
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000;30:61–79

Automated test-data generation
for exception conditions

N. Tracey∗,†, J. Clark‡, K. Mander§ and J. McDermid¶

Department of Computer Science, University of York, Heslington, York, YO10 5DD, U.K.

SUMMARY

This paper presents a technique for automatically generating test-data to test exceptions. The approach
is based on the application of a dynamic global optimization based search for the required test-data. The
authors’ work has focused on test-data generation for safety-critical systems. Such systems must be free
from anomalous and uncontrolled behaviour. Typically, it is easier to prove the absence of any exceptions
than proving that the exception handling is safe. A process for integrating automated testing with exception
freeness proofs is presented as a way forward for tackling the special needs of safety critical systems. The
results of a number of simple case-studies are presented and show the technique to be effective. The major
result shows the application of the technique to a commercial aircraft engine controller system as part of
a proof of exception freeness. This illustrates how automated testing can be effectively integrated into a
formal safety-critical process to reduce costs and add value. Copyright  2000 John Wiley & Sons, Ltd.

KEY WORDS: test-data generation; verification; exception conditions

INTRODUCTION

A failure occurs when software is prevented from performing its intended action. A subclass of failures,
which are known as exceptions [1], may be due to erroneous inputs, hardware faults or logical errors in
the software code. The exception handling code of a system is, in general, the least documented, tested
and understood part, since exceptions are expected to occur only rarely [2]. Indeed in a case-study by
Toy [3] more than 50% of the operational failures of a telephone switching system were due to faults
in exception handling and recovery algorithms. In a more recent incident, the Ariane 5 launch vehicle
was lost due to an unhandled exception destroying $400 million of scientific payload [4].

∗Correspondence to: Nigel Tracey, Department of Computer Science, University of York, Heslington, York, YO10 5DD, U.K.
†E-mail: njt@cs.york.ac.uk
‡E-mail: jac@cs.york.ac.uk
§E-mail: mander@cs.york.ac.uk
¶E-mail: jam@cs.york.ac.uk

Contract/grant sponsor: Engineering and Physical Science Research Council (EPSRC), UK; contract/grant number: GR-L4872

CCC 0038–0644/2000/010061–19$17.50 Received 21 July 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised 17 September and 15 October 1999

Accepted 16 October 1999

62 N. TRACEY ET AL.

Several languages now provide standard mechanismsfor dealing with exceptions, for example Ada,
C++ and Java. Exceptions are typically divided into two classes – language predefined and user defined.
Language predefined exceptions are used for error conditions that result from hardware faults or run-
time violation of the language rules (such as divide-by-zero and numeric overflow). User defined
exceptions allow the development team to define and control additional exceptional conditions in an
application specific manner. Standard language exception mechanisms greatly aid the structuring of
exception handling, separating the exception-related code from the normal logic of the software. This
improves the software’s readability and makes it easier to maintain. In this paper the Ada language [5]
model of exceptions has been used. However, many of the ideas and techniques for testing exceptions
will be equally applicable to many other languages’ exception mechanisms.

Exception code is responsible for the detection and handling of system conditions that could
potentially lead to failure. It is therefore important that this code is tested effectively. This paper
presents an approach for automatically generating test-data for the problems involved in testing
exceptions and exception handling. The aim is to provide automated support for the testing of
exceptions. The technique presentedis a further application of theauthors’ automated test-data
generation framework. This framework is basedon the application of global heuristic optimization
techniques and generalizes and builds on the work of others in this area.

Safety-critical systems present special problems. Typically, it is easier to prove the absence of any
exceptions than to prove that the exception handling is safe. Indeed, it is not only safety-critical
systems that require proofs of exception freeness. The application of conventional code generation
and optimization techniques can require code to be exception free [6]. A process is also outlined to
combine proof and testing for exception freeness.Through this integration it is hoped the costs of
exception freeness proofs can be substantially reduced.

AUTOMATIC TEST-DATA GENERATION

Automated test-data generatorscan be divided into three classes – random, static and dynamic.
Random test-data generation is easy to automate, but problematic [7–9]. First, it produces a statistically
insignificant sample of the possible paths through the software under test (SUT). Second, it may be
expensive to generate the expected output-data for the large amount of input data produced. Finally,
given that exceptions occur only rarely, the input domain which causes an exception is likely to be
small. Random test-data generators may neverhit on this small area of the input domain.

Static approaches to test-data generation generally use symbolic execution. Many test-data
generation approaches presented in the literature use symbolic execution to obtain structural test-data
[10–14]. Symbolic execution works by traversing a control flow graph of the SUT and building up
symbolic representations of the internal variables in terms of the input variables, for the desired path.
Branches within the code introduce constraints on the variables. Solutions to these constraints represent
the desired test-data. A number of problems exist with this approach. Using symbolic execution it is
difficult to analyse recursion, arrayindices which depend oninput data and some loop structures. Also,
the problem of solving arbitrary constraints is known to be undecidable.

Dynamic test-data generation involves execution of the SUT and a directed search for test-data that
meets the desired criterion. The dynamic approach was first suggested in 1976 by Miller [15]. The
work of Korel et al. built on this using locally directed search techniques [8,16–18]. This is further

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 63

expanded by Gallagheret al. [19]. Local search techniques only work effectively for linear continuous
functions. Consequently, these techniques are likely to become stuck at a local optimum and fail to
locate the required global optimum [20]. The use of global optimization techniques for dynamic test-
data generation has been investigated more recently in an attempt to overcome this limitation [9,20–23].

The authors’ work has built on the previous optimization-based testing work to develop an
extensible, generalized test-data generation framework. It has already been used to generate test-data
for a wide variety of testing problems – constraint-solving [24], specification-based functional testing
[25], worst-case execution time testing [26], structural testing [27] and safety-related testing [28].
This paper discusses an extension allowing its application to test-data generation for exceptions. The
generation of this input data is done directly from the software implementation without reference to the
specification. It is important to note that the expected outputs for the tests must still be derived from
the specification. The following section introducesthe specific problems involved in testing exceptions
and their handlers.

THE TEST-DATA GENERATION PROBLEM

A control flow-graph is a directed graph which represents the control structure of a program. It can be
described as follows [29]: G = (N,E, s, e), whereN is a set of nodes,E is a set of edges of the form
(ni , nj) ands ande are unique entry and exit nodes such thats, e ∈ N . A node,n ∈ N , is a sequence
of statements such that if any one statement of the block is executed, then all are executed. This is also
known as abasic-block. An edge(ni , nj) ∈ E represents a possible transfer of control from the basic
blockni to the basic blocknj . For branch instructions the edges are associated with abranch predicate.
This describes the conditions whichmust hold for the branch to be taken.

A program is driven down a path in the control flow graph by the values of its input variables and
the global state. These can be described as the vectorx = 〈x1, x2, . . . , xn〉. Each variable will have an
associated domain,Di , which can be determined from the variable’s type. The total input space can
be defined as the cross-product of each of these domains,D = D1 × D2 × · · · × Dn. This allows a
program input to be defined asx ∈ D.

Two issues are of importance when testing exception conditions – raising the exception and test
coverage of the exception handler.

Raising exceptions

Firstly, consider the case of a user-defined exception. User-defined exceptions must be explicitly raised
in Ada by executing theraise statement. Assuming theraise statement is contained in basic block
ni ∈ N (more accurately araise statement will always be the last statement in a basic-block as it
causes an unconditional branch), the problem of testing the raising of a user-defined exception reduces
to one of selecting test-datax ∈ D that will causeni to be executed.

In the case of predefined exceptions the problem is slightly different. Predefined exceptions are
raised when the language rules are violated at run-time and in response to hardware errors. Test-data
alone cannot test the raising of exceptions in response to hardware errors. For these hardware errors
integration with a fault injection technique [30] is required. The focus, in this paper, is the generation

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

64 N. TRACEY ET AL.

subtype Idx is Integer
range � � � �����
A � array �Idx� of Integer�
B�C � Idx�
D � Integer�

A �D� �� B�
D �� �C � C� � B�

�a� Original Program

if D not in Idx or B not in Integer then �� BB �

raise Constraint Error� �� BB �

end if �
A �D� �� B� �� BB �

if �C � C� � B not in Integer then �� BB �

raise Constraint Error� �� BB �

end if �
D �� �C � C� � B� �� BB �

�b� Code with Compiler Checks

Figure 1. Predefined exception checks.

of test-data which violates run-time language rules. In Ada there are a number of predefined exceptions
[5]:

Constraint Error – data going out of range.
Program Error – control-structure violation.
Storage Error – running out of storage space.
Tasking Error – general communications failure between tasks.

Our major concern is the development of softwarefor safety critical systems. This type of
development is often carried out using a ‘safe’ subset of a language. This allows the application
of static analysis and potentially proofs to show adequate system safety. Our major concern with
testing has been these kinds of systems, hence we have focused on the SPARK-Ada language
[31,32]. SPARK-Ada allows testing forConstraint Error exceptions to be the focus of the
work to date. The SPARK-Ada tool-set [31] mitigates against other pre-defined exceptions through
language restrictions or static analysis.Tasking Error cannot occur as Ada tasking is not
part of SPARK Ada.Storage Error is also unlikely to occur as dynamic memory allocation
is not being used and therefore storage requirements can be calculated statically. The situations
whereProgram Error exceptions can occur are detected by the SPARK Examiner static analysis
tool.
Constraint Error exceptions occur when a value goes out of range; examples include type

bounds, array bounds, arithmetic underflow/overflow and attempts to divide by zero. The Ada compiler
is responsible for inserting checks into the object-code to check forConstraint Errors at all
points where such errors may occur. Figure1 illustrates the exception detection code that is inserted
automatically by an Ada compiler for a simple program.

The test-data generation problem in this case is to find, for each point where a
Constraint Error is possible, data that causes the run-time violation. This can be thought of in

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 65

exactly the same way as test-data generation for user-defined exceptions. That is, test-data is required to
execute the basic-block containing the desiredraise statement (basic block 2 and 4 in the example).

Coverage of exception handlers

Test coverage of exception handlers involves achieving structural coverage of the code. A number
of structural coverage measures have been defined, these are reviewed by Ntafos [33] and Zhuet al.
[34]. So, in essence, the test-data generation program for structural testing is finding a set of program
inputsX (such thatX ⊂ D) that achieves the desired coverage. Details of how the test-data generation
framework addresses this problem can be found in Reference [27]. For testing exception handlers the
test-data inX must also raise the desired exception.

OPTIMIZATION TECHNIQUES

Heuristic global optimization techniques are designed to find good approximations to the optimal
solution in large complex search spaces. General purpose optimization techniques make very few
assumptions about the underlying problem which they are attempting to solve. It is this property
that allows a general test-data generation framework to be developed for solving a number of testing
problems. Optimization techniques are simply directed search methods that aim to find optimal values
of a particular objective function (also known as a cost or fitness function). In this work both simulated
annealing [35] and genetic algorithms [36] have been used as the optimization technique. Both have
performed effectively, although this paper highlights the use of genetic algorithms.

Genetic algorithms were developed initially by Hollandet al. in the 1960s and 1970s [36]. They
attempt to model the natural genetic evolutionary process. Selective breeding is used to obtain new
sample solutions that have characteristics inherited from each parent and mutation introduces new
characteristics into the solutions.

Genetic algorithms work by maintaining a population of sample solutions each of whosefitness
has been calculated. Successive populations (known asgenerations) are evolved using the genetic
operations of crossover (selective breeding) and mutation. The aim is that through the use of the genetic
operations the population will converge towards a global solution.

From an initial population of randomly generated solutions the fitness of each is calculated. The
fitness function will be discussed in detail in the next section, for now it is sufficient to think of
it as providing a quantitative measure of each solution’s suitability for the problem at hand. Using
this information members of the population are selected to become parents. Only selecting the fittest
solutions tends to cause the search to converge tooquickly into local optima. Random selection
overcomes this by selecting parents randomly. Tournamentselection combines these by selecting the
fitter of two solutions with some probability otherwise a random choice is made.

Once the parents have been selected they need to be combined to form the offspring. The simplest
crossover scheme is single point crossover. This selects a random point in a solution and combines the
values from one parent up to this point with values from the other parent after this mid-point. Uniform
crossover randomly decides which parent each data value will be drawn from to form the new solution.
The probability of this decision can be weighted towards one of the parents to give weighted crossover.
A selection of the offspring are then mutated to introduce diversity into the population.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

66 N. TRACEY ET AL.

procedure Genetic Algorithm is
begin
INITIALISE �Current Population��
CALC FITNESS �Current Population��
loop
SELECT PROPECTIVE PARENTS�
CROSSOVER �Parents� O�spring�
MUTATE �O�spring�
CALC FITNESS �O�spring��
SELECT NEW POPULATION�

exit when STOP CRITERION�
end loop�
end Genetic Algorithm�

Figure 2. Genetic algorithm.

The next generation (i.e. new population) is thenselected from these offspring and the old
population. Again a simple survival of the fittest tends to converge into suboptimal solutions. Therefore,
some hybrid of survival of the fittest and random selection is normally used. An outline of the genetic
algorithm search process is shown in Figure2.

OPTIMIZATION BASED TEST-DATA GENERATION

To enable a dynamic search to be used to locate test-data it needs to be given some guidance. This
guidance is given in the form of a fitness function. The amount of guidance given by the fitness function
is one of the key elements in determining the effectiveness of the test-data generation. The other key
factor is, of course, the search techniqueitself. The input domain of most programs,D, is likely to
be very large. A fitness surface could be formed by applying the fitness function to every possible
program input. It is this surface which is effectively being searched when attempting to generate test-
data. The size and complexity of the search space limits the effectiveness of simple gradient descent or
neighbourhood searches as they are likely to get stuck in locally optimal solutions [37], hence failing
to find the desired test-data. It is for this reason that global heuristic optimization techniques are used.

The fitness function must provide a measure of howclose particular test-data is to executing the
desiredraise statement. The fitness function needs to return good values for test-data thatnearly
executes theraise statement and poorer values for test-data that isfar from executing theraise
statement. Since branch predicates determine the path followed they are vital in determining an
effective fitness function.

Branch predicates consist of relational expressions connected with logical operators. The fitness
function is designed such that it will evaluate to zero if the branch predicate evaluates to the desired
condition and will be positive otherwise. This is important as it gives a highly efficient stopping

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 67

Table I. Fitness function calculation.

Element Value

Boolean if TRUE then 0 else K

a = b if abs(a − b) = 0 then 0
else abs(a − b) + K

a �= b if abs(a − b) �= 0 then 0
else K

a < b if a − b < 0 then 0
else (a − b) + K

a ≤ b if a − b ≤ 0 then 0
else (a − b) + K

a > b if b − a < 0 then 0
else (b − a) + K

a ≥ b if b − a ≤ 0 then 0
else (b − a) + K

a ∨ b min (fit (a), fit (b))

a ∧ b fit (a) + fit (b)

¬a Negation is moved inwards and
propagated overa

criterion for the search process. The fitness function is calculated as shown in TableI. In the table,
K represents a failure constant which is added to further punish incorrect test-data.

In order to evaluate the fitness function it is necessary to execute an instrumented version of the SUT.
There are two types of procedure call added by the instrumentation – branch evaluation and exception
monitoring. Figure3(a)shows a simple program that can raise a user-defined exception and a number
of Constraint Error exceptions. Figure3(b)shows the same program with instrumentation.

The branch evaluation calls replace the branch predicates in the SUT. These functions (Branch 1
andBranch 2 in Figure3(b)) are responsible for returning the Boolean value of the predicate and
adding to the overall fitness the contribution made by each individual branch predicate that is executed.
A branch is termed a critical branch if either the user has specified the desired outcome of the branch
evaluation; or the branch evaluation affectsthe reachability of the desired exception. For critical
branches the branch evaluation calls work as follows.

• Add the fitness of either(branch predicate) or ¬ (branch predicate) to the overall fitness for the
current test-data depending on the required outcome.

• Within loops, adding the fitness of critical branch predicates is deferred until exit from the loop.
At this point the minimum fitness evaluated for that branch predicate is added to the overall
fitness. This prevents punishment of taking an undesirable branch until exit from a loop, as the
desirable branch may be taken on subsequent iterations.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

68 N. TRACEY ET AL.

function F �X� Y � Small Int� return Integer is
Z � Integer�
begin
if X � � then

raise Invalid Data�
end if �
Z �� X � Y�
if Z � � and Z �� 	 then

return Integer
Last�
else

return ��X �� �� � ��Z � �� � �Z � 	����
end if �
end F�

�a� Original Program

function F �X� Y � Small Int� return Integer is
Z � Integer�
begin
if Branch � �X� then

raise Invalid Data�
end if �
Excep � �X� Y�� �� �X � Y� in Integer�
Z �� X � Y�
if Branch � �Z� then

return Integer�Last�
else

Excep � �X�� �� �X �� �� in Integer�
Excep 	 �Z�� �� �Z � �� in Integer�
Excep
 �Z�� �� �Z � �� in Integer�
Excep � �Z�� �� �Z � �� � �Z � �� in Integer
Excep � �Z�� �� ��Z � �� � �Z � ��� �� �
return ��X �� �� � ��Z � �� � �Z � 	����

end if �
end F�

�b� Instrumented Program

Figure 3. Example program and instrumentation.

The exception monitoring calls simulate the expansion of the run-time checks inserted by the
compiler. As illustrated above using this technique the test-data generation problem for pre-defined
run-time exceptions is the same as for user-defined exceptions, i.e. finding test-data to execute the
basic-block containing theraise statement. These instrumentation calls (Excep 1 to Excep 6
in Figure 3(b)) encode the condition required to cause a run-time exception, and function as
follows.

• If the exception is required tobe raised then the fitness of thecondition required to cause the
exception is added to the overall fitness for the current test-data, otherwise add fitness of the
negated exception condition.

• Again, as for branch evaluation calls, adding the fitness of exception conditions is deferred until
exit from the loop.

The problem of structural test coverage of the exception handler is addressed in a similar manner.
In this case, it is only the branch predicates that are important as they dictate the flow of control. The
search technique aims to generate testdata which raises the desired exception as detailed above, in
addition the branch predicate fitness functionsare used to guide the searchto test-data that executes
the desired path through the exception handler. The details of how optimization can be used to generate
structural test-data are presented in Reference [27]. The entire process is supported by a prototype tool-
set which supports the testing of Ada programs. This tool-set extracts the required information from
the SUT and then generates a custom implementation of the optimization system. It is the execution of

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 69

this system that dynamically executes the SUT, calculates the fitness values and ultimately generates
the required test-data.

Example

To demonstrate how this works in practice, consider the problem of generating test-data which
causes a divide-by-zero error (i.e. raises aConstraint Error) in the program in Figure3(a). The
following illustrates how the fitness function works. For the example the population size is set at five,
Small Int integers are assumed to be in the range−5 to 5 and K (the punishment constant) is set to
10.

The following shows the initial random population of solutions and their associated fitness values
calculated using the fitness function.

No. X Y Fitness Description
1 −3 4 3 + K Fails atBranch 1
2 2 −5 32+ K Fails atExcep 6
3 −5 −1 5 + K Fails atBranch 1
4 1 −5 45+ K Fails atExcep 6
5 3 2 0 + K Fails atBranch 2

Ave. Fitness 27

At this point the prospective parents are selected and the offspring population formed by applying
the uniform crossover and mutation operators. This gives the following offspring.

No. X Y Fitness Description
6 −3 −1 3 + K Crossover 1, 3
7 3 −5 21+ K Crossover 3, 4,

MutateX

8 1 −5 45+ K Crossover 2, 4
9 2 0 1 + K Crossover 2, 5,

MutateY

10 2 3 0 + K Crossover 2, 5
MutateY

Ave. Fitness 24

The next generation is then selected, using a hybrid of elite survival and random selection. This new
population is as follows.

No. X Y Fitness Description
11 3 2 0 + K Elite survival of 5
12 2 0 1 + K Elite survival of 9
13 2 3 0 + K Elite survival of 10
14 1 −5 45+ K Random survival of 4
15 −3 −1 3 + K Random survival of 6

Ave. Fitness 19.8

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

70 N. TRACEY ET AL.

Figure 4. Fitness surface for divide-by-zero exception.

It can be seen that the average population fitness in this new generation has fallen, indicating that
the population is getting fitter. The process then repeats generating new offspring by selecting parents
from this new population. This gives the following offspring.

No. X Y Fitness Description
16 3 3 5 + K Crossover 11, 13
17 2 −1 0 Crossover 12, 15
18 −3 3 3 + K Crossover 13, 14
19 −1 2 1 + K Crossover 11, 15,

MutateX

20 2 −1 0 Crossover 13, 15
Ave. Fitness 7.8

At this point the search can stop as solutions 17 and 20 both have a fitness of zero and hence represent
test-data that will raise the desired exception. Figure4 shows the fitness surface for this divide-by-zero
exception. There are 121 possible test inputs to this simple program, of these it can be seen only 6 raise
the divide-by-zero exception –(0, 1), (1, 0), (2,−1), (3,−2), (4,−3) and(5,−4).

As can be seen from this example the fitness function gives a quantitative measure of the suitability
of the generated test-data for the purpose of raising a specified exception in the SUT. The global

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 71

H1: true .
H2: b >= index__first .
H3: b <= index__last .

->
C1: b >= integer__first .
C2: b <= integer__last .

Figure 5. Verification conditions.

optimization technique uses this to guide its generation of test-data until either it has successfully
found test-data with a zero fitness or until no further progress can be made, perhaps due to locally
optimal points in the fitness surface.

FREEDOM FROM EXCEPTIONS

Many systems, including aviation, commerce, medicaland office systems, depend upon and require the
correct functioning of software to perform their desired task. With such critical systems the probability
of software failure must be reduced to acceptable levels.

An important aspect in developinghigh-integrity and safety-criticalsystems is that of certification,
certification typically includes the process of independently verifying conformance to a standard.
Examples of relevant standards for safety-critical software include defence standard 00-55 [38], civil
aviation standard DO178B [39] and generic standard IEC-61508 [40]. Typically such standards will
require full test coverage of the object code (for example the requirement forfull modified-condition
decision coverage in DO178B). This task is made very much more difficult when the compiler inserts
run-time checks. This is illustrated in Figure1, whereas the original program appeared to have a single
basic block with compiler checks there are actually five. However, if it can be proved that such checks
never fail (i.e. exceptions can never occur) then they can be omitted. Indeed it is usually easier to reason
that a program is free from exceptions than to reason about the correct implementation of exception
handlers that might be used in full Ada [32].

SPARK-Ada and its associated tools [31,32] (SPARK examiner, SPADE automatic simplifier and
proof checker) allow such proofs of exception freeness to be performed. Using the SPARK examiner,
appropriate check annotations can be generated which represent the necessary run-time checks.

As well as generating these check annotations the SPARK examiner can generate verification
conditions for each of the checks. If these conditions can be discharged then that proves that the run-
time exception associated with the annotation cannot occur. For example, consider the code A(D):=
B; from Figure1 and its associated check annotation,− − # check B in Integer. From this the SPARK
examiner generates the verification conditions shown in Figure5.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

72 N. TRACEY ET AL.

This shows three hypotheses, which can be assumedto be true, and two conclusions. To prove that
the corresponding exception cannot occur a proof is required to show that the conclusions logically
follow from the hypotheses. In this example it is simple to see that this is so.

In many cases the SPADE automatic simplifier will take the verification conditions associated with
run-time checks and be able to simplify them to true (or possibly false). In the cases when the simplifier
cannot discharge (prove) the conditions, a guided proof is required. Such a proof, whether manual or
semi-automatic, can be very effort intensive requiring highly-skilledengineers. Before any such effort
is invested a good deal of confidence in the successful outcome is desirable to reduce the risk. If the
putative properties being proved are simply untrue then attempting a proof (which will inevitably fail)
is an extraordinarily expensive method to find errors in the software.

To achieve the desired confidence one approach is aggressively to test for exception conditions.
This is equivalent to finding a counter-example for the proof. This allows the test-data generation for
exception conditions to be integrated into a process that aims to show exception freeness for safety-
critical software. By integrating this automated testing approach the aim is to reduce the costs involved
in proving exception freeness. Typically where exception freeness is not proved, special arithmetic
operators are used to protect against overflow, underflow and division-by-zero usually by saturating‖
the result. This in turn can require additional complexity in the control code as it must remain stable
even when results are saturated. By proving exceptions cannot occur, the additional complexity and the
need for special operators is removed. A reduction in the costs involved in the proof step make it more
likely to be used onreal commercial projects.

EVALUATION

This section presents the results of an evaluation of the optimization based approach to generating test-
data for exception conditions. The evaluation has been performed in two parts. Firstly, a collection of
small Ada 95 programs have been used to provide a preliminary assessment of the ability of the system
to generate test-data to raise particular exceptions. Test-data to achieve exception condition coverage
has also been targeted. Secondly, integration of the test-data generation and proof of exception freeness
is evaluated using the code for a civil aircraft engine controller.

Simple examples

A number of Ada 95 programs have been used to evaluate the effectiveness of this test-data generation
approach. The routines are between 10 and 200 lines of code. Square simply squares the input
parameter. However, the data-types are defined such that an overflow exception will be raised with
large input values. Int Sqrt is an integer square-root routine that uses a binary search algorithm. Find
performs either a linear or binary search to locate a value in an array. A user-defined exception and
handler is invoked if a binary search is requested on an unsorted array. Remainder calculates the

‖Saturation does not give mathematically accurate results. Where overflow would occur the result saturates at the ceiling of the
range and similarly for underflow. For divide-by-zero the saturating operation returns the largest positive or negative value in the
range depending on the dividend.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 73

Table II. Evaluation results (Key: INP - cardinality of the
input domain, NE - Number of exception conditions, EF -
exception conditions successfully executed, C - branch coverage

of exception handlers, T - test-data generation time).

SUT Name INP NE EF C T

Square 20 002 1 1 N/A 0.5s
Int Sqrt 10 000 3 3 N/A 1.1s
Find 1e + 44 2 2 100% 2.0s
Remainder 1e + 8 2 2 N/A 2.4s
Tomorrow 286 440 5 5 100% 4.8s
Convert 1.7e + 10 7 7 N/A 17.2s
BigInt Div 1e + 50 4 3 100% 36.2s

Total 24 23

remainder and quotient given two input parameters. Tomorrow calculates tomorrow’s day, date, month
and year taking into account leap yearcalculations. User-defined error handling is used to validate
the input date. Convert performs conversions between binary, octal, decimal, hexadecimal and Roman
numeral strings. BigInt Div performs an integer division using arbitrary length integer abstract data
types. Error seeding was used on a number of the programs to introduce errors that allowed exceptions
to be generated. TableII shows the results of generating test-data for these programs∗∗.

These results demonstrate that test-data can effectively be automatically generated to test exceptions.
However, these results are only on relatively trivial programs. The authors’ focus is the provision of
automatic testing solutions for high-integrity safety-critical systems. A more detailed evaluation of the
test-data generation technique is presented in the next section for such a system.

Aircraft engine controller

As part of the evaluation of the integration of test-data generation and proof for exceptions the
technique has been applied to the code for a civil aircraft engine [41]. The software is approximately
200,000 lines of safety-critical code written in SPARK-Ada. The code encompasses a number
of different types of functionality – state-based, control-laws, redundancy provision, background
maintenance and health monitoring. In the final production version of the engine controller code
the run-time checks are disabled. It is therefore important that there is no possibility of a run-time
exception. As the code is written in SPARK-Ada onlyConstraint Errors need to be considered.
Figure6 shows an example routine from the engine controller code.

∗∗The evaluation was performed on a Pentium Pro 200MHz system running Linux.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

74 N. TRACEY ET AL.

type RealType is delta ������
range ��������� � � ���������

type CounterType is range � � � ����

procedure SmoothSignal
�CurrentVal � in RealType�
SmoothThresh � in RealType�
GoodVal � in out RealType�
OutputVal � out RealType�
Count � in out CounterType�
CountThresh � in CounterType�

is
Tmp�	 Tmp� � RealType�

begin
Tmp� �
 CurrentVal � GoodVal�
Tmp� �
 GoodVal � CurrentVal�
if Tmp� � SmoothThresh or else

Tmp� � SmoothThresh
then

Count �
 Count � ��
if Count � CountThresh then

OutputVal �
 GoodVal�
else

OutputVal �
 CurrentVal�
GoodVal �
 CurrentVal�
Count �
 ��

end if �
else

OutputVal �
 CurrentVal�
GoodVal �
 CurrentVal�
Count �
 ��

end if �
end SmoothSignal�

Figure 6. Smooth signal subprogram.

The first step in this evaluation was to use the SPARK Examiner to extract the run-time verification
conditions from the source code. The verification conditions detail the proof obligations for a proof of
exception freeness. The SPARK automatic simplifier was able to discharge 89% of these verification
conditions completely automatically. For the example given in Figure6 the Examiner generates 13
verification conditions, of which 11 are discharged automatically by the simplifier.

Approximately half of theremaining verification conditions simply required information about
compiler-dependent type ranges. The simplifier was then also able to discharge these automatically.
The smooth signal subprogram does not contain any compiler-dependent types, therefore no additional
verification conditions were discharged. The test-data generation tool set was targeted at the remaining
verification conditions. The aim was to generate test-data which illustrated a condition under which

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 75

H1: currentval >= - 250000 .
H2: currentval <= 250000 .
H3: goodval >= - 250000 .
H4: goodval <= 250000 .

->
C1: currentval - goodval >= - 250000 .
C2: currentval - goodval <= 250000 .

H1: count >= 0 .
H2: count <= 100 .

->
C1: count <= 99 .

Figure 7. Verification conditions for smooth signal.

the exception would be raised. Where the test-data generation was successful the test-data illustrated
a condition under which the run-time rules of the Ada language would be violated and hence an
exception raised. The application of the test-data generation technique requires the execution of an
instrumented version of the software as discussed earlier. The validity of testing the instrumented code
is problematic for safety-critical systems. However, we view the test-data generation technique as a
method of simply obtaining test-data. The development team should then use this test-data within
their certified development environment to validate it. Figure7 shows the remaining two verification
conditions for the smooth signal subprogram (the irrelevant hypotheses have been removed).

Test-data was generated for each, illustrating that an exception could be raised. For examplecount
input value of 100 when either(CurrentVal−GoodVal) > SmoothThresh or (GoodVal−CurrentVal) >

SmoothThresh is true will cause an exception.
As already stated for the final engine controller system the run-time checks are turned off. This

means that exceptions would not be raised, but rather that data values would become invalid. This
could have serious safety implications for the system as the engine control-laws may not be stable
with invalid data. A detailed investigation into these situations showed that violation of the run-time
rules (and hence potentially invalid data) was not possible in the current system. The use of protected
arithmetic operators which are well-defined in the presence of divide-by-zero, overflow and underflow
prevents a large number of these cases. However, in these cases the resulting test-data is still interesting
because the arithmetic operators return a mathematically incorrect result. In general it is important to
know the situations when this can happen. The physicalvalue ranges of sensor readings also prevented
a number of exception conditions occurring in practice.This can be seen in the smooth signal example,
the sensors readingcurrentval andgoodval can only give values such thatcurrentval − goodval is
always in range. The overflow of integer counters was another potential cause of exceptions. On closer
inspection none of these overflow conditions could arise. Typically the counters would be reset after
a number of iterations according to fixed global data stored as part of the engine configuration. In

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

76 N. TRACEY ET AL.

all cases this global data was passed in by the calling environment and contained values such that
the counter could never overflow. This was again true in the smooth signal example, here the global
configuration ensures the counter was reset after at most 9 iterations (i.e.SmoothSignal is never called
with CountThresh above 9). Again, the test-data generated here is still useful as the basis of a code-
review to ensure that the global configuration does indeed prevent such data occurring at run-time. For
those verification conditions where the test-data generation was unsuccessful, proofs were attempted.
In all cases these were successful in discharging the verification conditions.

It is the lack of inter-procedural information that causes test-data to be generated that the system
could never generate in practice. For example, as discussed above theSmoothSignal is never called
with aCountThresh greater than 9. One possible approach to address this problem is to use the SPARK-
Ada pre- and post-condition annotations. These would provide the necessary information so that the
test-data generation could avoid generating test-data that the routines would never be exercised with
in practice. Indeed the supply of such information allows even more of the verification conditions
to be proved automatically by simplifier. However, the construction of such annotations can be very
expensive and for many industrial safety-critical systems they are simply not available (as is the case
with the aircraft engine controller code used in the evaluation). Even with these annotations large
amounts of proof effort can be wasted on unsuccessful proofs [42,43] and consequently the automatic
testing approach to gain confidence is still useful. Another possible solution to the lack of inter-
procedural level is to apply the test-data generation at a higher level. As presented here the test-data
generation is performed by executing the software unit under test. Instead it could be applied at the
sub-system or even system level. The search would still target test-data specific exceptions at the unit
level, but by generating input data for the sub-systems or system. Obviously, this will increase the size
of the search space and also the complexity of the fitness surface. At some point the fitness surface will
not provide enough information to the optimization technique and the search process will break-down.
Future work will look at how far the optimization techniques can be pushed and where they start to
break-down.

CONCLUSIONS

Many of the approaches for automated software test-data generation presented in the literature are
inflexible or have limited capacity. Optimization techniques in contrast offer a flexible and efficient
approach to solving complex problems. To allow the optimization based framework to generate test-
data for a specific testing criterion it is necessary only to devise a suitable fitness function. This paper
presents an extension of the framework to address theproblems of testing exceptions. This extension
is useful as the testing of exception conditions has very much been a ‘poor relation’ in testing research.

As with all testing approaches, only the presence of faults can be shown, not absence. Indeed,
the failure of the test-data generation to find suitable test-data for an exception does not indicate the
exception cannot occur, only that the search for test-data failed. However, given an intensive directed
search for test-data, failure to locate test-data does allow increased confidence. This paper has shown
how this automated testing strategy can be integrated into a process for proving exception freeness
for safety-critical software systems. Here the automated testing is used to gain confidence in the
likely correctness of the software, prior to investing time and money in proofs. It is suggested that
applying this kind of testing should be a certification level test. Introducing additional complexity to

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 77

mitigate against exceptions found when testing at the unit level would be undesirable. For example,
the programmer may attempt to introduce additional code into theSmoothSignal routine to mitigate
against the exception. However, the programmer is probably unaware that this exception cannot occur
in practice due to system level protection. Therefore, this extra code only increases complexity, testing
and maintenance costs and potentially reduces reliability.

An important fact is that the tools provided to support this automated test-data generation need not be
of high-integrity even when testing safety critical code. They can be viewed as simply generating test-
data that can be checked by other means, i.e. use of a suitable test-harness to check that the generated
test-data does in fact cause the desired exception. This is important as the algorithms are stochastic and
it is extremely difficult to reason about their efficacy for application to arbitrary code.

The results of the initial evaluation are very encouraging. The test-data generation system was able
to find test-data to cause exceptions and cover the exception handling code efficiently.

Further work

The results presented above show that it is possible to use optimization techniques to generate test-data
for the testing of exceptions. However, more research is required in order to assess the limitations of
the approach. The expression structure in the safety-critical code was very simple. This allowed the
automatic simplifier to discharge the vast majority of the verification conditions itself. The test-data
generation could then be targeted towards only the remaining verification conditions. The application of
the test-data generation to a system where exceptions can be raised from many expressions (and indeed
subexpressions) may be very time consuming and no longer practical. A new search would be required
for every possible point where an exception may be raised. However, safety-critical systems by their
very nature tend to have simple control-flow and expression structuring as was the case with the engine-
controller code. The simple exception handling code of the remaining evaluation programs made
achieving coverage of this code easier. A more detailed investigation with more complex exception
handling software is needed fully to assess the technique’s ability to generate test-data to achieve
structural coverage of exception handling code.

Further investigation into optimization techniques is required to discover their relative strengths
and weaknesses. Optimization techniques havea large number of tunable parameters which could
potentially have an impact on the ability to generate good quality test-data when the search space is
complex. Optimization techniques will never be able to guarantee their results. However, it may be
possible use software metrics to give guidance ina number of areas – to suggest which optimization
techniques will give the best results; to suggest suitable parameter values for the optimization
techniques; and also to give an indication as to the likely confidence that can be gained from the
results.

ACKNOWLEDGEMENTS

This work was funded by grant GR/L4872 from the Engineering and Physical Sciences Research Council (EPSRC)
in the UK as part of the SEBPC project. It builds on work started under grant GR/K63702 also from the EPSRC.
Rolls-Royce Plc provided access to source code and support in carrying out the aircraft engine controller case-
study.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

78 N. TRACEY ET AL.

REFERENCES

1. Denis Howe. The free on-line dictionary of computing. http://wombat.doc.ic.ac.uk.
2. Leveson NG.Safeware: System Safety and Computers; Addison Wesley, 1995.
3. Toy WN. Fault-tolerant design of local ESS processors.The Theory and Practice of Reliable System Design, 1981.
4. Lions JL. Ariane 5: Flight 501 failure report.Technical report, ESA/CNES, July 1996.
5. ISO/IEC 8652:1995.Ada 95: Language Reference Manual, 1995.
6. McHugh J. Towards efficient code from verfied programs.Technical Report 40, Institute for Computer Science, University

of Texas, March 1984.
7. Beizer B.Software Testing Techniques, 2nd edn.; Thomson Computer Press, 1990.
8. Korel B. Automated test data generation for programs with procedures.International Symposium on Software Testing and

Analysis; ACM/SIGSOFT, 1996; 209–215.
9. Jones BF, Eyres DE, Sthamer HH. A strategy for using genetic algorithms to automate branch and fault-base testing.The

Computer Journal 1998;41(2):98–107.
10. Boyer R, Elspas B, Levitt K. SELECT – a formal system for testing and debugging programs by symbolic execution.

Proceedings International Conference on Reliable Software, 1975; 234–245.
11. Clarke L. A system to generate test data and symbolically execute programs.IEEE Transactions on Software Engineering

September 1976; 215–222.
12. Demillo R, Offutt A. Experimental results form an automatic test case generator.ACM Transactions on Software

Engineering and Methodology 1993;2(2):109–127.
13. King J. Symbolic execution and program testing.Communications of the ACM 1976;19(7):385–394.
14. Ramamoorthy C, Ho F, Chen W. On the automated generation of program test data.IEEE Transactions on Software

Engineering 1976;SE-2(4):293–300.
15. Miller W, Spooner. D. Automatic generation of floating-point test data.IEEE Transactions on Software Engineering 1976;

SE-2(4):223–226.
16. Ferguson R, Korel B. The chaining approach for software test data generation.ACM Transactions on Software Engineering

and Methodology 1996;5(1):63–86.
17. Korel B. Automated software test data generation.IEEE Transactions on Software Engineering 1990;16(8):870–879.
18. Korel B, Al-Yami AM. Assertion oriented automated test data generation.18th International Conference on Software

Engineering; IEEE, 1996; 71–80.
19. Gallagher MJ, Narashimhan VL. ADTEST: A test data generation suite for ada software systems.IEEE Transactions on

Software Engineering 1997;23(8):473–484.
20. Jones B, Sthamer H, Eyres D. Automatic structural testing using genetic algorithms.Software Engineering Journal 1996;

11(5):299–306.
21. Xanthakis S, Ellis C, Skourlas C, Le Gall A, Katsikas S, Karapoulios K. Application des algorithmes genetiques au test

des logiciels.Proceedings of 5th International Conference on Software Engineering, 1992; 625–638.
22. Watkins AL. The automatic generation of test data using genetic algorithms.Proceedings of the 4th Software Quality

Conference, 1995;2:300–309.
23. Jones BF, Sthamer HH, Eyres DE. Generating test-data for Ada procedures using gentic algorithms.Genetic Algorithms in

Engineering Systems: Innovations and Applications; IEEE, September 1995; 65–70.
24. Clark J, Tracey N. Solving constraints in LAW. LAW/D5.1.1(E), European Commission - DG III Industry, 1997. Legacy

Assessment Workbench Feasibility Assessment.
25. Tracey N, Clark J, Mander K. Automated program flaw finding using simulated annealing.International Symposium on

Software Testing and Analysis; ACM/SIGSOFT, 1998; 73–81.
26. Tracey N, Clark J, Mander K. The way forward for unifying dynamic test case generation: The optimisation-based

approach.International Workshop on Dependable Computing and Its Applications; IFIP, 1998; 169–180.
27. Tracey N, Clark J, Mander K, McDermid J. An automated framework for structural test-data generation.Proceedings of

the International Conference on Automated Software Engineering; IEEE, October 1998.
28. Tracey N, Clark J, McDermid J, Mander K. Integrating safety analysis with automatic test-data generation for software

safety verification.Proceedings of the 17th International Conference on System Safety; IEEE, August 1999.
29. Deo N.Graph Theory with Applications to Engineering and Computer Science; Prentice-Hall, 1974.
30. Voas JM, McGraw G.Software Fault Injection: Inoculating Programs Against Errors; Wiley, 1998.
31. Praxis Critical Systems.Spark-Ada Documentation 2.0, 1995.
32. Barnes J.High Integrity Ada: The SPARK Approach; Addison-Wesley, 1997.
33. Ntafos SC. A comparison of some structural testing strategies.IEEE Transactions on Software Engineering 1988;

14(6):868–874.
34. Zhu H, Hall PAV, May JHR. Software unit test coverage and adequacy.ACM Computing Surveys 1997;29(4):366–427.
35. Kirkpatrick Jr S, Gelatt CD, Vecchi MP. Optimization by simulated annealing.Science 1983;220(4598):671–680.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

AUTOMATED TEST-DATA GENERATION FOR TESTING EXCEPTIONS 79

36. Holland JH.Adaptation in Natural and Artificial Systems; University of Michigan Press, 1975.
37. Rayward-Smith VJ, Osman IH, Reeves CR, Smith GD (eds).Modern Heuristic Search Methods; Wiley, 1996.
38. MoD. 00-55 requirements of safety related software in defence equipment. Ministry of Defence, August 1997.
39. Radio Technical Commission for Aeronautics. RTCS/DO-178B: software considerations in airborne systems and

equipment, December 1992.
40. IEC. 61508 – functional safety of electrical / electronic / programmble electronic safety-related systems. International

Electrotechnical Commission, Draft Standard, December 1997.
41. Tracey N, Clark J, Mander K, McDermid J. Integrating automated testing with exception freeness proofs for safety critical

systems.Proceedings of the 4th Australian Workshop on Safety Critical Systems and Software; The Australian Computer
Society, 1999.

42. Chapman R. Praxis critical systems. Personal communication, 1997.
43. King S, Hammond J, Chapman R, Pryor A. The value of verification: positive experience of industrial proof.Formal

Methods 1999 Technical Symposium, 1999.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000;30:61–79

