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Abstract

TCP error control mechanism lacks the ability to detect
with precision the nature of potential errors during com-
munication. It is only capable of detecting the results of
the errors, namely, that segments are dropped. As a result,
the protocol lacks the ability to implement an appropriate
error recovery strategy cognizant of current network condi-
tions and responsive to the distinctive error characteristics
of the communication channel. TCP sender always calls
for the sending window to shrink. We show that probing
mechanisms could enhance the error detection capabilities
of the protocol. TCP could then flexibly adjust its window
in a manner that permits the available bandwidth to be ex-
ploited without violating the requirements of stability, effi-
ciency and fairness that need to be guaranteed during con-
gestion.

Our experiments have three distinct goals: First, to
demonstrate the potential contribution of probing mecha-
nisms. A simple probing mechanism and an Immediate Re-
covery strategy are grafted into TCP-Tahoe and TCP-Reno.
We show that, this way, standard TCP can improve its per-
formance without requiring any further change. Second, to
study the performance of adaptive strategies. An adaptive
TCP with probing is used, that is responsive to the detected
error conditions by alternating Slow Start, Fast Recovery
and Immediate Recovery. An adaptive error recovery strat-
egy can yield better performance. Third, to study the design
limitations of the probing device itself. The aggressive or
conservative nature of the probing mechanisms themselves
can determine the aggressive or conservative behavior of
the protocol and exploit accordingly the energy/throughput
tradeoff.

1 Introduction

Error control mechanisms are the central component of
reliable protocols. They affect a protocol’s performance
with respect to throughput, energy expenditure, and relia-
bility.

Error control is usually a two-step process: error detec-
tion, followed by error recovery. TCP detects errors by
monitoring the sequence of data segments received and/or
acknowledged. When timeouts are correctly configured, a
missing segment is taken to indicate an error, namely that
the segment is lost. Reliable protocols usually implement
an error recovery strategy based on two techniques: retrans-
mission of missing segments; and downward adjustment of
the sender’s window size and readjustment of the timeout
period.

In the standard TCP versions the receiver can accept
segments out of sequence, but delivers them in order to
the protocols above. The receiver advertises a window
size and the sender ensures that the number of unacknowl-
edged bytes does not exceed this size. For each segment
correctly received, the receiver sends back an acknowl-
edgment, which includes the sequence number identifying
the next in-sequence byte expected. The transmitter im-
plements a congestion window that defines the maximum
number of transmitted-but-unacknowledged bytes permit-
ted. This adaptive window can increase and decrease, but
the actual “sending window” never exceeds the minimum of
the advertised and congestion window. Standard TCP ap-
plies graduated multiplicative and additive adjustments to
the sender’s congestion window. Historically, TCP-Tahoe
was the first modification to TCP. Tahoe’s congestion-
control algorithm includes Slow Start, Congestion Avoid-
ance, and Fast Retransmit [1, 2, 3]. It also implements an
RTT-based estimation of the retransmission timeout. In the
Fast Retransmit mechanism, a number of successive (the
threshold is usually set at three), duplicate acknowledg-
ments (DACKs) carrying the same sequence number trig-
gers off a retransmission without waiting for the associated
timeout event to occur. The window adjustment strategy for
this “early timeout” is the same as for a regular timeout:
Slow Start is applied. TCP-Reno introduces Fast Recov-
ery in conjunction with Fast Retransmit. The idea behind
Fast Recovery is that aDACK is an indication of available
channel bandwidth since a segment has been successfully
delivered. The sender then halves the congestion window
cwnd sets the congestion threshold tocwnd, and resets
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theDACKcounter. In Fast Recovery,cwndis effectively set
to half its previous value in the presence ofDACKs, rather
than performing Slow Start.

TCP displays some undesirable patterns of behavior in
the context of networks with wireless components. The er-
ror recovery mechanism is not always efficient, especially
when the error pattern changes, since packet loss is invari-
ably interpreted by the protocol as resulting from conges-
tion. For example, when relatively infrequent random or
short burst errors occur, the sender backs off and then ap-
plies a conservatively graduated increase to its reduced win-
dow size. During this phase of slow window expansion, op-
portunities for error-free transmissions are wasted and com-
munication time is extended. In other words, in the presence
of infrequent and transient errors, TCP’s back-off strategy
avoids only minor retransmission at the cost of unnecessary
and significantly degraded throughput, and increases overall
connection time. Yet, when an error occurs and TCP does
back off, it continues to forcefully attempt transmissions
within the confines of the reduced window size. In the pres-
ence of errors of a relatively persistent nature (fading chan-
nel, prolonged and frequent burst errors, congestion), this
behavior does not favor energy-saving, since it might yield
only minor throughput improvement at high cost in trans-
mission energy. In summary, from the perspective of energy
expenditure in the context of heterogeneous wired/wireless
networks, TCP seems to possess an inherent tendency to
back off too much when it should not, and too little when
it should [4, 5, 6, 7, 8, 9, 10]. The central problem lies
in the inability of TCP’s mechanism to correctly detect the
nature of the error, and so it is incapable of responding in
an appropriate manner [8]. In addition, the protocol lacks
the ability to efficiently monitor network conditions, rapidly
readjust its window size in response to changes in these
conditions1, and detect congestion without inducing packet
drops, thereby degrading overall performance through addi-
tional retransmission and wasted opportunities in maintain-
ing the communication pipe full. The traditional schema
of congestion control which uses backwards adjustment of
the congestion window in the event of retransmission, and
which is exemplified by the TCP paradigm, does not neces-
sarily suffice.

Since the protocol is not optimized for a specific net-
work type or application requirement, its mechanisms per-
mit for several application- and network-specific improve-
ments. TCP’s behavior over wired networks, where con-
gestion is a regular cause for packet loss, was initially stud-
ied by Jacobson [2]. Recently, TCP behavior over wire-
less/wired and satellite networks has become a focus of at-
tention. Recent research results [11, 12, 13, 14, 15, 4, 16,
17, 18, 19, 20, 21, 22] have shown that TCP throughput
degrades, in the presence of the kind of random and burst

1Except for downward adjustment in response to congestion.

errors and long propagation delays typical of wireless and
satellite environments, respectively.

Network- and application-specific modifications often
involve tradeoffs that damage TCP operations on other net-
works and/or applications. As a result, some researchers
have tended to focus on the development of architectures
(e.g., wireless proxies) that assist the protocols operation
over such specific networks in order to keep other applica-
tions and networks undamaged. For example, the enhance-
ments being discussed in [13, 23, 16, 24] require interven-
tion at the router or base-station level, and, in general, the
splitting up of the end-to-end characteristic of TCP behav-
ior. In particular, Ramakrishnan and Floyd [24] propose an
Explicit Congestion Notification to be added to the IP pro-
tocol in order to trigger appropriate behavior in TCP con-
gestion control and enhance its performance by avoiding re-
transmission caused by congestion. An obvious drawback
of this proposal, as stated by the authors themselves, is that
asymmetric routing will necessarily ensue. In addition, the
end-to-end autonomy of TCP will be damaged, yet the prob-
lem will be only partially solved: the level of congestion
will not be effectively estimated, since detection occurs only
as a function of routers’ threshold values which, moreover,
might differ from router to router. Related arguments have
been presented for a related approach: RED Gateways [23].
With the new patterns of traffic behavior of Internet routers
which no longer match the traces reported in [25], the ap-
proach seems less effective. Recent work suggests more
modest expectations than were initially predicted [26, 27].
The work performed by the authors in [13] made significant
progress towards efficient operations over wireless links but
does not overcome the above limitations nor deal with sit-
uations of encryption or full-duplex TCP traffic. This work
suggested modifications at the base stations and also re-
quired changes to TCP semantics on the two hosts. Com-
mon experience with proxies leads us to accept that proxy-
based solutions cannot have the wide applicability of end-
to-end solutions and hence cannot guarantee the expected
improvements globally but instead locally, where the mod-
ifications have been implemented completely. Acceptance
of heterogeneity as the rule and not the exception, renders
proxy-based solutions useful but with only limited success
on the Internet.

Floyd and Henderson [28] propose a partial acknowledg-
ment method to enhance performance of the TCP Fast Re-
covery algorithm which, under rather specific conditions,
results in some improvement. New Reno addresses the
problem of multiple segment drops. In effect, it can avoid
many of the retransmit timeouts of Reno. A partial ac-
knowledgment is defined as anACK for new data which
does not acknowledge all segments that were in flight at
the point when Fast Recovery was initiated. When multiple
segments are lost from a window of data, New Reno can
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recover without waiting for a retransmission timeout.
Enhancements of the TCP acknowledgment strategy are

discussed in [29, 30]. In [31] the authors propose an in-
teresting modification which replaces the round trip delay
measurements of TCP with estimations of delay along the
forward path, and use of an operating point for the num-
ber of packets in the bottleneck. In [32] the authors make
a significant contribution towards more accurate measure-
ments of network congestion and avoid technical problems
that arise from the clock granularity of different operating
systems. A study of TCP performance over asymmetric
links is presented in [33]. Authors in [33] discuss poten-
tial TCP throughput improvements when multiple losses
occur within a single window of data, based on modifica-
tions of the current acknowledgment strategy. TCP with
Selective Acknowledgments (SACKs) can be beneficial for
the protocols discussed here; its contribution is focused on
the acknowledgment strategy and not on the sender’s adjust-
ments2 and decisions3.

Today’s TCP applications are expected to run in physi-
cally heterogeneous environments composed of both wired
and wireless components. The existing TCP mechanisms
do not satisfy the need foruniversalfunctionality in such
environments, since they do not flexibly adjust the recov-
ery strategy to the variable nature of the errors. Moreover,
a significant missing component from TCP is the mecha-
nism to distinguish the nature of the error in heterogeneous
wired/wireless networks. In [8] the authors propose grafting
a probing mechanism onto standard TCP in order to enable
the protocol with the ability to distinguish the nature of the
error based on its frequency and duration, and to determine
the recovery strategy accordingly.

Our experiments here have three distinct goals: First, to
demonstrate the potential contribution of probing mecha-
nisms. A simple probing mechanism and an Immediate Re-
covery strategy are grafted into TCP-Tahoe and TCP-Reno.
We show that, this way, standard TCP can improve its per-
formance without requiring any further change. Second, to
study the performance of adaptive strategies. An adaptive
TCP with probing is used, that is responsive to the detected
error conditions by alternating Slow Start, Fast Recovery
and Immediate Recovery. An adaptive error recovery strat-
egy can yield better performance. Third, to study the design
limitations of the probing device itself. The aggressive or
conservative nature of the probing mechanisms themselves
can determine the aggressive or conservative behavior of
the protocol and exploit accordingly the energy/throughput
tradeoff.

The remaining of this paper is organized as follows: Sec-

2TCP-SACK has no mechanism to distinguish the cause of packet
drops in order to adjust the size of the sending window accordingly.

3The SACK mechanism is decoupled from the congestion window be-
havior (see also [29]), which is the point of interest in the present work.

tion 2 describes a simple design of Probing Mechanisms. In
Section 3 we detail our testing methodology and our crite-
ria for evaluating TCP changes. In Section 4 we present
the results of grafting Probing into TCP Reno and Tahoe.
We describe an experimental design of an Adaptive TCP
with Probing in Section 4.1 and we present our observa-
tions from our experiments. A modified Probing Device is
presented and tested in Section 4.2 and Section 5 presents
our concluding remarks.

2 Probe Cycles

A probe cycle consists of a structured exchange of very
short control segments between sender and receiver, initi-
ated by the sender so as to permit the receiver to make mul-
tiple, consecutive measurements from the network4. The
sender initiates the cycle in response to the notification
(from the receiver, the network or the timeout mechanism
of the sender) that transmissions should be suspended for
the present. The mechanism also provides the capability for
sender and receiver to efficiently “checkpoint” with each
other in the event of deviation from expected patterns of
behavior (e.g., no feedback from the receiver and so on).
When a data segment goes missing, the sender, instead of
retransmitting and adjusting the congestion window and
threshold, initiates a probe cycle during which data trans-
mission is suspended and only probe segments are sent. In
the event of persistent error conditions (e.g. congestion),
the duration of the probe cycle will be naturally extended
and is likely to be commensurate with that of the error con-
dition, since probe segments will be lost. The data trans-
mission process is thus effectively “sitting out” these error
conditions awaiting successful completion of the probe cy-
cle. In the case of random loss, however, the probe cycle
will complete much more quickly, in proportion to the pre-
vailing density of occurrence for the random errors.

“Probing” in the context of a reliable, transport-level pro-
tocol such as TCP is a fairly generic concept. It can be im-
plemented in a variety of different ways, and further refined
in several yet more directions. A critical part of the probing
mechanism is the set of the decision rules that determine ac-
tion at the end of the probe cycle. This action could be the
full recovery or a downward adjustment of the window size
and, in combination with the decision rules, can determine
the aggressive or conservative behavior of the protocol.

2.1 A Simple Probing Device

The sender enters a “probe cycle” when one of the two
situations applies:

4The prototype implementation measures RTTs. Throughput measure-
ments in the forward direction are a subject of ongoing investigation.
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1. A timeout event occurs. If the existent network condi-
tions detected by the time the probe cycle completes
are sufficiently good, then instead of entering Slow
Start, TCP-Probing simply picks up from the point
where the timeout event occurred. In other words,
neither of the congestion window, nor threshold is ad-
justed downwards. We call this “immediate recovery”.
Otherwise, Slow Start is entered.

2. Three DACKs are received. Again, if prevailing net-
work conditions at the end of the probe cycle are suf-
ficiently good Immediate Recovery is implemented.
Note that here, however, Immediate Recovery will also
expand the window in response to further DACKs that
were received during the probing cycle. This is anal-
ogous to the congestion window expansion phase of
Fast Retransmit in Reno and New Reno. Alternatively,
if deteriorated network conditions are detected at the
end of the probe cycle, the sender enters Slow Start.
This is in marked distinction to Reno and New Reno’s
behavior after Fast Retransmit. The logic here is that,
having sat out the error condition during the probe cy-
cle and finding that network throughput is nevertheless
still poor at the end of the cycle, a back off strategy is
more clearly indicated. A more detailed understanding
of TCP-Probing mechanisms will be possible through
a presentation of their implementation.

The option header extension for Probing includes an
option type in order to distinguish between four probe-
oriented segments:PROBE1, PROBE2, PROBE1ACK,
PROBE2ACK. These segment types are composed of head-
ers without payload. This is achieved by setting the variable
len, which represents the length of payload in the segment,
to 0 in the functiontcp output. The option header ex-
tension also includes a field header length, and a probe se-
quence number which is used to identify probe segments.

Figure 1 describes the state diagram of TCP combined
with probing mechanisms. While inEstablishedstate, prob-
ing cycle is triggered either by a 3-DACK event or a time-
out. During the probing cycle two RTTs are measured:
rtt1 and rtt2. If both measured RTTs are close to
the best5 RTT then TCP will perform Immediate Recov-
ery. Otherwise the network conditions impel for conges-
tion avoidance. To evaluate the impact of probing mecha-
nisms on the error recovery strategies we have designed two
protocols: Tahoe-Probing and Reno-Probing. If the mea-
sured RTTs do not call for Immediate Recovery then Tahoe-
Probing recovers with Slow Start; Reno-Probing will enter
Fast Recovery in case the probing cycle was triggered by a
3-DACK event or Slow Start otherwise (i.e., time-out).

5The best RTT is the minimum of the measured RTTs from the con-
nection initiation time till the current probing cycle. Probing RTTs do not
count for the best RTT selection.
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probe1Ack/ timeout/
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immediate
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best_rtt
rtt1 & rtt2 <

Figure 1. TCP with Probing devices

3 TCP Evaluation: Goals and Methodology

An important consideration of this work is the issue of
the effective evaluation of TCP. The author in [34] discusses
such principles, most of which are employed here. How-
ever, there are other significant details that we consider:� The use of the appropriate performance metrics. In

general,Goodput, Overhead, andTimeneed to be oc-
casionally combined as performance metrics. A major
transmission effort (associated with additional over-
head) would not be efficient had a more conservative
strategy yielded the same application throughput. The
impact of the former strategy on the network (i.e., the
amount of data that is injected into the network), and
on battery-powered devices (i.e. handhelds) is signif-
icant indeed.Throughputis frequently used in papers
as a network metric ignoring application throughput
and overheadper se. Goodputis also used frequently
in terms ofnet data/transmitted data, ig-
noring time as a performance metric. Finally,Time
to complete a file transfer cannot be used as the sole
performance metric since it does not capture the proto-
col’s behavior; an aggressive behavior might have re-
sulted in redundant retransmission, injecting unjustly
packets into the network and expending energy on mo-
bile devices. The measured performance of the pro-
tocols is given in terms ofTask Completion Timeand
Overhead. Since our data file is of fixed size the Good-
put is derived directly from Time.� The arrangement for selecting versions that differ only
at the component of evaluation. The versions used here
are comparable with each other. The difference lies ex-
clusively on the error control mechanism. For exam-
ple,pace[34] we do not compare versions that employ
different acknowledgment strategies like TCP-SACK.
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This version was intentionally excluded for this rea-
son; it is expected that its strategy will be beneficial
for all the versions presented.� Packets and Acknowledgments are dropped. We avoid
the assumption that all acknowledgments are correctly
delivered; this assumption has not proven to be valid
especially in wireless and satellite networks (note that
RFC2016 makes use of this assumption). The fact that
acknowledgments are cumulative in TCP does not pro-
vide sufficient evidence in is own right; for example,
it does not cancel the probability of timeouts. Fur-
thermore, this assumption could trigger Fast Retrans-
mit in simulated experiments - due to three DACKs -
more frequently than it would do otherwise, had it been
avoided.

The purpose of our tests was to evaluate the error control
behavior of the TCP versions presented here in response
to changes in the network environment. The varying error
rate for a selected range of “error phases” was a choice that
enabled us to test the protocol behavior in response to du-
ration and error pattern changes. Other factors could also
affect the relative performance of the protocols. For exam-
ple, the window size, could have different impact on their
measured performance. More specifically, Probing requires
a fixed number of RTTs (currently 2) when conditions are
clear and it will probably recover faster than Tahoe a large
window of data in this case. Tahoe and Reno will exhibit a
more comprehensive behavior with small windows: recov-
ery with exponential growth starting from a single segment
might even take less RTTs. Hence, although it appears that
with small windows Probing introduces an additional cost,
this potential advantage is cancelled6 for larger windows.
Our experiments used a default delay small enough to be
beneficial for Tahoe and Reno since theDelay� Bandwidth
product was limited to a maximum of 10 KB.

The probing protocols presented here, were implemented
using the x-kernel protocol framework [35]. Each imple-
mentation was individually tested on a single session with
two dedicated hosts connected over a local area network. In
the experiments carried out there were no other TCP com-
peting flows. The protocols tested here are fully-functional,
implemented protocols. A virtual protocols that is config-
ured between the transport and the IP layer implement the
error models for the experiments. Although our model is
rather simple, it is oriented towards link-level error patterns
instead of congestion. The defaultDelay here is the net-
work propagation and transmission delay, plus the x-kernel
processing delay. The “virtual protocol”, VDELDROP [7],
has a core mechanism that consists of a two state (On/Off)

6Experimental evidence of our claim is not presented here. Due to
space limitations, a webpage with additional results will be provided
presently.

continuous time Markov chain. One state was always con-
figured with a zero error rate. Thus, simulated error con-
ditions during a given experiment alternated between ‘On’
and ‘Off’ phases during which drop actions were in effect
and were suspended, respectively. Error conditions of vary-
ing density, persistence and duration could thus be simu-
lated, depending on the choice of the drop rate and phase
duration. The combination of those allows for tests with er-
rors of varying density and duration. Note, that the error
rate does not report the number of packet drops. Instead, it
reports the dropping intention. This setting for a time-based
model allows for capturing better7 the behavior of the pro-
tocols.

The application protocol had a fixed task: to send 5 MB
(5,242,880 bytes) data sets for transmission. The size of the
transmission message was selected to be sufficiently large
to accommodate several phase changes which, in turn, had
to be sufficiently large to permit for full recovery of the
window size. We took measurements of theTask Comple-
tion Time(TCT) and of theTotal number of bytes transmit-
ted (i.e. including protocol control overhead transmissions,
data segment retransmission, etc.). Those results are pre-
sented in the tables in the Appendix.

The Error Rate in the tables and charts denotes the drop-
ping rate during the On phase of the VDELDROP proto-
col (see [7] for more details). Therefore, the dropping rate
reported refers to segments during the On phases, not the
averaged overall drop rate across On/Off phases. The error
protocol was configured in the protocol stack of both partic-
ipating hosts, thereby, data packets as well as acknowledg-
ments were dropped during the On phases. Our tests were
repeated a sufficient number of times; that was indicated by
the Standard Deviation measured after 10 experiments. The
average is reported here.

4 TCP Reno and Tahoe with Probing

Figures 2, 3 and 4 draw the performance of the four
protocols for transient errors which are typical for hetero-
geneous wired and wireless networks, and relatively short
bad-phase duration. For small error rates and windows the
results show that the probing mechanisms could slightly im-
pact negatively the time and overhead of Tahoe and Reno.
As noted above, larger windows (i.e., buffers, and/or Delay� Bandwidth products) cancel this effect8. However, the
present example is the worst case scenario for the probing
device.

For small rates of transient errors, where probing can be
vulnerable to multiple 3-DACK events, TCP with Probing

7An arrangement for dropping a specified data rate from a single flow
could be more appropriate for simulating a RED Gateway.

8Our experiments with larger windows drop the level of TCT 4% and
the level of overhead 2%.

5



0% 1% 10% 20% 33% 50% 99%

 Error Rate (%)

0

10

20

30

40

T
im

e
 (

se
c)

Tahoe 
Tahoe-Probing
Reno 
Reno-Probing

Figure 2. Performance with 1-5 sec On/Off
phase.

imposes an improvement. It can be observed that the per-
formance of Tahoe-Probing is significantly improved. For
example, Figure 2 shows that Tahoe-Probing is 2% faster
than Tahoe at 1% error rate; 3% faster at 20% error rate and
9% faster at 33% error rate. Reno-Probing starts to improve
at 20% error rate (it is 3.5% faster than Reno).
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Figure 3. Performance with 3-5 sec On/Off
phase.

The relative improvement of probing protocols become
more evident at high error rates. Consecutive timeouts at
this stage of the experiment cause TCP to loose its ability to
rapidly detect error-free channels, thereby wasting oppor-
tunities of error- and congestion-free transmissions. Prob-
ing mechanisms entail a dual promotion to TCP’s error-
detection capabilities: (i) they enable a distinction of the
nature of the error, and (ii) they work against an unduly-
delayed detection. An extended time-out will not permit
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Figure 4. Performance with 4-5 sec On/Off
phase.

the protocol to exploit efficiently the capacity of an error
free link.

Our results affirm that both Tahoe-Probing and Reno-
Probing experience significant improvement at high error
rates. Tahoe-Probing is 9% faster than Tahoe at 33% er-
ror rates (see Figure 2); 24% faster at 50% error rate and
18% faster than Tahoe at 99% error rate. Reno-Probing is
1.2% faster than Reno at 33% error rate, 8% faster at 50%
error rate and 36% faster at 99% error rate (see Figure 2).
For the same error duration the overhead bears a significant
improvement for the probing protocols. Tahoe-Probing has
4% less overhead than Tahoe at 1% error rate; 1% less over-
head at 20% error rate; 6% less overhead at 33% error rate,
5% less overhead at 50% and 8% less overhead at 99% error
rate (see Figure 5). Note that a 99% error rate represents an
occasion of a correlated error; a situation that appears fre-
quently in fading channels or during handoffs. In absolute
terms the latter represents 8908 bytes. This number grows
sharply with long-lasting errors and its importance is cru-
cial for mobile devices that operate on battery-based energy
sources. Reno-Probing has also a slight improvement in the
overhead which is 3% less than that of Reno at 50% error
rate and is also 4% lower at 99% error rates. It is impor-
tant to note that the protocol behavior under heavy errors
is the most challenging design goal: a fault or inefficient
operation at these stages will have distorting effects on the
overall energy and throughput performance. Otherwise, the
efficiency will be damaged to some extend which might or
might not be acceptable for the user but it will not determine
the operational lifetime of a battery-powered device.

We conclude that longer error duration deteriorate fur-
ther the performance of TCP Tahoe and Reno since they suf-
fer from consecutive time-outs which are provenly harmful
for their retransmission capabilities. On the contrary, TCP
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Figure 5. Protocols’ overhead with 1-5 sec
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Figure 6. Protocols’ overhead with 3-5 sec
On/Off phase.

with probing will start a probing cycle that will probably not
terminate until the error level has dropped or cleared. Dur-
ing this time, the congestion control parameters (time-out
value, congestion window and threshold value) are not af-
fected. As soon as probing completes its cycle, the protocol
resumes data transmission. Figure 3 shows the performance
of protocols for a representative error-phase duration of 3
seconds. We note again that for small error rates probing
mechanisms might cause a slight increase on the protocol
task completion time and overhead. We measured the aver-
age sending window at this stage to be 2KB. It is easier to
recover from Slow Start a window size of 2KB than it would
be for a window of 64K. Recall that Immediate Recovery
from uninterrupted probing takes 2RTTs. However, we can
observe that Tahoe-Probing is 2.3%, 14%, 27%, 62% and 3
times faster than Tahoe at 10%, 20%, 33%, 50% and 99%

0% 1% 10% 20% 33% 50% 99%

 Error Rate (%)

0

1

2

3

O
ve

rh
e

a
d

 (
%

)

Tahoe 
Tahoe-Probing
Reno 
Reno-Probing

Figure 7. Protocols’ overhead with 4-5 sec
On/Off phase.

error rates respectively. Reno-probing is also 13%, 1.5%,
20%, 33% and 5.5 times faster than Reno at 20%, 33%,
50% and 99% error rates respectively (see Figure 3). Prob-
ing also reduces significantly the protocols’ overhead. Both
TCP versions with probing reduce their overhead from 1%
to 18% for Tahoe and from 1% to 15% for Reno, respec-
tively (see Figure 6). For 2 and 4 seconds error duration the
relative performance gain of probing protocols is almost the
same as in 3 seconds error duration. Details of these results
are listed in tables 1, 2, 3 and 4 in the Appendix.

4.1 Adaptive TCP with Probing

Observing TCP behavior from another perspective, we
realize that the relative performance gain of aggressive or
conservative error recovery strategies varies as the error
rate changes. Based on this observation an interesting is-
sue would be to combine the error recovery mechanisms of
TCP Tahoe and Reno into one protocol and study its per-
formance.Adaptive-TCPaddresses this issue: it combines
the aggressive and conservative error recovery strategiesof
Reno and Tahoe, respectively. The results of Probing are
used to enable a decision about the choice of the appropri-
ate recovery strategy.

Figure 8 presents the state transition diagram of A-TCP.
The protocol enters into a probing cycle either after a 3-
DACK event or a time-out. If both measured RTTs during
the probing cycle are smaller than the best RTT then A-TCP
will enter Immediate Recovery. In response to the varying
nature of the errors (congestion or wireless errors) A-TCP
performs a feedback-based9 recovery. The current window
recovery phase (i.e., Slow Start or Congestion Avoidance)

9Feedback is provided by the probing cycle
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Figure 8. Adaptive TCP state diagram

is also taken into account. More precisely, if the probing cy-
cle interrupted the Slow Start phase, and A-TCP determines
action with Immediate Recovery, then the congestion win-
dow and threshold are set at 3/4 the value of the congestion
window prior to the error. Traditionally, packets that are
lost due to congestion during Slow Start are treated more
conservatively. Stability and fairness are becoming most
important concerns in this case. However, an error during
Additive Increase calls for the Immediate Recovery to per-
form the same actions as Reno- or Tahoe-Probing.
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Figure 9. Time performance of TCP-Probing
and Adaptive-TCP with probing. 1/5 seconds
On/Off phase

The measurements taken during the probing cycle deter-
mine action for the recovery. If they both are worse than
the best RTT, the protocol reacts conservatively and enters
Slow Start. If only the second measured RTT is better than
the best RTT, A-TCP risks the assumption that congestion
level is improving and enters Fast Recovery. Two fine mea-
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Figure 10. Time performance of TCP-Probing
and Adaptive-TCP with probing. 2/5 seconds
On/Off phase

surements during the Probe Cycle call for Immediate Re-
covery.

skip_threshold

count <

Established Reno

Probe1

YES

3 dack

NOprobe1

probe1

timeout/

skip
probing

Figure 11. Adaptive TCP with Skip Probing
state diagram

Figures 9, 10, 12, 14, 15 and 16 plot the time per-
formance and the overhead of A-TCP, Tahoe-Probing and
Reno-Probing. Even though these protocols have slightly
different Immediate Recovery mechanism, it is not difficult
to observe the impact of adaptive error recovery strategies
on protocol’s performance. Figures 9, 10, 12 show that the
Task Completion Time of A-TCP has an upper and lower
limit the time of Tahoe-Probing and Reno-Probing. Like-
wise, the overhead of A-TCP has an upper and lower limit
the overhead of Tahoe-Probing and Reno-Probing. At high
error rates, however, the A-TCP might outperform the non-
adaptive protocols. For example Figure 9) shows that A-
TCP is 13% faster than Tahoe-Probing and is 16% faster
than Reno-Probing at 99% error rate. Figure 10) shows
A-TCP 8% faster than Reno-Probing and 11% faster than
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Figure 12. Time performance of TCP-Probing
and Adaptive-TCP with probing. 3/5 seconds
On/Off phase

Tahoe-Probing at 33% error rate. As the error duration in-
creases, the time of A-TCP tends to outmatch the time of the
fastest protocol. At high error rates the possibility of Imme-
diate Recovery is rare; if this happens it probably causes
most of the transmitted data to be dropped again. Since A-
TCP applies a more conservative recovery than both other
protocols, it will require less retransmission after the ”bad
phase”. In fact, since it will also experience less time-outs,
it will be capable of detecting faster any potential change.
Good performance of A-TCP can also be observed from fig-
ures 12 and 13 which present the performance of the proto-
col for error durations of 3 and 4 seconds respectively. Fig-
ure 12 shows that at 20% and 33% the A-TCP time equals
to that of Tahoe-Probing (which is the fastest at these error
rates); at 50% and 99% error rates A-TCP time tends to-
wards the time of Reno-Probing. Figure 13 shows that the
time of A-TCP at 10% error rates is smaller and close to the
time of Tahoe-Probing; at 20% and 33% the A-TCP time is
close to that of Reno-Probing and at 99% it tends towards
the time of Tahoe-Probing.

4.2 Selective Probing

Since the probing cycle itself adds at least two RTTs to
the connection time, it appears to have greater cost during
errors that are relatively frequent and transient. The reason
is that the strategy after the probing is likely to call for Im-
mediate Recovery; however, the two RTT’s will be wasted.

Behind the idea of Selective Probing stands the obser-
vation that a heavy error condition will extend a probing
cycle anyway and actual data transmission will be avoided.
Hence, it could be feasible to apply a probing scheme that
is not triggered every single time a packet goes missing. In-
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Figure 13. Time performance of TCP-Probing
and Adaptive-TCP with probing. 4/5 seconds
On/Off phase

stead, this could happen once every small time intervals;
small enough to allow for detecting congestion levels that
potentially build up. As noted, heavy error rates will be
captured indeed, since the probing cycle will be extended.
This can be viewed from another perspective as one probing
cycle per window of data, for sufficiently large windows.

We call this experimental protocolSelective-Probing
(SP-TCP) and present its state transition diagram in Fig-
ure 11. Selective probing has the same adaptive error re-
covery strategy as described in Section 4.1. Its transition
diagram is the same as that of A-TCP (see Figure 8) with
exception the transition from state‘Established’to ‘Probe1’
triggered by a 3-DACK event. SP-TCP uses a newcounter
andskip-thresholdvariable. For each 3-DACK event, SP-
TCP compares the counter with the skip-threshold value
and does not start Probe Cycle unless the value of the
counter exceeds the skip-threshold value or the specified
time-interval. Fast Retransmit and Fast Recovery are exe-
cuted if the counter is smaller than the skip-threshold value.
The value of the counter is incremented every time TCP
estimates the RTT value and it is reset every time the pro-
tocol enters Probe Cycle. In our experiments we used small
values for both time and counter thresholds. In response
to a time-out event SP-TCP enters probing cycle just like
Adaptive-TCP.

Figures 18, 19, 20, 21, 22, 23, 24, and 25 present the time
and overhead performance of SP-TCP and A-TCP. It can
be observed that the improvements appear more significant
with lower error rates. For example, Figures 18, 19 show
that A-TCP yields worse performance than SP-TCP espe-
cially at lower error rates (1%, 10%, 20%, and 33%) where
3-DACK events are more likely to happen than at high error
rates. The protocols that enter probing cycle for every loss
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Figure 14. Overhead of TCP-Probing and
Adaptive-TCP with probing. 1/5 seconds
On/Off phase

event (3-DACK or time-out) will waste some RTTs. The
Selective-Probing strategy avoids the vulnerability of con-
secutive probing cycles by adopting a Fast Recovery mech-
anism during frequent 3-DACK events and improves sig-
nificantly the performance of the protocol especially at low
error rates where the 3 DACKs is more likely to occur.

For long error durations the protocols most probably suf-
fer from time-outs. The SP-TCP adopts probing strategies
after a time-out event and has the same performance as that
of probing TCPs or Adaptive-TCP. The Fast Recovery, how-
ever, has its own drawbacks; this was evident from our ex-
periments in section 3 with high error rates (see also [7]).
Thereby, SP-TCP could suffer, for the same reasons, at high
error rates. This can be seen by the degraded performance
of SP-TCP at short error durations and high error rates (50%
and 99% error rates - see figures 18, 19). The degraded time
performance is reflected in the overhead also. Fast Recov-
ery strategy while prolonged network congestion or link er-
rors will result in further packet loss and an increase in the
protocol’s overhead (see figures 22, 23).

5 Conclusion and Future Work

Probing constitutes a research topic in its own right. Sev-
eral improvements can be made. Our experiments indi-
cate a potential direction of further research towards both
adaptive protocols and probing devices. Indeed, probing
devices can also be adaptive themselves; be commensurate
with the measured RTTs, behave aggressively or conserva-
tively. Clearly, an adaptive protocol design would require
further experience with alternative designs. Although prob-
ing schemes have been used in the past, the authors are not
aware of any published results that discuss such design is-
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Figure 15. Overhead of TCP-Probing and
Adaptive-TCP with probing. 2/5 seconds
On/Off phase

sues and their corresponding impact on transport protocols.
The topic is becoming important due to recent advances of
wireless Internet.

Furthermore, we have shown that Probing enables TCP
to go beyond a circumscribed functionality exclusively fo-
cused on congestion control, and to move towards auni-
versal error control. Its self-adjusting strategy is respon-
sive to the nature of the errors and achieves a significant
performance gain compared to Standard TCP. The better
the adjusting strategy matches the network conditions, the
more efficient the probing device would be. Our experi-
ments demonstrate the validity of this concept and provide
directions for further research.
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Appendix

Error Rate: 0% 1% 10% 20% 33% 50% 99%

Protocol Task Completion Time (sec)
Tahoe 12.8 14.6 15.7 17.5 19.1 23.3 27.8
Tahoe-Probing 12.9 14.3 16.0 17.0 17.3 17.6 22.7
Reno 12.8 14.6 15.2 17.7 16.8 20.4 37.3
Reno-Probing 12.9 15.0 15.8 17.1 16.7 18.7 23.5
Adaptive-TCP 12.9 14.4 16.0 17.0 17.2 18.5 19.6
Skip-Probing 13.0 14.2 15.6 16.3 16.6 19.4 22.8

Overhead (%)
Tahoe 1.41 1.63 1.75 1.92 1.97 2.02 2.00
Tahoe-Probing 1.41 1.56 1.79 1.91 1.85 1.91 1.83
Reno 1.41 1.57 1.71 1.72 1.75 1.90 2.09
Reno-Probing 1.41 1.65 1.81 1.89 1.77 1.84 2.00
Adaptive-TCP 1.41 1.59 1.78 1.88 1.82 1.98 1.86
Skip-Probing 1.41 1.55 1.73 1.79 1.77 1.96 1.89

Table 1. Performance of protocols with 1/5 sec
on/off phase

Error Rate: 0% 1% 10% 20% 33% 50% 99%

Protocol Task Completion Time (sec)
Tahoe 12.9 14.6 16.9 17.4 20.4 24.7 65.4
Tahoe-Probing 12.9 14.4 15.6 16.8 21.2 20.6 24.7
Reno 12.8 14.3 17.0 16.8 20.4 23.9 69.8
Reno-Probing 12.9 14.2 16.0 17.7 20.5 24.2 28.2
Adaptive-TCP 13.0 14.5 16.3 17.7 18.8 20.7 26.1
Skip-Probing 12.8 14.7 16.2 16.5 18.5 22.9 29.1

Overhead (%)
Tahoe 1.41 1.64 1.92 1.82 1.85 2.01 2.21
Tahoe-Probing 1.41 1.58 1.73 1.83 2.12 1.79 1.85
Reno 1.41 1.58 1.80 1.67 1.93 1.94 2.16
Reno-Probing 1.41 1.56 1.76 1.96 1.89 1.96 1.92
Adaptive-TCP 1.41 1.62 1.74 1.79 1.84 1.90 1.82
Skip-Probing 1.41 1.62 1.73 1.72 1.94 1.98 1.86

Table 2. Performance of protocols with 2/5 sec
on/off phase

Error Rate: 0% 1% 10% 20% 33% 50% 99%

Protocol Task Completion Time (sec)
Tahoe 12.8 15.1 17.3 20.1 27.3 67.7 107.5
Tahoe-Probing 12.9 15.4 16.9 17.2 19.9 25.7 34.6
Reno 12.9 14.3 18.3 19.5 25.1 33.1 189.8
Reno-Probing 12.8 14.9 15.9 19.2 20.0 22.1 34.1
Adaptive-TCP 12.8 15.0 17.4 17.4 20.1 23.8 33.2
Skip-Probing 12.8 14.7 17.4 18.7 20.0 25.1 34.2

Overhead (%)
Tahoe 1.41 1.69 1.81 1.95 1.96 1.99 2.27
Tahoe-Probing 1.41 1.80 1.81 1.79 1.87 2.01 1.84
Reno 1.41 1.68 1.92 1.85 1.95 2.13 2.35
Reno-Probing 1.41 1.71 1.74 2.04 1.94 1.93 1.98
Adaptive-TCP 1.41 1.70 1.87 1.84 1.96 1.98 1.94
Skip-Probing 1.41 1.65 1.99 1.85 1.99 1.92 2.07

Table 3. Performance of protocols with 3/5 sec
on/off phase

Error Rate: 0% 1% 10% 20% 33% 50% 99%

Protocol Task Completion Time (sec)
Tahoe 12.7 14.6 17.4 21.6 22.8 50.7 296.4
Tahoe-Probing 12.7 15.0 15.1 19.7 20.5 23.3 41.9
Reno 12.7 14.6 18.0 18.7 30.9 46.6 260.0
Reno-Probing 12.7 14.1 15.7 18.7 21.0 27.4 49.6
Adaptive-TCP 12.8 15.0 15.6 18.4 22.4 23.1 43.0
Skip-Probing 12.8 14.9 15.4 17.4 21.3 23.4 43.7

Overhead (%)
Tahoe 1.41 1.69 1.79 1.90 1.86 2.31 2.16
Tahoe-Probing 1.41 1.68 1.80 1.78 1.86 1.87 1.89
Reno 1.41 1.69 1.81 1.86 2.01 2.06 2.54
Reno-Probing 1.41 1.60 1.71 1.86 1.91 1.97 1.94
Adaptive-TCP 1.41 1.70 1.74 1.84 1.90 1.92 1.94
Skip-Probing 1.41 1.68 1.72 1.80 1.87 1.87 1.90

Table 4. Performance of protocols with 4-5 sec
on/off phase
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