak-
ing up the composite medium. Below we will show this to
be the case. That calculation also demonstrates that the
comparision of the single particle response to the two–
particle response functions allows one to determine the
material properties of both materials making up the com-
posite medium. This result shows, at least within the
simplified pocket model of the inhomogeneous medium,
that measurements of the probe particle autocorrelations
combined with two–point measurements of distant par-
ticles completely characterize the bulk material and per-
turbation zone surrounding the probe. In a later sec-
tion we will revisit this result and show that even in a
more physical model, in which the material properties
of the medium vary continuously with distance from the
probe, it is still possible to extract information about the
perturbed region (as well as the bulk properties) from a
combination of one- and two–point correlation measure-
ments.

In order to solve for the single–particle response func-
tion, we must continue along the lines of the previous
section and solve for the complete deformation field in
the two–shell medium surrounding a particle. As above
we put a force F = F ẑ on the particle and determine
the deformation field. From the value of that field at the
surface of the probe sphere (|r| = a) we calculate the dis-
placement of the probe and thus the response function
in question. Returning to Eqns. (21),(22) we note that
there are now only four undetermined coefficients: From
Eq. (24) we already know Co

1 , C i
1 in terms of the applied

force F. We now continue with the simple but tedious
task of matching boundary conditions at the interface of
the two elastic media and at the surface of the sphere as
discussed in the previous section.

At the surface of the sphere we find that:

C i
1 − C i

2 + C i
3 − C i

4 = ǫ (28)

γ̄1C
i
1 + 3C i

2 + γ̄2C
i
4 = 0, (29)

where ǫ is the displacement of the sphere in the ẑ direc-
tion. The above set of equations actually contributes
only one relation among the remaining four unknown
coefficients since Eq. (28) only exchanges one of these

unknowns for the, as yet, undetermined sphere displace-
ment. It is this quantity, however, that we need to de-
termine the response function.

From the continuity of the displacement field, u, at
the interface of the two elastic media (r = b) we find two
more relations:

Co
1 − Co

2 = βCi
1 − β3C i

2 + C i
3 − β−2C i

4 (30)

γ1C
o
1 + 3Co

2 = βγ̄1C
i
1 + 3β3C i

2 + β−2γ̄2C
i
4, (31)

where β = b/a.
For the remaining relation needed to specify all four

undetermined coefficients, we require the continuity of
one component of the stress tensor across the interface
of the two media (r = b). We choose to consider σrθ =
µ [∂θur/r + ∂ruθ − uθ/r]. This yields the condition:

µ [Co
1 (1 − γ1) − 6Co

2 ] = µ̄
[

β (1 − γ̄1)C i
1+

−6β3C i
2 + β−2 (2 − γ̄2)C i

4

]

.(32)

We now have four equations to determine the unknown
coefficients: C i

2,3,4, C
o
2 and another equation to eliminate

one of these four coefficients in favor of the quantity that
we seek – the displacement of the sphere, ǫ. The response
function for the single sphere in the two–shell medium is
then given by

ǫ

F
= α

(1,1)
ij =

1

6πµa
Z(γ̄1, γ̄2, β)δij . (33)

The response function has been written as the product
of the single particle response in an incompressible bulk
material with shear modulus µ and a correction factor,
Z(γ̄1, γ̄2, β), which depends on the ratio of the radius of
the anomalous pocket to the radius of the sphere, β =
b/a, and all of the elastic constants. The correction factor
in terms of the constants γ1,2 [defined in Eqns. (15), (16)]
is given by:

Z(γ̄1, γ̄2, β) =
z1

z2
(34)

where

z1 = 6β5 (γ̄1 + γ̄2) p̄κ(κ − 1) + (35)

(γ̄1 + 3)p̄κ(γ̄2 − 2 − 2γ̄2κ) + 2β6γ̄2(κ − 1) ×

× (p(γ1 + 3) − κp̄(γ̄1 + 3)) + β ((γ1 + 3)(γ̄2 − 2)p+

−(3 + 5γ̄2 + γ1(3 + γ̄2))pκ + p̄κ(9 − 4γ̄2 − γ̄1 +

6(γ̄1 + γ̄2)κ) + β3(γ̄2 − 3)κ

× ((−p(γ̄1 + 1)p̄(1 + γ̄1(4κ − 3)))

and

z2 = 4
(

γ̄2

[

1 + 2β5(κ − 1) − 2κ
])

, (36)

with κ = µ/µ̄ and

p =
λ + 3µ

λ + 2µ
; (37)
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there is a corresponding term p̄ which applies to the ma-
terial of the inner region.

It may be checked that the above expression [Eqs. (33)
– (36)], reduces to the simpler result for the single particle
response function in a homogeneous medium, Eq. (20),
when the elastic properties of the two shells are equated.
As expected the full result is a complicated function of
both the elastic constants of the inner, perturbed shell of
the material, and the range of the perturbation: b.

Both because of the complexity of the above result and
because many applications of the these techniques apply
to systems that are essentially incompressible (polymeric
solutions and melts fall into this category) it is worth-
while to also record a simplier version of the response
function that obtains when both the perturbed and the
bulk material may be considered to be incompressible.
In that limit we find that the correction factor takes the
form:

4β6κ′2 − 10β3κ′ + 9β5κ′κ − 2κκ′′ − 3β(2 + κ − 3κ2)

2 [κ′′ − 2β5κ′]
(38)

where κ′ = κ − 1 and κ′′ = 3 + 2κ.
We end this section of the paper by noting that the

above calculations not only give the complete result for
the single–particle response function in the two material
composite medium but they also determine the next–to–
leading order corrections for the interparticle response
function of two spheres in the same composite medium.
We discuss this point further in Appendix A. Here we
record the coefficient of the dipolar term in the displace-
ment field. Based on arguments presented in Appendix
A, it can be shown that this dipolar term gives the next–
to–leading order correction in the two–particle response
function for distant particles. The dipolar coefficient of
the displacement field in the bulk medium (Co

2 ) has been
completely determined already in the course of our so-
lution of the single–particle response function presented
above. We have found that in the case where both media
are incompressible it takes the form

Co
2 = −

F

8πbµ

(1 − κ)(3 + 2β5) + 5β2κ

3(3 + 2κ) + 6β5(1 − κ)
. (39)

As expected on more general grounds, this next–to–
leading order correction depends on all the elastic con-
stants and the ratio of pocket radius to the sphere radius.

D Differential Shell Method

A more physical model of the anomalous region sur-
rounding the probe particle allows for the rheological
properties of the medium to vary continuously with dis-
tance from the probe. In order to perform quantitive
fits to the single particle response function measured in
a complex fluid via microrheology, it is necessary to fit

the data to a continuous model of the anomalous zone.
As we will see, this fit requires a theoretical model of the
variation of the complex material’s rheological behavior
as a function of distance from the sphere. In this section,
we first present a general set of equations describing the
variation of the four displacement–field coefficients with
distance for a given functional form of the variation of the
shear modulus with distance from the probe: µ = µ(|r|).
As an illustration of this method we then apply our pro-
cedure to the case of a polymer solution at concentrations
near c⋆, the overlap concentration.

Having solved the two–shell model above, we can now
generalize this technique to many shells. To compute the
displacement field in the continuous variation limit, we
divide the material into spherical shells of infinitesmal
thickness, ∆r, centered on the probe particle. Within
each spherical shell we may take the Lamè coefficients
to be constant. Now we can determine a relation be-
tween the set of displacement field coefficients in the nth

shell ( {Cn
i } , i = 1, . . . , 4) to those of the nn+1 shell (

{

Cn+1
i

}

, i = 1, . . . , 4) by using the same set of boundary
conditions at the interface of the two shells as have been
applied above. See figure 2. Taking the thickness of the
shells to zero we determine derivatives of the displace-
ment field coefficients with respect to r. These linear
differential equations can be integrated to give the vari-
ation of the displacement field coefficients, and thereby
determine the form of the stain field. The single–particle
response function follows naturally. For the two–particle
response function, we assume that there still exists the
large separation of length scales between the distance
separating the two probe particles and the distance over
which there is an appreciable variation of the elastic con-
stants (the size of the anomalous zone).The two–particle
response function, which does not depend on properties
of the anomalous zone, therefore, still applies. Below we
derive the differential equations for the displacement field
coefficients for the case where the material is everywhere
incompressible (λ(r) = ∞ for all r).

Matching the displacement field at the interface |r| =

u
n

r
n-1

r
n+1

r
n

u
n+1

FIG. 2: Differential shell method: Using stress and dis-
placement continuity at the interface of the nth and
(n + 1)th shells we determine the coefficients of displace-
ment field u

n+1 in terms of the coefficients in of the dis-
placement field u

n. Later, taking the thickness of the
shells to zero: ∆r = rn+1 − rn −→ 0 we arrive at a set
of differential equations governing the variation of the
displacement field coefficients – the Cs.
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rn we find two equations. The first coming from matching
the radial components of the field is:

2a

rn
∆C1 +

2a3

r3
n

∆C2 + ∆C3 −
1

2

(rn

a

)2

∆C4 = 0 (40)

where ∆Ci = Cn+1
i −Cn

i . Taking the limit of thin shells
i.e.

∆Ci = ∆r
dCi

dr

∣

∣

∣

∣

r=rn

= ∆r Ċi, (41)

we arrive at the differential equation

2a

r
Ċ1 +

2a3

r3
Ċ2 + Ċ3 −

1

2

( r

a

)2

Ċ4 = 0 (42)

Using a similar procedure to match the uθ parts of the
displacement field we find the differential equation:

Ċ3 = −
a

r
Ċ1 +

(a

r

)3

Ċ2 +
( r

a

)2

Ċ4. (43)

The remaining two equations come from matching
the σrr and σrθ components of the stress tensor. We
recall from section III C [see the discussion following
Eqns. (28)(29)], however, that only one more equation
is needed to determine the coefficients since we already
know the functional form of C1,

C1 =
1

8πaµ(ω)
, (44)

from the same global property of the stress tensor applied
in the two–particle problem. We again choose to enforce
the continuity of σrθ, which, in the thin shell limit, yields

6
a3

r4
Ċ2 −

3

2

r

a2
Ċ4 +

µ̇

µ

[

6
a3

r4
C2 −

3

2

r

a2
C4

]

= 0 (45)

We now find two differential equations for the variables
C2 and C4 by eliminating C3 in Eq. (40) using Eq. (42).
Furthermore we use our solution for C1 to write the set
of differential equations in the following form [after undi-
mensionalizing]:

B′
2(x) +

x5

6
B′

4(x) = −
x2

3

d

dx

(

µ0

µ(x)

)

(46)

B′
2(x) −

x5

4
B′

4(x) = −
d

dx

(

ln
µ

µ0

)

× (47)

[

B2(x) −
x5

4
B4(x)

]

where x = r/a, ·′ indicates a derivative with respect to
x, µ0 is a modulus scale, x = r/a, and

Bi =
8πaµ0Ci

F
, (48)

where F is the magnitude of the force applied to the
sphere. We find it simpler, once again, to study the re-
sponse function by fixing a known force on the sphere
and computing its displacement, ǫ.

Eqs. (46),(47) can be integrated from the surface of
the probe sphere, x = 1. Having a set of two first order
differential equations we require two boundary conditions
to determine a unique solution.

There are two boundary conditions coming from the
specification of the displacement field at the surface of the
sphere. In general, this vectorial equation specifies two
independent relations, however, since the magnitude of
the sphere’s displacement is, as yet, unknown, we obtain
only one boundary condition for Eqs. (46) and (47):

B2(1) +
1

6
B4(1) = −

µ0

3µ(x = 1)
. (49)

The second equation

µ0

µ(x = 1)
− B2(1) + B3(1) − B4(1) = 8πµ0a

ǫ

F
. (50)

coming from the boundary condition at the sphere ex-
presses teh magnitude of the sphere’s displacement ǫ, in
terms of the B–amplitudes. We still need another bound-
ary condition to specify a unique solution of Eqns. (46)
and (47). The second boundary condition is that B4,
the coefficient of the quadratically growing term in the
general solution of the displacement field with azimuthal
symmetry, must vanish in the large r limit. Thus

lim
x−→∞

B4(x) = 0. (51)

Similarly, we know that there should be no constant term
in the displacement at large distances from the sphere so
limx−→∞ B3(x) = 0. This boundary condition in combi-
nation with Eq. (43) allows the determination of B3 at
the surface of the sphere in terms of an integral over the
(uniquely determined) functions B2 and B4:

B3(1) = −

∫ ∞

1

{

−
1

z

d

dz

(

µ0

µ(z)

)

+
1

z3
B′

2(z) + z2B′
4(z)

}

dz

(52)

The solution is effected by choosing B4(x = 1) [using
Eq. (49) to determine B2(x = 1)] and then integrating
the differential equations from x = 1 to infinity. B4(x =
1) is chosen so that this function goes to zero at large
x. Given this solution for B2 and B4 one can integrate
Eq. (52) to determine B3(1). Finally, with the full set
of initial values of B2, B3, and B4 one can evaluate the
response function using Eq. (50).

We further organize this calculation by defining the
effective shear modulus of the medium to be that value of
the shear modulus needed to write the response function
in the form that it would have taken in an incompressible,
homogeneous material. In other words, we define µeff by

ǫ

F
= α =

1

6πaµeff
. (53)

Here the vectorial indicies have been suppressed since, by

rotational symmetry, α
(1,1)
ij ∼ δij for an isolated sphere.
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With this definition we write the effective response func-
tion in terms of the initial values of B2, B3, and B4 and
the modulus scale as

µeff

µ0
=

4

3

[

µ0

µ(1)
− B2(1) + B3(1) − B4(1)

]−1

. (54)

We note that in the homogeneous medium: B3 = B4 = 0
and µ0/µ(1) = 1. In addition, we find that B2 = −1/3
so that µeff = µ0 as required for consistency.

As an example of the differential shell method we con-
sider the case of a semi-dilute polymer solution – see ap-
pendix B. To apply the methods of one–point microrhe-
ology to this case, one would measure the fluctuating
position of a probe particle in the liquid (due to Brown-
ian diffusion) and compute from the position autocorre-
lations the diffusivity of that probe. Using the Stokes–
Einstein relation one could then extract a measurement
of the viscosity. However, such a measurement should
be an underestimate since the probe sphere produces a
spherical pocket of polymer–depleted solution surround-
ing it (see Appendix B for details). The local polymer
concentration will approach its bulk value essentially ex-
ponentially with distance from the sphere with a “healing
length” controlled by the polymer correlation length in
the solution. This polymer–depleted shell of fluid has a
lower viscosity than that of the bulk. We take a con-
tinuous polymer concentration profile suggested by self-
consistent calculations[14, 16] and numerically integrate
the differential equations for the case that the polymer
correlation length is 30% of the sphere radius and the
bulk solution visocity is four times the value of that of
the solvent. The variation of the coefficients B1, . . . , B4

with distance from the probe sphere are shown in figure 3.

Using Eq. (54) we find that indeed the single particle
measurements suggest that the viscosity is smaller than
it’s bulk value. For this particular case the effect is small
– the viscosity measurement coming from one–point mi-
crorheology is about 73% of the actual bulk value. If the
depletion zone were larger compared to the sphere radius,
the effect of the anomalously small value of the solution
viscosity in the depletion zone would be more significant.

IV. SUMMARY

In this paper we have studied the single–particle and
two–particle response functions in an inhomogeneous vis-
coelastic medium. These response functions must be
known in order to use microrheological measurements as
a probe of the material properties of soft materials. We
restricted our analysis to the type of inhomogeneity that
is caused by the introduction of the probe particles them-
selves. We have assumed that the rheological anomally
in the material relaxes to the unperturbed, bulk value as
some function of radial distance from the probe particles.
To make a model system that has the simplest possible

inhomogeneity of this form we have considered not only
the“pocket model” (consisting of a spherical cavity sur-
rounding each probe particle with perturbed viscoelastic
properties), but also a more physical model in which the
material’s rheological properties vary continuously with
distance from the probe sphere. We have also shown that
the combination of one–point techniques (which measure
a combination of the properties of the unperturbed, bulk
material and the rheological anomalous material immedi-
ately surrounding the probe sphere) and two–point tech-
niques (which measures the bulk rheological properties)
allows the experimentalist to probe details of the probe–
particle, medium interaction.

We thank J. C. Crocker for many helpful discussions
and communicating unpublished data. We also thank
F. Pincus for a careful reading of the manuscript and
AJL thanks Michael Cohen for useful discussions. This
work was supported in part by the NSF MRSEC program
under grant number OMR 00–79909.

APPENDIX A: CORRECTIONS FOR CLOSER

PARTICLES: HIGHER ORDER REFLECTIONS

AND SUBDOMINANT TERMS IN THE STRAIN

FIELD

There are two classes of corrections to the result of sec-
tion III B for the interparticle response function of two
distant spheres. These corrections produce terms that
are higher order in a/R where R is the (large) separa-
tion of the two probe spheres. In general, these correc-
tions depend on all the elastic constants of the composite
medium. It is therefore important to at least estimate the

1 1.5 2 2.5 3 3.5 4
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-0.5

0

0.5

1

B1
B2
B3
B4

1 1.5 2 2.5 3 3.5 4
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0
0.5
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1.5

2
2.5

3
3.5
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4.5

η/
η

0

FIG. 3: The variation of the dimensionless displacement
field coeffecients computed numerically. The characteris-
tic length scale for the variation of the polymer concen-
tration (thus the solution viscosity) is 0.30 in the dimen-
sionless units r/a. The inset shows the variation of the
fluid viscosity with distance from the sphere.
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relative importance of these terms in order to determine
how distant two probe particles must be in order for their
correlated fluctuations to be governed primarily by the
bulk elastic constants.

The two classes of corrections are due to either sub-
dominant terms in the displacement field of sphere one
at the level of the zeroth order reflection (in which we
ignore the role of second sphere in determining its sub-
sequent displacement) or corrections to the displacement
field that result from higher order reflections (iteratively
correcting the boundary conditions of u at the surface of
each sphere–and–pocket). In this section we determine
which of these effects first presents deviations to the far–
field results presented earlier. We have already seen that
subdominant corrections in the far–field u are of a dipolar
form, decaying with distance as R−3. These corrections
also depend on the properties of the inner pockets. We
now look at the corrections coming from higher order
reflections.

Because the full elastic problem in the composite
medium is quite complex, once again it is helpful return
to the electrostatic analogy for guidance. As before we
replace the rigid particle of radius a and its surround-
ing spherical pocket (of radius b) of anomalous material
by its electrostatic analog: a conducting sphere of ra-
dius a surrounded by a region of radius b with dielectric
coefficient ǭ. To simplify the formulae we set the bulk di-
electric constant to unity. We consider first the potential
at sphere two to lowest order. At this iteratation we may
still replace (the charged) sphere one and its surround-
ing dielectric pocket by a point charge Q at the origin
of that sphere. First we calculate the potential at the
second (uncharged) sphere and then we determine the
correction to that potential coming from higher order re-
flections. See figure 4 for a diagram of the electrostatic
problem under consideration.

Using the azimuthal symmetry of the problem we can
write the general form for the electrostatic potential,
φouter, in the bulk material (r > b) by

φouter(r) =
Q

4π

∞
∑

ℓ=0

rℓ
<

rℓ
>

Pℓ(cos θ) +

+
1

4πǫ

∞
∑

ℓ=0

Dℓr
−(ℓ+1)Pℓ(cos θ), (A1)

where r<, r> are the minimum, maximum of r and R
respectively. The functions Pℓ(x) are the the standard
Legendre polynomials. The first term represents the po-
tential due to the point charge at r = ẑR ( we take the
origin of the coordinate system to be at the center of
the sphere.) and the second term gives the corrections
to that potential field in the bulk due to polarization
charges induced at the interface of the two dielectric me-
dia and on the conducting sphere. These corrections are
given in terms of the yet unspecified coefficients Dℓ. We
can similarly write the expression for the potential in the
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a

FIG. 4: Schematic diagram of the simpler electrostatic
problem designed to test the importance of first order
reflections upon the elastic response function. The first
sphere, that is charged, can be replaced by a simple point
charge to this order in the reflections. We focus on the
response (potential) of the second sphere which sits in its
pocket of material with dielectric ǭ. The bulk material
has dielectric constant ǫ = 1.

pocket (a < r < b),

φinner(r) =

∞
∑

ℓ=0

[

Eℓr
ℓ + Fℓr

−(ℓ+1)
]

Pℓ(cos θ), (A2)

in terms of two sets of unknown coefficients, Eℓ and Fℓ.
We are trying to find the potential of the conducting

sphere two (|r| = a). Since the sphere is an equipotential
surface, we find from Eq. (A2) that Eℓ = Fℓ = 0 for
all ℓ 6= 0. Furthermore, if we define φ0 to be the as yet
unknown potential of the sphere, we find that

E0 +
F0

a
= φ0 (A3)

We now note that there are no free charges in the system
other than the distant charge Q, so the surface integral
of the electric displacement field over a sphere of radius
r, b < r < R must vanish. This condition forces D0 = 0.
From that result and the continuity of the radial compo-
nent of the electric displacement vector at the interface
of the two dielectric media (r = b) we determine that
F0 = 0 as well. Finally, from the continuity of tangen-
tial components of the electric field at the same interface,
∇(φinner−φouter)|r=b× r̂ = 0, we find that the remaining
coefficient of interest, E0 is given by: E0 = Q/(4πR) so
from Eq. (A3) we arrive at the result

φ0 =
Q

4πǫR
. (A4)

This rather remarkable conclusion is that the presence of
the anomalous dielectric pocket does not effect the result
of the zeroth order reflection at all. We can physically
understand this result along the lines presented in the
text. We also note that the argument presented there
can be extended to an arbitrary number of such dielec-
tric shells; this suggests that the effect of any radially
symmetric dielectric coefficient variation on the poten-
tial of the central conducting sphere always vanishes at
the level of the zeroth reflection.
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Next we consider the first correction to the potential
on sphere two coming from higher order reflections. Since
there is no free charge on either sphere two, or its sur-
rounding dielectric, we know that the integral of the nor-
mal component of the electric displacement field over a
surface just inside the dielectric shell (and just outside
the surface of sphere two) vanishes:

∮

r=a+

Drr
2dΩ = 0 −→

∮

r=a+

Err
2dΩ = 0. (A5)

The vanishing of the same integral of the normal com-
ponent of the electric field follows from the fact that the
dielectric constant in the material outside sphere two is
assumed to be spherically symmetric. This assumption
is clearly valid in the somewhat artifical two–shell model
of the composite medium, but it should remain valid in
a more physical model in which the dielectric constants
vary continuously with distance from the probe particles,
at least as long as the two particles are farther apart that
a “healing length” over which the material recovers it
bulk properties away from the probe particles.

We now study the polarization charge induced on the
dielectric interfaces surrouding sphere two. It is clear
that we can replace the dielectric shell around sphere
two with two spherical surfaces of bound, polarization
charge density (at r = a and r = b). Our solution of
the electrostatic problem defined in figure 4 shows that
the bound polarization charge on the outer surface of the
pocket surrounding sphere two (at the order of lowest
reflections) is given by:

σouter(θ) = Q

∞
∑

ℓ=1

bℓ−1

Rℓ+1

(

2ℓ + 1

Γℓ + ℓ + 1

) [

1 − ǭ

ǭ

]

Pℓ(cos θ)

(A6)

In the above equation, we have defined

Γℓ = ǭ
ℓ + (ℓ + 1)

(

a
b

)2ℓ+1

1 −
(

a
b

)2ℓ+1
(A7)

It is clear in the above result that if there is no dielec-
tric discontinutiy at the edge of the pocket (ǭ = 1) this
polarization charge density vanishes.

We now compute the bound charge at the interface be-
tween the conducting sphere (two) and the inner dielec-
tric. To distinguish the bound polarization charge from
that free charge on the conductor, we need to calculate
the difference in charge density at r = a between the gen-
eral case and the particular case of no anomalous dielec-
tric, i.e. we determine: σ̃(θ) = σinner(θ) − σinner(θ)|ǭ=1

to be

σ̃(θ) = Q
∞
∑

ℓ=1

(2ℓ + 1)
aℓ−1

Rℓ+1
ΞℓPℓ(cos θ), (A8)

where Ξℓ is given by

Ξℓ =

{

1 −
2ℓ + 1

1 + ℓ(ǭ + 1) − (1 − ǭ)(ℓ + 1)
(

a
b

)2ℓ+1

}

.

(A9)

Since we are interested in understanding the next-to-
leading order correction to the result presented in this ar-
ticle for the mutual response function of distant spheres,
we may approximate the three charge distributions in the
large R limit as follows: From the shell of bound polar-
ization charge at the outer interface surrounding sphere
two (r = b) we get an effective dipole moment of

Pouter = −
3Q

R2
(ǭ − 1)b3 1 + 2

(

a
b

)3

2 + ǭ + 2(ǭ − 1)
(

a
b

)3 ẑ. (A10)

From the shell of bound polarization charge on the inner
interface of the dielectric shell (r = a) we get the effective
dipole moment

Pinner =
3Q

R2
a3

{

1 −
3

2 + ǭ + 2(ǭ − 1)
(

a
b

)3

}

ẑ. (A11)

Note for ǭ > 1 The dipole moment of the outer shell
points away from the first sphere and the dipole moment
of the inner shell is anti-parallel to the outer dipole mo-
ment. This shows that, back at the first sphere, the net
effect of these two effective dipoles is reduced by their
partial cancellation. Finally we include the effect of the
polarization of the conducting sphere two. This is sim-
ply given by the standard answer from the first reflection
term for two spheres. The surface charge distribution of
the conducting sphere produces the same field as a pair of
point charges of equal and opposite magnitude within the
sphere: a charge of -Qa/R displaced from the center of
sphere two towards the center of sphere one by a distance
of a2/R and the opposite charge (to ensure the charge
neutrality of sphere two) at center of sphere two. This
charge distribution at large distances, produces another
dipolar field with dipole moment: Psphere = −Qa3/R2ẑ.

The potential in the vicinity of sphere one produced by
the dipoles induced in the neighborhood of sphere two is
thus the sum of three dipole potentials, each centered at
the origin of sphere two. Since the electric potential and,
hence the electric field, is linear in the dipole moments
we can approximate the net electric field at sphere one as
the field of a single dipole located at the center of sphere
two having a net dipole moment of:

Pnet = Pinner + Pouter + Psphere (A12)

Collecting our previous results we find that the net dipole
is given by:

Pnet = −ẑ
Qb3

R2

[

ρ3 +
ǭ − 1

2 + ǭ + 2(ǭ − 1)ρ3

(

1 − ρ3
) (

1 + 2ρ3
)

]

,

(A13)
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where ρ = a/b. The most significant point coming from
the calculation is that we have confirmed that the po-
larizibility of the combination of the conducting sphere
and dielectric shell does, in fact, depend on properties of
that dielectric shell. Without performing any further de-
tailed calculations, we may assume that the polarizibility
of the conducting sphere plus dielectric pocket takes the
form: αp = αp(a/b, ǭ)b3. The dipole moment induced on
sphere one by the dipole moment on sphere two then has
a magnitude of:

P1 = αp(a/b, ǭ)b3 ×
b3

R5
Pnet. (A14)

In the above equation the first term in the product is
the polarizibility of sphere one and the second term is
the electric field at sphere one due to the polarization of
sphere two. So the shift in the potential of sphere two
due to the next order reflection must take the form:

∆φ2 ≃ P1
αp(a/b, ǭ)b3

R2
=

b6Qα2
p(a/b, ǭ)

R7
. (A15)

Based on the electrostatic analog to the viscoelastic
response function, we see that the next–to-leading or-
der term in the approximate solution for the potential of
sphere two decays as the seventh power of the sphere–
sphere separation. The detailed calculation of the polar-
ization sphere two serves to confirm that all these higher
order terms necessarily involve all the properties of the
anomalous pockets. The principal point of this section re-
mains that we can conclude that the subdominant term
in the displacement field in the elastic problem, which
decays only as R−3, give the next-to-leading order cor-
rection for the interparticle response function.

APPENDIX B: THE VISCOSITY OF

SEMI–DILUTE POLYMER SOLUTIONS NEAR

THE PROBE

In the semi-dilute regime the polymer volume fraction,
φ, lies in the range: φ⋆ ≪ φ ≪ 1, where φ⋆ is the volume
fraction at which the individual coils overlap. Here we
may approximate the relaxational dynamics of a single
chain as the reptation of a string of blobs with mean
radius equal to the polymer correlation length ξ and thus
composed of

g =

(

ξ

ℓ

)5/3

(B1)

monomers, where ℓ is the Kuhn length. A polymer of N
monomers consists of N/g blobs, and its reptation time
is

τrep = τZimm(g)

(

N

g

)3

(B2)

where τZimm ∼ ξ2/D(ξ) where D(ξ) ∼ 1/ξ, the diffusion
constant of a sphere of diameter ξ. is the Zimm relaxation
time of a blob. In the semi–dilute regime, ξ scales with
polymer volume fraction as

ξ = ℓφ−3/4, (B3)

which implies

g ∼ φ−5/4. (B4)

The reptation time thus scales with volume fraction as

τrep ∼ φ3/2. (B5)

To find the contribution of τrep to the viscosity, we note

that ηP ∼ G0τrep, where G0 ∼ kBT/ξ3 ∼ (kBT/a3)φ9/4

is the plateau modulus of the semi–dilute solution. Thus

ηP = η0φ
15/4 (B6)

where η0 is a viscosity.
Finally, in order to discuss the variation of the effec-

tive solution viscosity near the surface of the probe sphere
we need to understand the polymer concentration profile
near an impenetreble obstruction. If we assume that the
correlation length in the solution is much smaller than the
radius of curvature of the probe sphere, we may approx-
imate the polymer concentration profile surrounding the
sphere by that of the profile near a flat, hard wall. This
problem has been studied using self-consistent methods
with ground state dominance[14, 15]. The solution for
the concentration profile near a wall at x = 0 is

c(x) = c0 tanh2

(

x

ξ

)

, (B7)

where c0 is the bulk polymer concentration. The corre-
lation length obtained from this calculation is known not
to scale correctly with polymer concentration; we sup-
pliment the above solution with the correct scaling form
from Eq. (B3). We also point out that if ξ is compariable
to the sphere radius, the detailed form of Eq. (B7) must
be quantitively inexact. The qualitive results of this ana-
lyis still hold. In particular, even for a sphere size that
is comparable to the correlation length, we expect that
the recovery of the bulk viscosity occurs over the length
scale ξ as one moves away from the sphere.

REFERENCES

[1] T. G. Mason, D. A. Weitz Phys. Rev. Lett. 74, 1250
(1995). T. G. Mason K. Ganesan, J.H. van Zan-
ten, D. Wirtz, and S.C. Kuo, Phys. Rev. Lett. 79,
3282 (1997). F.C. MacKintosh, C.F. Schmidt, Cur-
rent Opinion in Coll. & Interf. Sci. 4, 300 (1999).
E. Frey, K. Kroy, and J. Wilhelm in Polymer Net-

works Group Review Series, 2 ed. B.T. Stokke Wiley
(2000) see also cond-mat/9808022.

http://arXiv.org/abs/cond-mat/9808022


14

[2] By using the Fluctuation–Dissipation Theorem. See
reference [8] for details.

[3] K.S. Zaner and P.A. Valberg J. Cell Biol. 109, 2233
(1989). F. Ziemann, J. Radler, and E. Sackmann
Biophys. J. 66, 2210 (1994). F.G. Schmidt F. Zie-
mann, and E. Sackmann Euro. Biophys. J. 24, 348
(1996). F. Amblard, A.C. Maggs, B. Yurke, A.N.
Pargellis, and S. Leibler Phys. Rev. Lett. 77, 4470
(1996).

[4] L.D. Landau, E.M. Lifshitz Theory of Elasticity

3rdEdition, (Pergamon Press, Oxford 1986).
[5] Alex J. Levine and T.C. Lubensky Phys. Rev. Lett.

85, 1774 (2000).
[6] Alex J. Levine and T.C. Lubensky (unpublished).
[7] J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler,

P.D. Kaplan, A.G. Yodh, and D.A. Weitz , PRL 85,
888 (2000).

[8] See for example P.M. Chaikin and T.C. Lubensky
Principles of condensed matter physics , (Cambridge
University Press, New York 1995).

[9] See for example W.R. Smythe Static and Dynamic

Electricity (McGraw–Hill, New York 1968).

[10] B. Schnurr, F. Gittes, F.C. MacKintosh, and C.F.
Schmidt Macromol. 30, 7781 (1997). F. Gittes,
B. Schnurr, P.D. Olmsted, F.C. MacKintosh, and
C.F. Schmidt Phys. Rev. Lett. 79, 3286 (1997).

[11] A.C. Maggs PRE 57, 2091 (1998). R. Everaers,
F. J ulicher, A. Ajdari, and A.C. Maggs PRL 82,
3717 (1999).

[12] E. Weeks et al. unpublished.
[13] S.T. Milner (Private communication).
[14] P.G. de Gennes Scaling Concepts in Polymer

Physics , Cornell University Press (1979).
[15] M. Moore, J. Phys. (Paris) A10, 305 (1977).
[16] It should be pointed out that the self-consistent cal-

culation is not quantitively correct. However, the ex-
istence of a mesoscopic length scale in the polymer
solution which is on the the order of the bead size is
clearly valid. Given this one length scale, the essen-
tially expoenential dependence of the polymer con-
centration around the bead is at least reasonable.
We do not include the effect of the curvature of the
bead’s surface in this calculation.


