
Depth-of-Field Rendering with Multiview Synthesis

Sungkil Lee
Max-Planck-Institut für Informatik

Elmar Eisemann
Saarland University / MPI Informatik

Hans-Peter Seidel
Max-Planck-Institut für Informatik

Figure 1: Our method achieves DOF blur effects comparable to accurate solutions in real time and avoids postprocessing artifacts.

Abstract

We present a GPU-based real-time rendering method that simulates
high-quality depth-of-field effects, similar in quality to multiview
accumulation methods. Most real-time approaches have difficul-
ties to obtain good approximations of visibility and view-dependent
shading due to the use of a single view image. Our method also
avoids the multiple rendering of a scene, but can approximate dif-
ferent views by relying on a layered image-based scene represen-
tation. We present several performance and quality improvements,
such as early culling, approximate cone tracing, and jittered sam-
pling. Our method achieves artifact-free results for complex scenes
and reasonable depth-of-field blur in real time. This is the au-
thors’ version of the paper. The ultimate version was published
at SIGGRAPH Asia 09

1 Introduction

A finite aperture of a lens maps a 3D point to a circle of confusion
(COC). The overlapped COCs introduce variations in blur in an im-
age; objects in the limited depth of field (DOF) appear to be clear,
while the rest are blurred [Potmesil and Chakravarty 1981]. Such a
blur dramatically improves photorealism and further mediates pic-
torial depth perception [Mather 1996].

To generate focal imagery in computer graphics, a number of tech-
niques have been attempted in the past. Despite tremendous GPU
advances, the accurate DOF blur still remains challenging due to
the complexity of visibility changes. Previously, accurate solutions
could only be achieved by multiview sampling methods [Cook et al.
1984; Haeberli and Akeley 1990]. Since this implies rendering a
scene repeatedly, their use has been limited to offline animation.

This paper presents a GPU-based real-time rendering method. Our
method derives a layered image-based scene and computes an ac-
curate DOF blur. We avoid repeated model rendering by synthesiz-
ing new views. In contrast to single-image solutions, our principle
stems from multiview sampling. Hence, we support varying visi-
bility, an arbitrary aperture, and even view-dependent shading. Our
solution leads to high quality comparable to the reference [Hae-
berli and Akeley 1990], as shown in Figure 1. The real-time per-
formance is achieved by using approximate cone tracing, jittered
sampling (thereby reducing the number of necessary views), and
early culling techniques.

The major contributions are: (1) fast view synthesis for arbi-
trary lens sampling; (2) a DOF-conform metric for our single-pass
scene decomposition; (3) acceleration and quality improvements
for higher performance; (4) support for view-dependent shading.

2 Previous Work

The majority of the previous DOF rendering methods, except mul-
tiview accumulation methods (detailed in Section 3), have relied on
the postprocessing of a single-view image.

Gather methods spatially filter images by the COC size at each
pixel [Rokita 1996; Riguer et al. 2003; Scheuermann 2004;
Bertalmı́o et al. 2004; Earl Hammon 2007; Zhou et al. 2007; Lee
et al. 2009]. This filtering enables high performance, but often
leads to intensity leakage (focused areas leaking into background).
Anisotropic filtering [Bertalmı́o et al. 2004; Lee et al. 2009] par-
tially addresses this issue, but remains approximate.

Scatter methods [Potmesil and Chakravarty 1981] map source pix-
els onto COC sprites and blend them from far to near. The required
depth sorting is costly, even on modern GPUs, and the technique is
mostly used in offline software [Demers 2004].

Single-view methods lose hidden surfaces and lead to incorrect vis-
ibility (particularly problematic for a blurred foreground). Mul-
tilayer approaches decompose an image onto layers using pixel
depths. They blur each layer using a Fourier Transform [Barsky
et al. 2002], a pyramidal image processing [Kraus and Strengert
2007], anisotropic diffusion [Kass et al. 2006; Kosloff and Barsky
2007], splatting [Lee et al. 2008], or rectangle spreading [Kosloff
et al. 2009], and the layers are alpha-blended. Most of them start
from a single image and address partial visibility by color extrapo-

Image Plane Lens Plane Focal Plane

Pf

Pdf
d

ufpf

R

V0

E

E v
r

center ray

V

Figure 2: The thin-lens model.

lation into hidden areas. However, the extrapolation is approximate
and cannot recover true scene information, which becomes appar-
ent for a strong blur. Instead, Lee et al. [2008] used two-layer depth
peeling [Everitt 2001] to address the partial visibility, but it fails if
multiple layers need to be combined.

Although the alpha blending approximates visibility well for sep-
arated objects, discretization artifacts [Barsky et al. 2005] can ap-
pear when objects are spread across multiple layers. A few meth-
ods mitigated this problem using special image processing [Barsky
et al. 2005], information duplication [Kraus and Strengert 2007],
and depth variation [Lee et al. 2008], but the use of layers still re-
mains difficult. Although we also rely on layers, our solution is free
from discretization artifacts because we correctly simulate multi-
view visibility instead of using alpha blending.

3 Thin-Lens Model and Basic Method

In this section, we revisit the DOF discussion based on the thin-lens
model [Potmesil and Chakravarty 1981; Cook et al. 1984], which
ignores diffraction effects. While the majority of real-time work
concentrated on the COC size, we focus on lens rays and the 3D
and image points they intersect (see Figure 2).

For a lens with focal length F and a focal plane F at depth df , the
image plane I is situated at:

uf =
Fdf
df − F

for df > F. (1)

There is a one-to-one mapping between points Pf on F and pixel
positions pf on I. The mapping can be seen as a projection, or,
equivalently, the intersection of the center ray through Pf and the
center of the lens V0, with I. For an infinitesimal lens, V0 is the
camera’s pinhole. For a given pixel position pf , all lens rays pass
through a lens sample V on the lens plane and Pf .

We are interested in finding all 3D points P on a lens ray for a given
pixel pf . We describe these points with a 3D position on the center
ray and a 2D offset vector aligned along with F . Accordingly, we
write a lens sample V := V0 + Ev, where E is the radius of the
lens and v a 2D offset vector in a unit circle. For a given distance d
of P, the 2D offset vector R becomes:

R = E

(
df − d
df

)
v. (2)

There is a relationship with the COC when looking at the offset
vector r of P’s projection from V0 on I:

r = −uf

d
R =

(
EF (d− df)
(df − F)d

)
v =: C(d)v. (3)

Assuming |v| = 1, the classic COC radius is |C(d)|.

The multiview accumulation methods [Cook et al. 1984] shoot N
rays through Pf and lens samples {V1, ...,VN} for each pixel
pf . Alternatively, for a given lens sample V, all pixels pf can be
treated by rendering an image of the scene from V [Haeberli and

Akeley 1990]. The images are accumulated to yield the final result.
Since the cost of repeated rendering heavily depends on the scene
complexity and number of samples, these methods are generally
considered inappropriate for real-time use.

4 Method

Our method starts by decomposing the scene into several layers. We
discuss the layer spacing and basic idea of this decomposition (Sec-
tion 4.1) before focusing on the implementation and layer creation
(Section 4.2). The DOF blur is computed from this decomposition.
For each image pixel, we shoot lens rays against the layered repre-
sentation and accumulate their contributions (Section 4.3). Finally,
we show how to improve rendering quality and/or performance by
approximate cone tracing and jittering (Sections 4.4 and 4.5).

4.1 Single-Pass Scene Decomposition

The layered image-based scene representation is obtained in a sin-
gle render pass. We use a pinhole camera whose center coincides
with the lens center. In this configuration, all 3D points on a center
ray are projected onto a single image point. Consequently, the off-
set vector r (Equation 3) defines a relative displacement in the view
and facilitates the tracing of lens rays (Section 4.3).

The distance to the lens is virtually divided into depth intervals,
each representing one layer. In principle, a drawn fragment is out-
put on layer L if its fragment depth falls into L’s depth interval.
Each layer maintains an independent depth buffer. The resulting
layer images are equivalent to standard renderings with clipping
planes placed at the depth interval bounds of the layer and, hence,
the layers capture hidden surfaces (see Figure 3 for example).

The depth intervals could be chosen uniformly or be decreased near
the focal plane [Kraus and Strengert 2007], but accuracy can be im-
proved by spacing layers uniformly with respect to the signed COC
radiusC(d). By definition, any lens ray remains at the same relative
position inside the COC. If the COC growth δ is constant from one
layer to the next, so will, roughly, be the ray-travel distance in im-
age space. Thereby, the probability of improper visibility handling
is reduced. This can also be understood in terms of parallax. Near
the observer/lens, small movements lead to large changes, whereas
the farther scene appears to be mostly flat.

Computing the depth intervals starts from the near plane at dnear.
The intervals are defined using δ, the aforementioned ray-travel dis-
tance in image space. The layer index for depth d is then given by:

l =

⌊
Kdf
δ

(
1

dnear
− 1

d

)⌋
for dnear < d < dfar, (4)

where K := EF/(df − F). Figure 4 illustrates this spacing. The-
oretically, we can define a budget of layers. The images shown in
Figure 1 relied on only six layers leading to a δ of 10 pixels for a
800 × 600 resolution. To ensure quality for arbitrary scenes, we
choose the number of layers to fulfill a spacing requirement. This
was done for all other images and videos. C(d) has an upper bound
K and grows monotonically, but it is unbounded for d approaching
zero (Figure 4). The latter is not a problem since d is bound by the
near plane distance. Usually, even for a small δ (3 pixels), 16 layers
are enough (see supplementary material for an analysis).

4.2 Layer Creation

On current hardware, multiple render targets do not allow indepen-
dent z-buffers. Texture tiling is a work-around. However, it reduces
performance, is difficult to handle at boundaries, and the resolution

L9L8L7L6L5L4L3L2L1L0

Figure 3: An image-based scene representation that decomposes the leftmost scene onto ten layers ({L0, L1, .., L9}).

Cnear+4δ

Cnear+3δ

Cnear+2δ

Cnear

Cnear+1δ

L3

L2

L1

d

L0

C(d)

dnear

Figure 4: The layers uniformly spaced in terms of C(d). Red por-
tions represent the slight overlap at the layer boundaries.

is limited by the maximal texture size. Our solution uses so-called
layered rendering. Triangles are sent to a slice in an array of tex-
tures, described in the DirectXTMarray texture. It supports inde-
pendent depth buffers per entry. In the first pass, a GPU geometry
shader redirects each triangle to the layer according to the maxi-
mum depth of its vertices. The second pass, applied to all pixels
of the layer images, treats large triangles crossing multiple layers.
We read a pixel depth, find its corresponding layer L, and copy the
pixel to L if its depth is smaller than the depth stored in L. This is
a manual depth test and ensures that we keep the nearest fragment
in each layer. The intuition for using the maximum vertex depth
of each triangle is based on the observation that, if a triangle over-
laps a layer boundary, it is already partly in the farther layer and
its probability to be hidden in the nearer layer is potentially higher.
Our choice thus favors closer hidden geometry. Our solution is ap-
proximate because we do not split triangles at the layer boundaries.
Consequently, boundary triangles can delete information by writing
pixels in a layer they do not belong to. In practice, the differences
to an accurate method are small, but the solution is more efficient.

The fragment copy step is also used to simultaneously make the
layers slightly overlap by 10%. The overlap removes seam artifacts
arising from pixel quantization. Further, the next section explains
how our ray-tracing step also benefits from this information.

4.3 DOF Blur Using Layered Representation

Given our scene representation, we compute the DOF blur. Con-
ceptually, each image pixel evaluates one ray per lens sample. The
resulting colors are then accumulated. We rely on Equation 2 to
trace these rays and Equation 3 to sample the layer textures at the
resulting 2D pixel position. Each layer corresponds to a depth inter-
val to which we can associate a segment of the lens ray. The layers
are sequentially tested against their corresponding lens-ray segment
and the traversal is stopped once a surface is hit. All lens rays are
treated iteratively in a fragment shader. The colors of the impact
points are averaged to yield the final color. There is no condition on
the origin of rays nor on the way their contributions are averaged.
This enables the generation of various bokeh aspects including large
highlights, essential for realistic images [Buhler and Wexler 2002;
Lee et al. 2008]. Further, using a Poisson disk sampling leads to an
ideal distribution [Cook 1986].

Ray Traversal In each layer, our representation is a height field
against which we test the lens rays. Precise rendering techniques
exist [Baboud and Décoret 2006], but we apply a more efficient
iterative approximation inspired by the Method of False Position. It
is feasible because our layer spacing ensures that rays are almost
perpendicular and the height values are bound by the layer extents.

For a given layer, we need to test the corresponding ray segment
s. The two endpoints of s correspond to two texture positions with
stored height values du and dl. In each step, our iterative method
assumes that the height field varies linearly along the ray. This
means that the surface is initially defined solely by du and dl. We
intersect swith this linear approximation to get an intersection point
I . Let d̂ be the height of I . At the corresponding texture position,
a height value d is fetched. If d < d̂, there is a surface intersection
before reaching I . With a binary search, we can rapidly find the
accurate intersection. If d > d̂, we split s at I and restart with the
farther sub-segment. Figure 5(left) shows an example.

Care has to be taken when layer pixels are empty. Depending on
the ray’s orientation, we initialize their values either to the upper
or lower bound of the layer’s depth interval to produce an intersec-
tion within the layer boundaries (Figure 5(right)). In theory, the
approximation does not perform well at boundaries, but the slight
layer overlap and our spacing strategy remedy this to a large extent.
Three iterations are usually enough for convergence. Figure 5 il-
lustrates two examples. It is even more efficient to initialize du and
dl with the layer’s depth bounds and only perform the two initial
lookups if the pixel underneath the first intersection point is empty.

0

1

0

 : intersection : lens ray segment : surface approximation: left/right surface samplen n

2

3

n

la
ye

r d
ep

th
 b

ou
nd

s

I2

I1

d

0

10
I2

I1 2

3

Figure 5: An example of the intersection test. The thick line is
the layer’s height field. We iteratively sample the surface at inter-
val endpoints to refine a piecewise-linear approximation to find a
possible intersection point.

Handling Off-Screen Pixels During the traversal, the ray might
actually leave the layer image boundary. On the one hand, this
problem can be solved by producing a decomposition of the scene
from behind the lens with a viewport that encompasses all lens rays.
On the other hand, this implies an increase of texture resolution to
enable a sharp image on the focal plane. Therefore, we keep the
decomposition from the lens center and discard all rays that leave
the frustum. In practice, the degradation is hardly noticeable and
only affects pixels in the periphery of the image, whereas the central
screen part shows the highest image quality.

Early Layer Culling The layering method incurs large blank im-
age areas. Skipping intersection tests in such regions leads to sig-
nificant acceleration without a loss of quality. For a given distance,
all lens rays will pass through the COC. The pixel region of interest
can thus be bound by the maximum COC, which is always real-
ized at one of the depth bounds of the layer. If a minimum depth
value in this region is greater than the depth bounds of the layer, no
intersection can occur and the layer is safely skipped.

To find the minimum depth, we rely on an N-Buffer [Décoret 2005],
which is similar to a mipmap, except that each level has the same
resolution as the source image. A pixel in the nth N-Buffer level
stores the minimum value of all pixels in a square window of size

Ref.

Our

Our cone

1 N=

1 N=

1 N=

8

8

8

16

16

16

32

32

32

Figure 6: Results without (upper row) and with (middle row) ap-
proximate cone tracing and reference images (lower row).

2n around the pixel. With this, it is possible to find the minimum
depth in an arbitrary square area with only four texture accesses
corresponding to four overlapping squares. The accuracy is much
higher than conventional mipmap tests.

4.4 Approximate Cone Tracing

Similarly to the multiview accumulation methods, our solution
needs sufficient lens samples for a strong blur because a single ray
only results in one precise impact point. In other words, rays miss
between the lens samples. We hence thicken the rays to cones
whose radius is defined by half the distance to its neighboring
rays. This gives non-intersecting volumes, except for the focal point
where all rays meet. These cones correspond to an infinite ray set
centered around the original ray and lead to higher quality.

Tracing cones can be expensive. Instead of an accurate evaluation,
we approximate the computation. We define the diameter of the
cone around a lens ray at distance di as λ|C(di)|, where λ is the
mean distance among the lens samples. Given an impact point at
distance di, we consider all pixels lying in a window Wc accord-
ing to the cone’s diameter. Then, we compute a coverage value
(an approximation of the ratio of blocked rays to the total number
rays) and an average color in Wc. For efficiency, we use a mipmap
of the layer image where we augmented the initial color by an al-
pha channel in which we indicate the absence or presence of data
with the values zero and one, respectively. This can be achieved by
clearing the layer image’s color and alpha to zero and render the
scene’s fragments with an alpha of one during the decomposition.
Consequently, the mipmapped alpha indicates the pixel coverage v1
which is the ratio of pixels in Wc that received a color to those that
remained empty during the decomposition. The average color c1
in Wc can be obtained by dividing the mipmapped RGB by v1. If
v1 equals one, the entire cone has been blocked and the color c1 is
reported, else we assume that only a fraction (v1) of rays resulted in
c1, whereas the other rays continued the traversal. We estimate the
ray accumulation probabilistically, using v1c1 + (1− v1)c2, where
c2 is the future contribution obtained by continuing the traversal
along the center ray of the cone.

Artifacts usually associated to mipmaps are not introduced, because
λ is much smaller than one. For instance, λ is 0.137 for 32 lens
samples in our implementation which only results in a 4.4 pixel di-
ameter (mipmap level of 2.1) for a 32-pixel COC radius. Figure 6
shows the examples of synthesized images generated with and with-
out the cone tracing. We see that it quickly removes the fine grain
and approaches the reference with many samples.

4.5 Jittered Lens Sampling

The accumulation buffer method [Haeberli and Akeley 1990] relies
on multiview rendering which implies the use of the same sampling
pattern for each pixel. Insufficient sampling leads to visible aliasing

Ref. OurPinhole view

Reference

Our
8 16 32 64

32 samples

Ref. Our

32 samples

Ref.

64 samples

8 samples

Figure 7: Jittering avoids aliasing (yellow frame), and approaches
the quality of higher sampling rates (green frame). It is a good
strategy, even in complex scenes (red frame).

artifacts, especially along object boundaries. Our method allows us
to change sample distributions on a per-pixel basis, trading these
artifacts for less objectionable noise. The quality of 32 jittered sam-
ples approaches and even exceeds the quality of 64 samples to some
extent (Figure 7).

To improve upon the aliasing artifacts, one could compute k sam-
ple sets and choose randomly amongst them for each pixel. Even
though near-optimal sampling patterns could be produced, the use
of shader variables to encode such sampling patterns would be
expensive. The best sampling behavior resulted from Halton se-
quences [Keller 1996]. If N samples are used per pixel, a precom-
puted sequence of 2N samples allows us to obtain 2N differing,
but overlapping sample sets by defining an offset in [0, 2N − 1]
per pixel. The quality is very high, but the performance penalty is
huge, because shader compilers seem unable to optimize for con-
stant shader values when the access pattern differs per pixel.

The trade-off between performance and quality was the jittering of
the lens rays by a value encoded in a noise texture. The four compo-
nents of a texel allow 16 pairwise combinations. Each combination
is applied to 1/16th of the lens samples. This solution performed
three times faster than the previously mentioned jittering and has a
marginal impact on the overall performance.

5 Results

Image Quality Our representative images shown in Figure 1
demonstrate the artifact-free results of our method. Intensity leak-
age, discretization, and bilinear magnification are avoided. To com-
pare our results, we implemented three state-of-the-art approaches:
Haeberli and Akeley’s [1990] accumulation buffer (reference), the
multilayer approach by Kraus and Strengert [2007], and the gather
solution by Lee et al. [2009]. To measure image quality, we eval-
uate the peak signal-to-noise ratio (PSNR). To better compare per-
ceptual quality, we rely on the structural similarity (SSIM) [Wang
et al. 2004] (a rating of 0=worst to 1=best).

We first compare a scene that exhibits strong foreground blur (the
first row of Figure 8) to illustrate approximation differences. Our
method qualitatively captures the varying visibility of the reference.
Note the translucent foreground that partially reveals the left angel
and details of the horse. For most rays correct intersections are
found, outweighing the fewer erroneous intersections. Hence, the

(a) Pinhole (b) Ref. (c) Our (d) Multilayer (e) Gather

(f) Pinhole (g) Ref. (h) Our (i) Multilayer (j) Gather

Figure 8: From upper to lower row: foreground blur, distorted geometries, bokeh, and close-ups (green = four times difference to reference).

integration of the rays leads to a good overall estimate. Wrong in-
tersections are most problematic if several rays result in the same
wrong color response. This happens mostly along silhouettes, near
the focal plane. In theory, here the highest error occurs, but in prac-
tice, this results in a difficult-to-perceive small and smooth tran-
sition (green zoom: error scaled four times). The other methods
suffer from the lack of hidden surface information. The multi-
layer method well approximates foreground boundaries and results
in smooth variations, whereas the gather method suffers from ar-
tifacts. Nevertheless, the extrapolation cannot reconstruct missing
details. Our method shows the highest score (SSIM 0.97, PSNR
30.84 dB) compared to the other two (0.91/22.28 and 0.88/19.53
for multilayer and gather, respectively).

We also investigated a challenging optical phenomenon. When the
focal plane is situated between thin objects, the geometry appears
distorted (see the red boxes in Figure 8); the two branches are cross-
ing but appear separated. This effect can be reproduced with a real
camera. The effect necessitates a close-to-physically accurate sim-
ulation that cannot be obtained with the other two methods.

The feasibility of our method for bokeh is illustrated in Figure 8
(yellow boxes). Our sample distributions and variable blending
weights allow us to express complex light distributions, whereas
the other two methods rely on Gaussian blur to remain compatible
with downsampling.

Finally, in contrast to most real-time approaches, we can perform
view-dependent evaluations. This is achieved by extracting not only
color, but also surface properties during the decomposition step.
Figure 9 shows an example with environment-map-based reflec-
tions. We extracted diffuse, ambient lighting, normals and shininess
exponents, to apply a Phong model when the ray hits the surface.
For our cone tracing, we mipmap these values. Our view-dependent
evaluation resulted in a score of (0.97/41.38), whereas our view-
independent evaluation reached (0.93/27.68). As a reference, the
standard pinhole image only reaches a value of (0.59/18.12).

Rendering Performance We measured the rendering perfor-
mance of all four methods in terms of frame rate (Table 1). The
benchmark used the DirectX 10 API and a Pentium 2.83 GHz
Core2Quad with an NVIDIA GTX285. Since each method depends
on different parameters, we tested several configurations with re-
spect to the number of views and layers.

(a) Scene (b) View-indep. (c) View-dep. (d) Ref.

Figure 9: Reflective materials blurred with (b) view-independent
and (c) view-dependent shading. (d) is the reference.

The gather method [Lee et al. 2009] was the fastest due to its sim-
plicity. For 32 lens samples, our method showed frame rates faster
than the multilayer method, but it allows more than 30 fps even for
many samples and layers. Even for the extreme cases (16 layers and
256 samples), our method ran in more than 8 fps. Nonetheless, 32
and 64 lens samples proved sufficient in all our test scenes, each for
dynamic and static scenes, respectively. The relatively high perfor-
mance results from the early culling and ray termination (together
up to 50% speed-up). In contrast, the reference method slowed
down significantly with increasing scene complexity and sampling.

6 Discussion and Conclusion

Our method is a faster alternative solution to the multiview accu-
mulation method [Haeberli and Akeley 1990]. It is highly scal-
able with the number of views and layers. The major limitation is
the discrete layer decomposition. We addressed this by a continu-
ous surface capture inside each layer and a quality-favoring spac-
ing metric, which also makes our method robust to animation (see
video), avoiding temporal issues. Further, even if the entire scene
were flattened on a single layer, artifacts are limited (Figure 10).

Another difference with [Haeberli and Akeley 1990] is the lack of
anti-aliasing because our method uses an image-based representa-
tion. Usually, the out-of-focus elements do not need anti-aliasing.
A multisample shot could be produced and then blended separately
for the focused elements. Alternatively, we could use multisample
buffers which are available on newer graphics hardware.

Although the current implementation already produces high-quality
results, it could be modified by trading performance for even more
accuracy. For instance, depth peeling can capture all hidden sur-
faces, but implies several render passes and complex tracing. Brute-

Table 1: Performance comparison of the four methods in terms of frame rate. The benchmark was done at a resolution of 800 × 600.

Gather Multilayer Reference Our method

N (number of views) 1 1 8 16 32 64 8 16 32 64 256

M (number of layers) 1 8 12 16 1 8 12 16 8 12 16 8 12 16 8 12 16 16

Toys (67 K triangles) 223 54 38 29 144 75 40 21 102 82 70 77 67 56 62 48 40 38 30 26 9
Dinosaurs (300 K triangles) 175 50 37 28 59 29 14 7 92 71 60 72 57 49 53 42 36 34 27 24 8
Angels (1.76 M triangles) 59 33 26 21 9 4 2 1 43 38 34 38 34 31 32 28 25 24 21 19 8

1 layer 2 layers

3 layers 4 layers

Figure 10: The effect of the number of layers on the final result.

force scanning finds accurate intersection points, but necessitates
more texture lookups. Enlarging the viewport can cover off-screen
areas, but requires a higher resolution rendering.

In summary, our method is a good alternative to traditional solu-
tions and produces high-quality DOF blur in real time. It is of in-
terest for offline productions, as well as, interactive scenarios.

Acknowledgements: We thank the anonymous reviewers, H. Bez-
erra, L. Baboud, and R. Herzog for their comments. The 3D models
and HDR map are courtesy of the Large Geometric Models Archive
at Georgia Tech, AIM@Shape, INRIA GAMMA, Taschen Books
(500 3D Objects), Sven Dännart, and SolidWorks Labs. This work
was supported by the Cluster of Excellence MMCI (www.m2ci.org).

References

BABOUD, L., AND DÉCORET, X. 2006. Rendering geometry with
relief textures. In Proc. Graphics Interface, 195–201.

BARSKY, B., BARGTEIL, A., GARCIA, D., AND KLEIN, S. 2002.
Introducing vision-realistic rendering. In Proc. Eurographics
Rendering Workshop, 26–28.

BARSKY, B., TOBIAS, M., CHU, D., AND HORN, D. 2005. Elim-
ination of artifacts due to occlusion and discretization problems
in image space blurring techniques. Graph. Models 67, 584–599.

BERTALMÍO, M., FORT, P., AND SÁNCHEZ-CRESPO, D. 2004.
Real-time, accurate depth of field using anisotropic diffusion and
programmable graphics cards. In Proc. 3DPVT, 767–773.

BUHLER, J., AND WEXLER, D. 2002. A phenomenological model
for bokeh rendering. In Sketch program ACM SIGGRAPH.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. Computer Graphics 18, 3, 137–145.

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Graphics 5, 1, 51–72.

DÉCORET, X. 2005. N-buffers for efficient depth map query. In
Proc. Eurographics, 393–400.

DEMERS, J. 2004. Depth of field: A survey of techniques. In GPU
Gems. Addison-Wesley, ch. 23, 375–390.

EARL HAMMON, J. 2007. Practical post-process depth of field. In
GPU Gems 3. Addison-Wesley, ch. 28, 583–606.

EVERITT, C. 2001. Interactive order-independent transparency.
White paper, NVIDIA 2, 6, 7.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
Hardware support for high-quality rendering. Proc. ACM SIG-
GRAPH, 309–318.

KASS, M., LEFOHN, A., AND OWENS, J. 2006. Interactive depth
of field using simulated diffusion on a GPU. Tech. rep., Pixar.

KELLER, A. 1996. The fast calculation of form factors using low
discrepancy sequences. In Proc. Spring Conf. on CG, 195–204.

KOSLOFF, T., AND BARSKY, B. 2007. An algorithm for rendering
generalized depth of field effects based on simulated heat diffu-
sion. In Proc. ICCSA, 1124–1140.

KOSLOFF, J., TAO, W., AND BARSKY, A. 2009. Depth of field
postprocessing for layered scenes using constant-time rectangle
spreading. In Proc. Graphics Interface, 39–46.

KRAUS, M., AND STRENGERT, M. 2007. Depth-of-field rendering
by pyramidal image processing. In Proc. Eurographics, 645–
654.

LEE, S., KIM, G. J., AND CHOI, S. 2008. Real-time depth-of-
field rendering using splatting on per-pixel layers. Computer
Graphics Forum 27, 7, 1955–1962.

LEE, S., KIM, G. J., AND CHOI, S. 2009. Real-time depth-of-
field rendering using anisotropically filtered mipmap interpola-
tion. IEEE Trans. Vis. and CG 15, 3, 453–464.

MATHER, G. 1996. Image blur as a pictorial depth cue. Biological
Sciences 263, 1367, 169–172.

POTMESIL, M., AND CHAKRAVARTY, I. 1981. A lens and aper-
ture camera model for synthetic image generation. Proc. ACM
SIGGRAPH 15, 3, 297–305.

RIGUER, G., TATARCHUK, N., AND ISIDORO, J. 2003. Real-time
depth of field simulation. In ShaderX2. 529–556.

ROKITA, P. 1996. Generating depth-of-field effects in virtual real-
ity applications. IEEE CG and its Application 16, 2, 18–21.

SCHEUERMANN, T. 2004. Advanced depth of field. In GDC.

WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SIMONCELLI,
E. P. 2004. Image quality assessment: From error visibility to
structural similarity. IEEE Trans. Image Proc. 13, 4, 600–612.

ZHOU, T., CHEN, J., AND PULLEN, M. 2007. Accurate depth of
field simulation in real time. Computer Graphics Forum 26, 1.

