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Abstract

A local image model is proposed to eliminate the adverse impact of both artificial and inherent intensity inhomogeneities in magnetic
resonance imaging on intensity-based image segmentation methods. The estimation and correction procedures for intensity inhomogeneities
are no longer indispensable because the highly convoluted spatial distribution of different tissues in the brain is taken into consideration.
On the basis of the local image model, multicontext fuzzy clustering (MCFC) is proposed for classifying 2D and 3D MR data into tissues
of white matter, gray matter, and cerebral spinal fluid automatically. In MCFC, multiple clustering contexts are generated for each pixel,
and fuzzy clustering is independently performed in each context to calculate the degree of membership of a pixel to each tissue class. To
maintain the statistical reliability and spatial continuity of membership distributions, a fusion strategy is adopted to integrate the clustering
outcomes from different contexts. The fusion result is taken as the final membership value of the pixel. Experimental results on both real
MR images and simulated volumetric MR data show that MCFC outperforms the classic fuzzy c-means (FCM) as well as other segmentation
methods that deal with intensity inhomogeneities.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) is an advanced,
commonly used medical imaging technique. It can quanti-
tatively provide rich information about human anatomy in
two or three dimensions in a noninvasive way. In general,
white matter, gray matter, and cerebral spinal fluid are three
basic tissues in the brain. Brain tissue segmentation of
magnetic resonance (MR) images means to specify the
tissue type for each pixel or voxel in a 2D or 3D data set,
respectively, on the basis of information available from both
MR images and the prior knowledge of the brain (for no-
tational simplicity, we use pixel for both 2D and 3D data).
It is an important preprocessing step in many medical re-

search and clinical applications, such as quantification of
tissue volume, visualization and analysis of anatomical
structures, multimodality fusion and registration, functional
brain mapping, detection of pathology, surgical planning,
surgical navigation, and brain substructure segmentation
(Clarke et al., 1995; Suri et al., 2002). Unfortunately, inten-
sity inhomogeneities in MR images, which can change the
absolute intensity for a given tissue class in different loca-
tions, are a major obstacle to any automatic methods for MR
image segmentation and make it difficult to obtain accurate
segmentation results (Guillemaud and Brady, 1997; Shat-
tuck et al., 2001; Worth et al., 1997).

Intensity inhomogeneities imply intensity variations over
the same class of tissue that are not caused by random noise.
Such spatial variations of the image signal result from both
shading artifacts and inherent nonunifomity of tissue prop-
erties (Arnold et al., 2001).

Shading artifacts, which appear as a continuous, slowly
varying shadowing effect over the whole image, are caused
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mainly by hardware imperfection of the MRI devices,
though other patient-related factors may also have an affect
(Arnold et al., 2001; Guillemaud and Brady, 1997; Ra-
japakse and Kruggel, 1998; Simmons et al., 1994; Suri et
al., 2002). Among them, RF inhomogeneity, inhomoge-
neous B0 field, and gradient magnetic field nonuniformity
are dominant. We refer to such a shading effect as artificial
intensity variations (AIVs) because it appears in an image
but not in the imaged object.

As we know, there exist quite a few spatially different
substructures with different functions within each tissue
class in the human brain (Tamraz and Comair, 2000). For
instance, the cortex, caudate, and putamen are anatomically
different substructures in the brain, but they all belong to
gray matter (GM). Due to the inherent regional differences
in imaging-related properties across substructures, the in-
tensities in different substructures, even in the same tissue
class, are also more or less different. The imaging-related
properties that cause the inherent intensity variation include
the composition, density, and magnetic properties (spin-
lattice relaxation time T1, spin–spin relaxation time T2) of
different tissues at different positions (Hornad, 1996). For
example, white matter (WM) is brighter at the corpus cal-
losum than in other regions, because the fiber bundles are
more concentrated and coherent in direction. Moreover,
intensities of caudate in T1-weighted MR images are usu-
ally higher than those of cortex as shown in Fig. 1 (Worth
et al., 1997). In Fig. 1; the dashed and solid lines are the
intensity distributions of the brain and putamen of the brain
in Fig. 1a, respectively. H1 is the intensity boundary be-
tween cerebrospinal fluid (CSF) and GM, and H2, the in-
tensity boundary between GM and WM. H1 and H2 are
obtained from the traditional fuzzy c-means (FCM) algo-
rithm. It is obvious that most parts of the putamen are
brighter than the cortex and therefore they would be mis-
classified into WM when the inherent intensity variation is
strong enough. Since these properties are connatural to
human brain, such signal variations are also inherent in the
brain. In contrast to the global, tissue class-independent

artifact of AIVs, we call the inherent, tissue class-related
intensity variations intratissue inherent variations (ITIVs).

Intensity inhomogeneities, including both AIVs and
ITIVs have little effect on visual perception because the
human visual system can correct such inhomogeneities au-
tomatically. However, they make intensity distribution
within a particular tissue class flatter, and this results in
overlapping intensity components among different tissues
that are neighbors in the intensity histogram, as shown in
Fig. 1b. That challenges the traditional image model of
Gaussian mixture and impacts on the precision and reliabil-
ity of automatic intensity-based segmentation methods.

To eliminate or alleviate the above-mentioned adverse
impact, two kinds of methods have been proposed for cor-
recting intensity inhomogeneities, namely, prospective and
retrospective correction.

A phantom study is a typical prospective method (Axel
et al., 1987; Dawant et al., 1993) in which the inhomoge-
neity profile of a particular MRI machine is estimated with
a phantom, and then the estimated profile is applied during
scanning of patients to compensate the intensity inhomoge-
neities. As above, intensity inhomogeneities are related to
both instrument imperfection and the scanned objects. Thus,
it is unrealistic to compensate different scanned patients
with a fixed estimated profile. In other words, intensity
inhomogeneities will vary with different machines and ac-
quisition parameters from subject to subject and from slice
to slice, which is inconsistent with the assumptions of pa-
tient independence in this method. All these drawbacks
challenge the validity of prospective correction methods.

Various approaches have been proposed to compensate
the intensity inhomogeneities retrospectively. Among them,
a two-step method is typical, and requires a preoperation to
estimate and remove the inhomogeneities, then perform
segmentation on the corrected data. A direct way to approx-
imate such inhomogeneities is with spline functions
(Dawant et al., 1993) and polynomials (Meyer et al., 1995).
However, the parameters of the basis functions or polyno-
mials are estimated from manually or automatically selected

Fig. 1. Intratissue intensity variation in MR image: (a) Original image. (b) Intensity distributions of image (a).
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reference points, which is either time consuming or unreli-
able. Homomorphic filters, which are powerful tools in
signal processing, have been used to remove low-frequency
components of the inhomogeneities, while high-frequency
details in MR images were also corrupted. The maximum
entropy method (MEM) is another correction technique, and
has shown great potential (Likar et al., 2000; Sled et al.,
1998).

Compared with the two-step methods, several other
methods perform estimation and segmentation in an itera-
tive way so that intermediate information gained from the
current segmentation can be used to improve the estimation
result, which can in turn lead to more accurate segmenta-
tion. Two extended versions of the FCM method have been
proposed to estimate inhomogeneities with an additive term
in its object function. Pham and Prince (1999) used first-
and second-order regularization terms to ensure the smooth-
ness and continuity of the estimated bias field. Ahmed et al.
(2002) used the neighborhood effect to bias the segmenta-
tion result toward piecewise-homogeneous labeling. Wells
and Grimson (1996) modeled the inhomogeneities as a bias
field and used the EM algorithm to perform the estimation
and segmentation simultaneously in a Bayesian framework.

As discussed above, intensity inhomogeneities of AIVs
have been widely addressed. ITIVs that can corrupt the inten-
sity distribution of MR images no matter how perfect a scanner
are, however, is seldom addressed in the literature. Addition-
ally, though these methods deal with the problem in different
ways, they can reach a consensus to estimate and correct the
inhomogeneities. Intensity inhomogeneities estimated even
from the same MR slice are quite different (Arnold et al.,
2001), saying nothing of those from different scanners, indi-
viduals, and scanning times. Therefore, the biggest danger in
removing intensity inhomogeneities is that some useful signals
may also be removed (Arnold et al., 2001; Worth et al., 1997).
These issues are addressed in this article.

The rest of this article is organized as follows. In Sections
2, we propose a novel image model to take into account both
AIVs and ITIVs. By simplifying the model into its local ver-
sion, the adverse impact of both AIVs and ITIVs is eliminated.
Based on the local model, a new method is presented in
Section 3 to classify 2D and 3D MR data effectively and
precisely while avoiding the possibility of removing useful
information. In Section 4, experimental results on both real 2D
MR images and simulated 3D MR data are presented. A
detailed discussion on the performance of the multicontext
fuzzy cluster is given in Section 5. The final section is devoted
to conclusions and future work.

2. Image model

2.1. Previous image models

Models of intensity inhomogeneities are the basis of
retrospective correction methods. An approach to model

intensity inhomogeneities has been proposed in the litera-
ture (Ahmed et al., 2002; Guillemaud and Brady, 1997;
Pham and Prince, 1999; Rajapakse and Kruggel, 1998;
Wells and Grimson, 1996). In this approach, intensity in-
homogeneities are modeled as a continuous, slowly varying
multiplicative field � over the image domain with constant
true intensity vk for each tissue class k,

yi � �ixi � ni,

xi � �v1,v2, . . . , vc�, (1)

where yi and xi are the observed and true intensity at the ith
pixel, respectively; ni is the measurement noise of indepen-
dent white Gaussian distribution at pixel i; N is the total
number of pixels in a MR image, and C is the desired
number of tissue classes (here C � 3 for WM, GM, and
CSF). Model (1) is widely adopted due to its simplicity and
effectiveness. It can model AIVs very well; however, it
makes nearly no consideration of ITIVs.

Another approach that is not widely used assumes that
the true intensity of each tissue class, vk, is spatially varying
and independent of another (Nocera and Gee, 1997). The
observed intensities yi are obtained by a model of partial
volume effect (PVE),

yi � �
k�1

C

ti
k vi

k, (2)

with the constraints @i, �k�1
c ti

k � 1, @i, @k, ti
k � 0,

where yi, i, N, and C are the same as those in model (1). ti
k

is the signal contribution of tissue k at location i, and vi
k is

the true intensity of tissue k at location i (i � 1,2, . . . , N).
The total number of true intensities increases from C in

model (1) to N which indicates that the true intensities vary
with location in the MR images.

2.2 A novel image model

As we discussed in Section 1, intensity inhomogeneities
are common for both AIVs and ITIVs (Rajapakse and Krug-
gel, 1998). Moreover, AIVs and ITIVs should be modeled
separately to account for their significant difference in both
appearance and cause of formation. However, intensity in-
homogeneities are partially modeled as either AIVs without
ITIVs in model (1) or as ITIVs without AIVs in model (2).
Therefore, neither model (1) nor model (2) is an objective
description for intensity inhomogeneities, which limits
those methods that are based on the two models.

To tackle the problem, we propose the image model

yi � �ixi � ni,

xi � �v1, v2, . . . , vN�. (3)

In this model, yi, xi, ni, i, N, and C are the same as in the
previous models. AIVs are modeled with �i as in model (1).
The true intensity vi, which varies with the location i in the
brain, is used to model ITIVs. Therefore, model (3) can
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properly model AIVs and ITIVs simultaneously. Moreover,
it also offers an in-depth description of the formation of
inhomogeneities caused by AIVs and ITIVs.

2.3. Local image model

As discussed above, model (3) is a relatively complete
description of intensity inhomogeneities. However, it is
difficult to estimate AIVs and ITIVs precisely. Fortunately,
due to the highly convoluted 3D spatial distribution of
different tissues in human brain, a local version of model (3)
can be deduced to eliminate the adverse effect of intensity
inhomogeneities. Therefore, estimation and correction for
such inhomogeneities are no longer necessary, which guar-
antees no information loss during the correction process.

Clustering context is a key concept throughout this work.
It is formally defined as a spatially connected subset of 2D
MR images or 3D volume data. The size or capacity of a
context is defined as the number of pixels in the context. We
denote clustering context W of a pixel P as W(P), and denote
the size of W(P) as �W(P)�.

On the grounds of the following three assumptions,
which will be proved reasonable by experimental results in
the following sections, model (3) can be simplified in its
local version.

1. Bias field �i, 1 � i � N, is smooth and slowly varying.
2. Within a context, the C classes of tissues exist together

and there are considerable pixels in each tissue class.
3. Within a context, all pixels of the same tissue have

similar true intensities.
From the first assumption, the multiplicative field term

within a clustering context of properly small size can be
approximately treated as a constant field:

�i � �, @i � W. (4)

The complex topology of the brain, which causes bends
and twists of spatial distributions of tissues of WM, GM,
and CSF, makes assumption (2) solid even in properly small
contexts. From this assumption, it can be deduced that there
are always C tissue classes in any clustering context. Hence,
the determination of cluster number in a context, which is
difficult in clustering analysis, is solved. With assumption
(3) as well as the fixed cluster number C, the total number
of true intensities in context W decreases from �W � to C:

xi � �v1, v2, . . . , vc�, @i � W. (5)

From (4) and (5), model (3) can be simplified in the local
model

yi
j � xi

j � ni
j

xi
j � ��jv1

j , �jv2
j , . . . ,�jvc

j

@i � Wj, 1 � j � Nw, (6)

where yi
j is the observed intensity and xi

j is the true intensity
modulated by the bias field at pixel i in clustering context

Wj; ni
j is measurement noise at pixel i in Wj; vk

j (k �
1,2, . . . , C) is the approximate true intensity of the kth
tissue in Wj; �j is a constant in context Wj; Nw is the total
number of clustering contexts in volume data; and C is the
desired number of tissues.

Thanks to the local model, the essential characteristics of
the ideal image model of Gaussian mixture, which was once
corrupted by both AIVs and ITIVs can be recovered. This
facilitates any segmentation method.

3. Methodology

3.1. Fuzzy c-means

FCM is a commonly used clustering approach (Hall et
al., 1992). It is a natural generalization of the K-means
algorithm allowing for soft segmentation based on fuzzy set
theory. To classify a data set of N data items into C classes
FCM can be formulated as a minimization problem of the
objective function J with respect to the membership func-
tions u and centroid v, where J is given by

J � �
k�1

c �
j�1

N

uki
d aki

2 , (7)

and it is subject to

uki � �0,1�, �
k�1

c

uki � 1, 0 � �
i�1

N

uki � N,

1 � i � N, 1 � k � C.

Here m (�1) is a parameter determining the amount of
fuzziness of the clustering results (if m � 1, then the
algorithm degenerates to the “crisp” K-means clustering
algorithm, so we suppose m � 1 in the rest of the paper); dki

� �yi � �k� is the Euclidean distance between the observed
data yi and the class centroid vk, and uki is the membership
value reflecting the degree of similarity between yi and vk.

The objective function J is minimized when high mem-
bership values are assigned to pixels whose intensities are
close to the centroid of its particular class, and low mem-
bership values are assigned to them when the pixel data are
far from the centroid.

Taking the first derivatives of J in (7) with respect to uki,
vk we can obtain the following necessary conditions to
minimize the objective function J:

uki �
	dki


�2/	m�1


�l�1
c 	dli


�2/	m�1
 ,

1 � i � N, 1 � k � C, (8)
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vk �

�
i�1

N

uki
m yi

�
i�1

N

uki
m

, 1 � k � C. (9)

After initialization of the centroids, uki and vk are itera-
tively calculated until some stop criteria are reached. Fi-
nally, the segmentation can be obtained by the principle of
maximum membership.

3.2. Multigrid fuzzy cluster (MGFC)

The nonoverlapping multigrid version of FCM is a nat-
ural and simple idea of performing FCM in a local way. One
context means one grid area here, so there is only one
context W(p) for each pixel p in MGFC. This algorithm can
be described as follows:

W	 p
 f uw	 p

k (10)

up
k � uw	 p


k , k � 1,2 . . . C. (11)

Though this method can avoid the disadvantage of FCM
of missing spatial information, it is essentially single con-
text. The membership value of each pixel is determined only
by its single local context and no information can be ex-
changed among neighboring contexts. Therefore, MGFC is
very sensitive to both the size of the local clustering context
and the amount of data in a context, and cannot preserve the
statistical reliability and spatial continuity of segmentation
results. This can be illustrated with Fig. 2.

Fig. 2 shows the hard segmentation result of MGFC
applied on a real MR image in Fig. 1a. The image is
uniformly divided into 5 � 5 nonoverlapping elements as
shown in Fig. 2a. FCM is carried out in each grid area

independently. From Fig. 2 we can see some problems with
MGFC.

First, the correctness of assumption (2) cannot hold in
some contexts. For instance, in some contexts across the
boundary between brain and background, only some of the
pixels are brain tissues (WM, GM, and CSF) due to the
removal of nonbrain tissue. In such contexts, the data in-
volved in collecting statistics for intensity distribution are
often far fewer than in the other contexts. The statistical
distribution of such few samples is deviant and inconsistent
with the typical distribution of the brain, which can lead to
obvious misclassification. In grid (1,1) in Fig. 2b, for ex-
ample, nearly all the pixels of GM are misclassified into
WM. Additionally, such inconsistent intensity distributions
may occur in some contexts even in the inner part of the
brain. As show in context (2,2), tissues of WM and GW
predominate, with little CSF, which yields a deviant inten-
sity distribution far from that typical of the brain. To min-
imize the object function in (7) with such intensity distri-
bution, FCM has to push some GM pixels of relatively low
intensity into the class of CSF, which leads to misclassifi-
cations.

Second, the variation of intensity distributions of neigh-
boring contexts would, more or less, lead to inconsistent
segmentation results across the context boundaries. For ex-
ample, the segmentations of GM are obviously inconsistent
at the boundary of grid (3,3) and grid (3,4) in Fig. 2b.

Enlarging the size of contexts of course can make as-
sumption (2) more reasonable by involving more sample
points. However, the enlarged context would weaken the
ability of eliminating the effect of AIVs and ITIVs because
the larger the context, the larger the gap between assump-
tions (1) and (3) and the truth. Accordingly, the determina-
tion of proper size of clustering context �W(p)� is a dilemma
in MGFC, because the tissue distributions vary with the

Fig. 2. MGFC hard segmentation: (a) Original T1-weighted image. (b) MGFC segmentation.
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slice orientation, position, and even the different contexts in
the same slice. It hinders the use of MGFC in MR brain
segmentation.

3.3. Multicontext fuzzy cluster (MCFC)

Despite the above-mentioned problems of MGFC, the
assumptions for simplifying the image model are still cor-
rect in most cases of context locations, due to the compli-
cated and convoluted structure of human brain as mentioned
above. In other words, most contexts would yield good soft
judgments. An intuitive idea is that multiple clustering con-
texts for each pixel and the adverse impact of some contexts
could be submerged by all the good clustering results from
other contexts. Such a consideration leads to the develop-
ment of a novel method called the multicontext fuzzy clus-
ter (MCFC) that can take advantage of the adaptation of
local clustering, but also keep the classifications spatially
continuous and statistically reliable.

MCFC includes two basic parts: fuzzy clustering and
information fusion. The rationale of MCFC can be de-
scribed as follows. In contrast to single context in MGFC,
Np clustering contexts with size �W� are automatically gen-
erated for each pixel P. From the viewpoint of information
fusion theory, the clustering contexts of point P can be
regarded as information sources to determine the tissue
class of the point, and the intensity distributions in contexts
are the information provided by the sources. Then fuzzy
clustering is independently performed in each context Wl(P)
(l � 1,2, . . . , Np) to calculate uw(p)

k , the membership of P to
tissues k. Here, the memberships can be regarded as soft
decisions made on the information from each information
source independently. In the part of information fusion, all
the soft decisions uw(P)

k are integrated with some strategy F
to bias the final membership functions toward the results,
which are similar to those from most of the contexts.

For any pixel P, MCFC can be summarized as follows:

Step 1. Wi	P

FCM

f uw	 p

k , k � 1,2, . . . , C;

l � 1,2, . . . , Np (12)

Step 2. up
k � F	u

w1	P
k
,uw2	 p


k , . . . , uwNp	P

k 
 (13)

Here, the weighted averaging operation is taken as the
fusion strategy:

F	uw1	 p

k ,uw2	 p


k , . . . , uwNp	P

k 
 � �

l�1

NP

awl	 p
uwl	 p

k (14)

awl	 p
 �
exp��d	 p,Ol	 p

/��

�
i�1

Np

exp��d	 p,Ol	 p

/��

. (15)

The reliability measure of an information source or the
weighting coefficient, awl(p) for a context, formulated as

(15), is inversely proportional to the distance between p and
the center of the context O. Parameter � in (15) determines
the profile of the weight function. Such a definition reflects
the fact that the closer the distance between p and the center
O, the more reliable the contextual information provided.
As a result, the averaging of clustering outcomes from
different contexts makes the final clustering result more
reliable. Moreover, the weighted averaging operation can
also preserve spatial continuity of the membership distribu-
tions of each tissue class.

3.4. Implementation details

To implement MCFC, the shape of contexts has to be
determined in advance because it decides how to generate
the clustering contexts. Theoretically, the selection of shape
should satisfy the three assumptions in Section 2.3 as pos-
sible as it can, especially for the second. For simplicity, we
select a rectangle for 2D MR images and the ratio of width
and height of the rectangle should be the same as that of the
input MR image. In a similar way, we use cuboids as a
clustering context for 3D MR data. Size of a context, the
only input parameter to be set for MCFC, is represented by
the normalized context size, which is defined as

� �
�w�

Ntissue
, (16)

where Ntissue is the amount of tissue pixels in the input
image. With this definition, the absolute size of the context
can change adaptively with the size of the brain in input
images. In the rest of this section, we expatiate on the
implementation of MCFC on 2D images, because it is sim-
ilar for 3D data.

Calculation of width and height of rectangular context
With a given normalized size of context �, equations for

calculating the width (Ww) and height (Wh) of the rectangle
are:

Ww 	 Wh � � 	 Ntissue, (17)

Ww/Iw � Wh/Ih, (18)

where Iw and Ih are the width and height of the input image,
respectively. By solving Eqs. (17) and (18), we have

Ww � ��IwNtissue

Ih
(19)

Wh � ��IhNtissue

Iw
(20)

Ntissue � N 
 Nbk, (21)

where N � Iw � Ih is the pixel number of the whole image,
and Nbk is the number of background pixels whose intensi-
ties are set to 0 when removing nonbrain tissues.
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Generation of multiple contexts
Moving a rectangular window through the input image,

step by step from left to right, and top to bottom with the
step length of Sw and Sh, respectively, is the basic process
for generating contexts. Once the moving is completed, the
contexts required for all pixels are generated. In such a way
of generating contexts, the number of clustering contexts for
one pixel is determined by Sw and Sh. For example, if Sw and
Sh are half of Ww and Wh, respectively, there are 2 � 2 �
4 contexts for each pixel. They can be rewritten as follows:

Sw � Ww/Nw, (22)

Sh � Wh/Nh. (23)

Then the number of contexts for each pixel is

Np � Nw 	 Nh. (24)

According to our experience, Np � 2 � 2 � 4 is enough
for 2D MR images and Np � 2 � 2 � 2 � 8 is adequate for
3D MR data. During the moving process, all pixels in the
rectangular window share the same context. It makes the
total number of clustering contexts for an image far less
than NpN, which indicates each pixel owns Np different
clustering contexts. If Nw � Nh � 2, the total number of
contexts for an image can be formulated as

NT � � Iw

Ww

 1� 	 � Ih

Wh

 1� . (25)

Fuzzy clustering and weighted averaging
The fuzzy clustering as well as weighting coefficients

calculating is performed along with the moving of the rect-
angular window. For one context, FCM algorithm can be
summarized as follows:

a. Using the clustering results of {vk}k�1
C from the

previously generated context as the initial cluster
centroids.

b. Update the membership matrix with (8).
c. Update the cluster centroids with (9).

Repeat (b) and (c) until convergence of the algorithm.
To implement the fuzzy clustering described above much

more efficiently, we use a histogram-based fast FCM that is
detailed in another paper to be submitted. Using the same
initial cluster centroids and termination criteria, this fast
algorithm yields identical clustering results with much less
computational time.

As we know, initialization is very important for mean-
ingful clustering results and reduction of computation time.
In MCFC, current context makes use of the clustering re-
sults from the previous context as the initial values. Hence,
the good initializations reduce the computational time and,
to a certain extent, can avoid the local minimum problem in
traditional FCM. After the iterative calculations of FCM
terminate, weighting coefficients for each pixel in the con-
text are calculated with (15). Then the membership values

multiplied by the corresponding weighting coefficient at
each pixel are accumulated to membership maps of the
whole image. After all contexts are processed, the accumu-
lated membership values at each pixel in the accumulated
membership maps are divided by the context number of the
corresponding pixels to obtain the weighted averaging
membership values.

Hard segmentation
Finally, maximum membership principle is used to obtain

the hard segmentation from the averaging membership maps.

4. Results

MCFC was implemented in MATLAB on a PC with Intel
Pentium III 866-MHz processor and 512M RAM. It has been
tested on both real MR images and 3D simulated MRI data
from the McConnell Brain Imaging Center at the Montreal
Neurological Institute, McGill University (Collins et al., 1998).

4.1. Evaluation with real data

Fig. 3 shows the results from MCFC and FCM on real
MR images corrupted by an obvious AIV. FCM misclassi-

Fig. 3. MCFC and FCM hard segmentations in the case of AIV: (a)
Original image. (b) Corrupted image of (a). (c) MCFC segmentation. (d)
FCM segmentation.
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fied nearly one-third of all pixels in the image, while MCFC
performing fuzzy clustering in a local way yields a much
better result.

Fig. 4 shows the hard and soft segmentation results of
FCM and MCFC on real MR images with ITIVs in Fig. 4.
Figs. 4a and b are the hard segmentations of MCFC and
FCM, respectively. Figs. 4c–e are membership functions of
WM, GM, and CSF of MCFC, and Figs. 4h–f are member-
ship functions of FCM. It is obvious that the typical inten-
sity of putamen is higher than that of the cortex. Moreover,
most intensities of putamen are closer to WM than to GM as

shown in Fig. 1b. As a result, the membership function of
GM at the putamen area calculated by FCM is much lower
than those of other GM areas and FCM misclassified most
parts of the putamen into WM with the principle of maxi-
mum membership. In contrast, MCFC can yield satisfactory
result, which is more compatible with human visual percep-
tion.

We also make a comparison between MCFC and MGFC
with same size of contexts. Compared with the segmenta-
tion result of MGFC in Fig. 2b, MCFC can yield a spatially
continuous and reliable segmentation result as shown in Fig.

Fig. 4. FCM and MCFC hard segmentation and membership functions: (a) MCFC hard segmentation. (b) FCM hard segmentation. (c–e) Membership
functions of WM GM and CSF in MCFC. (f–h) Membership functions of WM GM and CSF in FCM.
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4a. The inconsistent segmentations across context bound-
aries and obvious misclassifications due to deviant intensity
distributions in Fig. 2b have been overcome by MCFC.
These improvements imply that MCFC is more robust to
context size and can preserve the spatial continuity of WM,
GM, and CSF of each class.

4.2. Evaluation with simulated 3D data

To evaluate the performance of a clustering algorithm quan-
titatively, we define the misclassification error (MCR) of an
algorithm as the quotient between the number of pixels mis-
classified by the algorithm and the total number of pixels.

We applied both MCFC and traditional FCM on three
simulated T1 volume data (217 � 181 � 181, 1-mm cubic
voxels, 3% noise, and 0, 20, and 40% intensity nonunifor-

mity, respectively). The experimental results are listed in
Table 1.

To compare it with another effective algorithm, called
FM-AFCM, proposed by Pham and Prince (1999), the
MCRs of FM-AFCM tested under the same conditions are
also listed in Table 1.

From Table 1 we can see that MCFC and FM-AFCM are
much more robust to increased inhomogeneities than FCM. A
careful comparison between MCFC and FM-AFCM reveals
that MCFC can stably preserve lower MCR than FM-AFCM
as inhomogeneities increase. By comparing this table with
Table 1 in Pham and Prince (1999), it can be implied that
MCFC can also outperform other proposed methods such as
the unsupervised EM algorithm for finite Guassian mixture
models (Liang et al., 1992) and the adaptive Markov random
field (AMRF) method (Goldszal et al., 1998).

Besides the quantitative evaluations, we also show the
visual comparisons between traditional FCM and MCFC
applied on the simulated data (3% noise and 40% intensity
nonuniformity) in the following figures.

Two transverse slices drawn from the 3D segmentation
results are shown in Figs. 5 and 6. Figs. 5a and 6a are the
original slices from the simulated MR data. Figs. 5b and 6b
are the true models of the two slices. Figs. 5c and 6c show
the hard segmentation results of FCM. Figs. 5d and 6d are
the hard segmentation results of MCFC.

Because of the AIVs in the simulated MR data near the

Table 1
MCR from simulated data results

Method MCR

INV � 0% INV � 20% INV � 40%

FCM 4.020% 5.440% 9.000%
FM-AFCM 4.168% 4.322% 4.938%
MCFC 4.270% 4.200% 4.290%

Fig. 5. FCM and MCFC hard segmentations: (a) Original image. (b) True
model (c) FCM segmentation. (d) MCFC segmentation.

Fig. 6. FCM and MCFC hard segmentations: (a) Original image. (b) True
model (c) FCM segmentation. (d) MCFC segmentation.
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occipital lobe and cerebellum area, the segmentation results
of FCM, especially in WM, are obviously deteriorated.
MCFC, however, can yield much more complete and con-
tinuous results, which are very similar with the true models.

Three-dimensional renderings of the segmentation re-
sults of WM are shown in Fig. 7. Results of FCM, results of
MCFC, and the true model of WM are shown in the left,
middle, and right columns, respectively. In each column, the
top and bottom rows are the same results viewed from two
different angles. We can see that WM in the left columns is
incomplete: part of the WM near the occipital lobe and most
of the cerebellar WM are missed due to the 40% artificial
intensity inhomogeneities. In contrast, the WM segmented
by MCFC in the right columns is much more complete, and
the symmetrical structure of cerebellar WM is very clear

and complete. The segmentation of MCFC is therefore
much closer to the true model in the right column.

4.3. Clustering context size and MCR

In this experiment, we have also studied the relationship
between size of context and segmentation accuracy. In fact, the
larger the context, the more data to be clustered; the greater
similarity between the intensity distribution of one context and
that of the input image, the more reliable the clustering results.
This is desirable for assumption (2). On the other hand, the
smaller assumptions (1) and (3) require context size, to elim-
inate the adverse effects of AIVs and ITIVs.

So there exists a conflict in the selection of context size.
MCFC, however, can offer a good solution to this dilemma.

Fig. 7. Three-dimensional renderings of the segmentation results of WM: (a,d) FCM segmentation. (b,e) (b) MCFC segmentation. (e,f) True model.
Fig. 8. Relationship between MCR and size of context.

Fig. 9. Relationship between computation time and size of context.
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Averaging of multiple clustering results in MCFC makes
the final segmentations more insensitive both to the size of
context and to the amount of data in a context because of the
information exchanges among the contexts.

The relationship between MCR and context size of
MCFC performed on simulated volume data is shown in
Fig. 8. We see from Fig. 8 that MCFC can yield low MCR
when the normalized context size is in the range 0.04–0.08
in the condition of different intensity nonuniformity varia-
tion (INV � 0%, INV � 20%, INV � 40%).

5. Discussion

5.1. Clustering strategies: global, local and monocontext,
local and multicontext

FCM, as well as other global segmentation methods not
corrected for intensity inhomogeneities, conduct classifica-
tion based on the similarity between pixels and global clus-
ter centroids without incorporating any spatial information.
Such similarity is easily corrupted by both AIVs and ITIVs.
In contrast, MCFC and MGFC conduct classification based
on the local intensity difference. Therefore, spatial informa-
tion is naturally incorporated, and subtle intensity differ-
ences can be detected in a context to yield much more
reasonable segmentation with a smaller impact from inten-
sity inhomogeneities.

In MGFC, each pixel has only one context for clustering.
When there is even one context, in this case, assumption (2)
is not valid, the misclassification in this context can never be
corrected, because nothing is exchanged between the neigh-
boring grid areas as MCFC does. This makes the whole
segmentation result useless even though satisfactory results
are achieved in other contexts. In practice, MGFC is too
sensitive to the size of context to make any practical clas-
sification for tissue segmentation. In MCFC, however, there
are multiple clustering contexts for each pixel and the ad-
verse impact of some context could be minimized by all the
good clustering results from other contexts. Accordingly,
MCFC can take advantage of the adaptation of the local
clustering, but it can also keep the classifications statisti-
cally reliable. Hence MCFC theoretically can outperform
not only global intensity-based tissue segmentation methods
but also their local and monocontext versions, especially in
the presence of significant intensity inhomogeneities.

5.2. Validity

The human brain is a complicated, highly interconnected
and convoluted 3D structure. It is because of the special 3D
structure of the human brain that such subset clustering in
MCFC can be successfully performed throughout the whole
brain with constant tissue number to classify. On segment-
ing 2D MR brain images, some 3D information is missed.
This reduces the statistical correctness of assumption (2).

Hence MCFC will theoretically have better performance for
3D MR data of human brain than for 2D data.

Brains of different subjects are not identical in detail;
however, subvolumes occupying approximately the same
part of the different brains are statistically similar enough in
the 1D intensity histogram so that MCFC can be performed
on to any other normal brains with similar accuracy, leaving
nearly nothing to chance in the algorithm.

5.3. Speed

Increasing the number of clustering contexts in MCFC
does result in an increase in computational load. However,
two advantageous factors should also be taken into account
on comparing it with traditional FCM. First, each context
has far fewer pixels than the whole image; therefore the
computational load of a context is far lower than that of
applying FCM directly to the whole image. Second, as
mentioned in Section 3.4, during moving of the clustering
window, current context inherits the clustering results from
the previous context as its initial values. Thus, the good
initializations reduce the computational time spent on a
context. As a result, the final computational time of MCFC,
which is approximately the product of the number of con-
texts and computational time per context, is moderately
slower than that of FCM.

The computational time of MCFC in the experiments
with simulated volumetric MRI data is plotted with the
different context sizes (0.01–0.20) in Fig. 9, each for one of
three INV levels (0%, 20%, and 40%). From Fig. 9, we see
that computational time with any one of the three different
INV levels decreases with the reduction of context size. And
the computational time is between 15 and 20 min for most
context size. The average computational time of FCM for
the three different INV levels is approximately 15 min.
Hence, MCFC is slightly slower than FCM.

Moreover, MCFC is very easy to implement in a parallel
way since each context or each context packet can perform
simultaneously and independently on different CPUs or
different computers to reduce the computing time dramati-
cally. For example, MCFC can be implemented in a parallel
way with one master and multislave architecture. The mas-
ter calculates the size of clustering context and spatially
divides all the clustering contexts into packets. Therefore,
each packet corresponds to a subset of the image (image
block), which is the union of all the contexts in the packet.
Each image block is sent from the master to its correspond-
ing slave. After one slave receives its data, it begins to move
the clustering window in the image block just as in Section
3.4 to facilitate clustering, coefficient calculation, and mem-
bership map accumulation, context by context, until the
moving is completed. Once all the slaves independently
finish their jobs, the accumulated membership maps corre-
sponding to image blocks are sent back to the master, where
all the membership maps of image blocks are combined to
build the complete membership map for the whole image.
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Finally, hard segmentation of the input image can be ob-
tained with the principle of maximum membership.

5.4. Noise

MCFC is a framework that can embed FCM as well as
any other soft segmentation methods to calculate the mem-
bership degree in each context. Therefore, any traditional
noise-suppressing method, such as neighboring effects
(Ahmed et al., 2002) and Markoven random field as a prior
(Rajapakse and Kruggel, 1998), can be used in each context
to achieve better soft segmentation even from noisy images.

6. Conclusions and future work

We have presented a theoretically simple and practically
effective approach to automatic tissue segmentation of 2D
or volumetric MRI data of the human brain. Experimental
results have shown that our MCFC outperforms FCM as
well as some other proposed methods in the presence of
intensity inhomogeneities. Accordingly, MCFC would also
be an effective technique available in many clinical appli-
cations.

The deviation of the intensity distribution in a context
from that of the whole data set plays a key role in deter-
mining the correctness of assumption (2) and the reliability
of clustering results in the context. If we can evaluate the
deviations quantitatively, we can make use of them as the
more effective weighting coefficients to cut down the con-
text number for each pixel and reduce the computational
time. Therefore, in the future, we plan to develop a quan-
titative evaluation of the deviations. Moreover, we would
also like to figure out the relationship between the perfor-
mance of MCFC and the shape and amount of contexts.
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