
37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

Markov Model Based Congestion Control for TCP

Shan Suthaharan
University of North Carolina at Greensboro, Greensboro, NC 27402, USA

ssuthaharan@uncg.edu

Abstract

The Random Early Detection (RED) scheme for
congestion control in TCP is well known over a decade.
Due to a number of control parameters in RED, it cannot
make acceptable packet-dropping decision, especially,
under heavy network load and high delay to provide high
throughput and low packet loss rate. We propose a
solution to this problem using Markov chain based
decision rule. We modeled the oscillation of the average
queue size as a homogeneous Markov chain with three
states and simulated the system using the network
simulator software NS-2. The simulations show that the
proposed scheme successfully estimates the maximum
packet dropping probability for Random Early Detection.
It detects the congestion very early and adjusts the
packet-dropping probability so that RED can make wise
packet-dropping decisions. Simulation results show that
the proposed scheme provides improved connection
throughput and reduced packet loss rate.

1. Introduction

The Random Early Detection (RED), an active queue
management technique, has been suggested as a solution
to solve network congestion problem in TCP/IP networks
[1]. However, it does not provide an acceptable solution
because of its dependency on a number of control
parameters such as wq (weight used in exponential
weighted averaging), th_min, th_max (minimum and
maximum thresholds used for queue management) and
max_p (maximum packet-dropping probability) and
unpredictable system parameters such as round-trip time
of network connections, load of the network (flows or
connections). RED is recommended by the Internet
Engineering Task Force (IETF) for use in the routers of
Next Generation [2], therefore, our goal in this paper is to
solve this problem with minimal changes to the overall
RED algorithm.

RED manages the queue dynamically by randomly
dropping packets with increasing probability as the
average queue size increases. It makes the packet-
dropping decision at time t based on the dynamics and the
state of the average queue size at time t. It increases the
packet drop rate linearly from zero (as the average queue
size at th_min) to a drop rate of max_p (when the average

queue size reaches th_max). Thus the average queue size
plays a major role in the RED's packet-dropping decision.
The idea behind RED active queue management technique
is to detect congestion early and send early congestion
notification to the end-hosts so that they can adjust their
transmission rate to reduce packet loss and increase
overall throughput. However, the main weakness of RED
is that the instability caused by the highly oscillating
average queue size [3]. The oscillation is caused by the
difficult nature of selecting accurate RED's control
parameters and unpredictable system parameters, such as
amount of network traffic and the round-trip time (RTT)
of network connections [4]. This oscillation problem leads
to decreased throughput and increased packet-dropping
rates.

An Adaptive Random Early Detection (ARED)
algorithm has been recently suggested to address this
problem [5, 6]. The ARED dynamically updates the
maximum packet-dropping rate max_p in order to keep
the average queue size closer to a target queue size that
may be chosen by the system administrator to compromise
between low delay and high utilization. In general, the
target queue size is selected at half way between the
thresholds th_min and th_max. The average queue size
and the target queue size are compared once every small
interval ∆ t. If the average queue size is greater than the
target queue size and the maximum packet-dropping
probability max_p is less than or equal to 0.5, the max_p
is increased by a constant α . Similarly if the average
queue size is less than the target queue size and the max_p
is greater than or equal to 0.01 the max_p is decreased by
β . It uses the AIMD (additive-increase-multiplicative-
decrease) policy to increase and decrease the max_p as
appropriate. The ARED maintains average queue size and
provides reduced parameter sensitivity in the steady-state
and low varying queue size conditions. The AIMD
process does not consider the stochastic behavior of the
queue, thus the adaptive nature of the ARED fails when a
large number of flows with large varying queue size are
present in a network.

As we have seen, the main idea of ARED is to adapt
max_p to keep the average queue size with the target
range between th_min and th_max at time t. In this paper
we take a different approach to update the max_p at time t
and keep the average queue size closer to the target range.
We use the stochastic nature of the average queue size and

37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

its oscillation in the state space {0, 1, 2} to achieve this
goal. Using three states Markov model we obtain
transition probability matrix dynamically. The matrix at
time t will be used to predict the average queue state at
time t+1. In contrast to ARED that uses only the average
queue size information at time t, the proposed
stochastically adaptive random early detection (SARED)
technique uses both the current average queue size and the
predicted queue size information together with their
corresponding transition probabilities to alter the max_p.
Our finding is that the use of Markov model in making
modification to max_p dynamically yields better
performance than ARED and Feng schemes in terms of
reducing packet loss rate and increasing throughput gain.

The rest of the paper is organized as follows: Section 2
presents a simple example to show the motivation behind
the SARED. In section 3 we present the proposed SARED
technique with two algorithms (i) for calculating transition
probabilities for average queue size and (ii) for adapting
max_p to adjust the average queue size. Section 4 presents
results and findings from five simulations to show the
effectiveness of SARED in terms of increasing throughput
and reducing packet loss. In section 5 conclusions are
presented.

2. The Motivation SARED

The purpose of the original adaptive RED [5] is to
adapt the max_p to keep the average queue size between
min_th and max_th. However, it has been recently
modified to adapt the max_p to keep the average queue
size with a target range half way between min_th and
max_th [6]. The constraints of target range and the
thresholds negatively impact on the packet throughput and
packet loss. For example when there is a sharp change in
the level of congestion, the ARED tries to bring the queue
size to a target range instead of helping the RED to
improve the throughput and reduce packet loss. Although
we will provide simulation results later in detail, we show
here two examples of an experiment in Figures 1(a) and
1(b) to help understand the motivation behind the
development of stochastically adaptive RED. These
figures show that a sharp increase in the level of traffic
congestion at 120th seconds in the entire simulation time
of 360 seconds, how well the ARED successfully bring
the average queue size to the target level with throughput
of 89.94%, and how well the SARED increases the
average queue size to handle the significant increase in the
level of traffic congestion with throughput of 91.15%. The
SARED increases the throughput and decreases the packet
loss by adjusting the average queue size above the target
range (the same as the one used in ARED) used in the
SARED. It occurs because the SARED monitors the
changes in the average queue size and predicts the future

changes in the queue size, and thus it adapts the max_p to
increase connection throughput and reduce packet loss.

(a)

(b)

Figure 1: (a) ARED with an Increase in Congestion. (b)
SARED with an Increase in Congestion.

3. Stochastically Adaptive RED

The RED makes the packet-dropping decision at time t
based on the dynamics and the state of the average queue
size at time t. The average queue size can be in one of the
possible states 0, 1 and 2 at time t, where 0 indicates the
average queue size is in the interval [0, th_min], the state
1 indicates the average queue size is in the interval
(th_min, th_max), and the state 2 indicates the average
queue size is in the interval [th_max, buffer_size]. The
RED increases the packet drop rate linearly from zero (as
the average queue size at th_min) to a drop rate of max_p
(when the average queue size reaches th_max). The
ARED and the proposed SARED attempt to modify the
max_p appropriately. In the SARED, which adapts the
stochastic behavior of the average queue size, the queue
management system (QMS) observes the stochastic
behavior of the average queue size at a discrete set of

37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

times t0, t1, t2 …t, ….., where ti – ti-1 is very small. Let the
successive observations of average queue size be denoted
by X0, X1, …. Xt, …. and therefore it can be assumed that
Xt is a random variable. The value of Xt represents the
state {0, 1 or 2} at time t of the system. Therefore, the
system has (i) a finite number of states, (ii) Xt is a random
variable and (iii) Xt depends on Xt-1 and thus the sequence
{Xt} is a Markov chain [7]. Our approach is based on the
RED algorithm, therefore the average queue size at time ti
depends on the average queue size at time ti-1, and we
approximate the behavior of the average queue size Xt to a
homogeneous Markov chain within a small interval. Its
probability mass function and 1-step transition probability
function are defined respectively as follows:

() []j tp t P X j= = , 1(1) [|]jk t tp P X k X j+= = = , for

any integer 0t ≥ , where j, k ∈ {0, 1, 2}.

We simply denote these probabilities as pj and pjk

respectively. Using the notations, the transition
probabilities of the Markov chain {Xt} with state space
{0, 1, 2} is exhibited in the following matrix form:

00 01 02

10 11 12

20 21 22

(1)

p p p

P p p p

p p p

=
 
 
 
  

One of the main goals of ARED and SARED is to keep

the oscillation in the queue size within a range, thus we
assume if the system is in a particular state it has high
probability to be within the same state for a long period of
time. Therefore, the following initial 1-step transition
probability has been chosen:

0.9 0.05 0.05

(1) 0.05 0.9 0.05

0.05 0.05 0.9

P =
 
 
 
  

Similarly our goal is to keep the average queue size in

the middle range between the thresholds th_min and
th_max, therefore, p0 = 0.05, p1 = 0.9, p2 = 0.05 are used.
The QMS calculates the 1-step transition probability
matrix dynamically at time ti before making its packet-
dropping decisions using the stochastic behavior of the
average queue size in the predetermined interval [ti-1, ti] .
The small interval makes the homogeneous assumption of
the average queue size valid:

if (old_ave < th_min && new_ave < th_min)

 n00 = n00 + 1.0;

if (old_ave < th_min && (new_ave >= th_min
&& new_ave < th_max))

 n01 = n01 + 1.0;
if (old_ave < th_min && new_ave >= th_max)

 n02 = n02 + 1.0;
if ((old_ave >= th_min && old_ave < th_max)
&& new_ave < th_min)

 n10 = n10 + 1.0;
if ((old_ave >= th_min && old_ave < th_max)
&& (new_ave >= th_min && new_ave < th_max))

 n11 = n11 + 1.0;
if ((old_ave >= th_min && old_ave < th_max)
&& new_ave >= th_max)

 n12 = n12 + 1.0;
if (old_ave >= th_max && new_ave < th_min)

 n20 = n20 + 1.0;
if (old_ave >= th_max && (new_ave >= th_min
&& new_ave < th_max))

 n21 = n21 + 1.0;
if (old_ave >= th_max && new_ave >= th_max)

 n22 = n22 + 1.0;

n0 = n00+n01+n02
n1 = n10+n11+n12
n2 = n20+n21+n22

p00 = n00/n0; p01 = n01/n0; p02 = n02/n0;
p10 = n10/n1; p11 = n11/n1; p21 = n21/n1;
p20 = n20/n2; p21 = n21/n2; p22 = n22/n2;

In this algorithm nij represents the number of times

the average queue size is changed from state i to state j
from the time the queue management start monitoring the
queue to the current time, where i, j = 0, 1 or 2. Unlike
ARED, which makes its packet-dropping decision at ti
based only on the current average queue size at time ti, the
proposed SARED uses both current average queue size at
ti and the predicted queue status information (transition
probabilities generated using the stochastic behavior of
the average queue size in the interval [ti-1, ti]) at ti+1 to
make packet dropping decision at ti. The SARED
algorithm is given below:

if (now > lastset + interval) {
 if (ave <= th_min+part) {
 if (max_p <= 0.01) {
 alpha=p01*(p0+p2); beta=p00*p1;
 max_p=max_p*beta+alpha; lastset=now;}
 else if (max_p >= 0.5) {
 beta=(p22-p21-p10)*p1;
 max_p=max_p*beta; lastset=now;}
 else {
 beta=(p11-p10)*p1;
 max_p=max_p*beta; lastset=now;}
 }
 else
 if (ave>th_min+part && ave<th_max-part){
 if (max_p <= 0.01){
 alpha=p01*(p0+p2);
 max_p=max_p+alpha; lastset=now;}
 else if (max_p >= 0.5){
 beta=(p22-p21)*p1;
 max_p=max_p*beta; lastset=now;}
 else {

37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

 alpha=p12*(p0+p2); beta=p11*p1;
 max_p=max_p*beta+alpha; lastset=now;}
 }
 else if (ave >= th_max-part){
 if (max_p <= 0.01){
 alpha=(p01+p12)*(p0+p2);
 max_p=max_p+alpha; lastset=now;}
 else if (max_p >= 0.5)
 {
 alpha=p21*(p0+p2); beta=p22*p1;
 max_p=max_p*beta+alpha; lastset=now;}
 else {
 alpha=p12*(p0+p2);
 max_p=max_p+alpha; lastset=now;}
 }
}

In this algorithm the variable part is set to

0.4*(th_max-th_min) to keep the average queue size half
way between th_min and th_max in a steady state situation
and to keep the queue size closer to the range [th_min,
th_max] when there is a sudden increase in the level of
congestion. The interval set to 0.5, which is kept small to
satisfy the homogeneous property of the Markov model.
The motivation behind this SARED algorithm is to adapt
the max_p to remain closer to the range [0.01, 0.5] based
on the probabilities that a state can be visited, and that the
average queue size can move from one state to another.
For example if the average queue size is in the state 0
(meaning less than th_min+part) and the current max_p is
greater than 0.5 the max_p should be reduced and this will
be done by multiplying the current max_p by (p22-p21-
p10)*p1 to let the source to increase the transmission rate.
With similar reasons other multiplicative (beta) and
additive (alpha) factors are determined as shown in the
above algorithm. The statement lastset=now and the
condition now > lastset + interval allow the
QMS to calculate transition probabilities before making
packet dropping decision.

4. Simulations

We present results and findings from five different
simulations to demonstrate: (i) the effectiveness of our
proposed SARED in improving packet throughput and
reducing packet loss when there is a sudden change in the
level of congestion with small amount of tcp traffic (ii) the
effectiveness of our proposed SARED in improving
packet throughput and reducing packet loss when there is
a sudden change in the level of congestion with large
amount of tcp traffic (iii) some oscillation problems when
small amount of traffic present (iv) the effectiveness of
our proposed SARED when the system is in steady-state
(meaning there is no sudden change in the traffic level)
and (v) the effectiveness of the proposed SARED
compared with Feng and ARED schemes. The simulations
are conducted using ns-2 [8]. The main purpose of this

paper is to propose a better technique than ARED and
allow this technique to be deployed with RED
implementations in the next generation Internet routers.
Also our intention is not to show that SARED is optimal
and therefore we didn’t compare the results with the
BLUE [9], which in general gives better throughput and
reduced packet loss in the experimental scenarios
considered in this paper.

4.1 First Simulation

In this simulation we use the network configuration

shown in Figure 2. The RED’s control parameters
employed at the bottleneck router R1 for this simulation
are as follows: th_min = 40, th_max = 120, buffer_size =
280, wq = 0.002 and max_p = 0.125. For RED and
ARED, the recommendations are for th_max to be set to
three times th_min [5]. The duration of the simulation is
360 sec and the mean packet size is 1500.

Figure 2: A Network Configuration

In the simulation we have 10 tcp flows running until

the entire duration of 360 seconds, but 90 more tcp flows
started at 120 seconds to make sudden change in the
congestion level and they last for next 180 seconds. The
queue length and average queue length results using
ARED and SARED are shown in Figures 3(a) and 3(b)
respectively.

(a)

37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

(b)

Figure 3: (a) ARED with an Increase in Congestion using
Medium No. of TCP-flows. (b) SARED with an Increase
in Congestion using Medium No. of TCP-flows.

We observed 9680 packets lost and 86576 packets sent
with ARED simulation shown in Figure 3(a) whereas we
observed 8410 packets lost and 86586 packets sent with
SARED simulation shown in Figure 3(b). Our finding
from this experiment is that when a network is congested
with a small amount of traffic the ARED maintains the
average queue size within the target range as expected.
However, SARED adaptively pushes the average queue
size to above the target range to increase the throughput
and reduce the packet loss and this is a preferred scenario.

4.2 Second Simulation

In this simulation we have 10 tcp flows running until

360 seconds and 210 more tcp flows started suddenly and
last for next 180 seconds. The results are shown in Figures
4(a) and 4(b). We observed 13316 packets lost and 86679
packets sent in the ARED simulation shown in Figure
4(a), whereas we observed 13264 packet lost and 86692
packets sent with SARED simulation shown in Figure
4(b). Our finding from this experiment is that when a
network is congested with a large amount of traffic, the
SARED and ARED behaves the same way in terms of
controlling the average queue size as shown in Figures
4(a) and 4(b), however, the SARED gives slightly better
results with increased throughput and reduced packet loss.
It can be clearly seen, by comparing Figure 3(a) and
Figure 4(a), that the ARED lost its purpose of maintaining
the average queue length within the target range when a
large amount of increase in the congestion level.

4.3 Third Simulation

In this simulation we used the same network
configurations as per previous simulations, but this time
we used 50 more tcp flows instead of 90 or 210. The

results are shown in Figures 5(a) and 5(b). We observed
6519 packets lost and 86530 packets sent with ARED
simulation shown in Figure 5(a) whereas we observed
5192 packets lost and 86572 packets sent with SARED
simulation shown in Figure 5(b).

(a)

(b)

Figure 4: (a) ARED with an Increase in Congestion using
Large No. of TCP-flows. (b) SARED with an Increase in
Congestion using Large No. of TCP-flows.

Our finding from this experiment is that when very

small amount of traffic involve in changing the congestion
suddenly, there is not enough data for the SARED to
calculate the transition probabilities to predict the average
queue size and adapt the max_p appropriately, thus it
oscillates a lot to correct the max_p. However, it still (i)
increases the throughput (ii) reduce the packet loss and
(iii) pushes the average queue length to deal with the
sudden change in the traffic to improve the throughput and
reduce the packet loss.

4.4 Fourth Simulation

In this simulation also we used the same network
configurations as per previous simulations, but this time
we used steady-state congestion with 60 and 140 tcp
flows. The results are shown in Figures 6(a) and 6(b), and

37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

Figures 7(a) and 7(b) respectively. We obtained the
following results for 60 tcp traffic: we observed
12341packets lost and 86577 packets sent with ARED
simulation shown in Figure 6(a) whereas we observed
9773 packets lost and 86577 packets sent for SARED as
shown in Figure 6(b). Similarly, we obtained the
following results for 140 tcp traffic: we observed 21594
packets lost and 86657 packets sent with ARED
simulation shown in Figure 7(a) whereas we observed
20119 packets lost and 86657 packets sent for SARED as
shown in Figure 7(b). Our finding from this experiments is
that in steady-state scenario once again the ARED
concentrates on controlling average queue size within the
target range whereas the SARED pushes the average
queue size up, but closer to the target range so that
increased throughput and reduced packet loss can be
obtained.

(a)

(b)

Figure5: (a) ARED with an Increase in Congestion using
Large No. of TCP-flows. (b) SARED with an Increase in
Congestion using Large No. of TCP-flows.

4.5 Fifth Simulation

The fifth simulation is two folded: (i) is to compare the
performance of Feng, ARED and SARED techniques in

terms of throughput gain and packet-loss rate over
different number of TCP flows (connections) and (ii) is to
compare the performance of these three methods over
different delay (round-trip time) in the outbound link of
the bottleneck router. The network configuration we used
is shown in Figure. 8 in which the bandwidth and delay of
each full duplex link are illustrated.

(a)

(b)

Figure 6: (a) ARED with steady-state. (b) SARED with
steady-state.

(a)

37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

(b)

Figure 7: (a) ARED with steady-state. (b) SARED with
steady-state.

The RED’s control parameters employed at the

bottleneck router R1 for both simulations are as follows:
th_min = 20, th_max = 60, buffer_size = 120, wq = 0.002
and max_p = 0.0. The duration of the simulation is 60 sec.
In the first simulation, we conducted 20 tests using {5, 10,
15, 20, 25, 30 … 95, 100} connections as source and sink
with the bandwidth of 10 Mb/s and 10ms delay for Feng,
ARED and SARED techniques. The bottleneck link has 5
Mb/s bandwidth and 20 ms delay. The throughput gain
and packet loss percentages are recorded for each test for
the three techniques. The results are presented in Figures
9(a) and 9(b). They show that the throughput gain of
SARED is higher than that of the Feng and ARED
schemes. Similarly, the packet loss rate is significantly
low for SARED than ARED and Feng schemes.

Figure. 8: Network configuration for the simulations.

In the next simulation, we test the performance of all

three methods over different outbound link delay and TCP
flows. Only the results of up to 60ms delays are presented
in Figure 9(c) and 9(d). However, the results are similar
for other cases. They show that the throughput gain is
increased and packet loss rate is decreased by the SARED
compared to Feng and ARED schemes. The above

simulations show that the ARED provides slightly better
performance than SARED in the low network load and
low delay as expected. However, SARED provides
significantly better performance in the real network
scenario where in general network loads and delay are
high.

(a)

(b)

(c)

37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, April 18 - 22, 2004

(d)

Figure 9: (a) Throughput gain comparison between Feng,
ARED and SARED over different flow sizes. (b) Packet
loss rate comparison between Feng, ARED and SARED
over different flow sizes. (c) Throughput gain comparison
between Feng, ARED and SARED with different delay.
(d) Packet loss rate comparison between Feng, ARED and
SARED with different delay.

5. Conclusions

This paper presents a new technique called
Stochastically Adaptive RED for congestion control in
TCP/IP networks. It models the behavior of the average
queue size as the Markov model with three states and uses
the ARED’s recommendation of automatically setting the
RED’s parameters wq and th_max to improve connection
throughput with reduced packet loss. The model provides
transition probabilities to predict the average queue size,
detects the congestion very early and adjusts the packet-
dropping probability so that RED can make wise packet-
dropping decisions. The theory and experiments have
demonstrated the ability of the Stochastically Adaptive
RED algorithm to improve connection throughput and
reduce packet loss. It is not our intention to claim that
SARED is optimal or better than BLUE, but our
experiments show that it works for wide range of
scenarios and provides better technique than ARED so
that it can be deployed with RED implementations in the
next generation Internet routers.

6. Acknowledgement

I would like to thank Priya Ranjan for providing us a tcl-
scipt, which uses random number generators. This helped
us to develop the tcl-script for our simulations.

7. References

[1] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IEEE/ACM Transactions
on Networking, August 1993, 1(4): 397-413.

[2] J. Heinanen, F. baker, W. Weiss, and J. Wroclawski,
“Assured Forwarding PHB Group,” RFC 2597, June 1999.

[3] W. Feng, D. Kandlur, D. Saha, and K Shin, “A self-
configuring RED gateway,” in Proc. IEEE INFOCOM, March
1999, pp. 1320-1328.

[4] P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities
in TCP-RED,” in Proc. IEEE INFOCOM, 2002.

[5] W. Feng, K. Kandlur, D. Saha, and K. Shin, “Techniques for
eliminating packet loss in congested TCP/IP Network,”
University of Michigan CSE-TR-349-97, November 1997.

[6] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: an
algorithm for increasing the robustness of RED’s active queue
management,” Available at http://www.icir.org/floyed, August
2001.

[7] E. Parzen, Stochastic Process, Holden-Day Inc., 1962.

[8] The Network Simulator: ns-2 [online]. Available at
http://www.isi.edu/nsnam/ns/.

[9] W. C. Feng, K. G. Shin, D. D. Kandlur and D. Saha, “The
Blue Active Queue Management Algorithms,”IEEE/ACM
Transactions on Networking, August 2002, Vol. 10, No. 4, pp.
513-528.

http://www.icir.org/floyed
http://www.isi.edu/nsnam/ns/

	Abstract

