
Authenticated Multi-Party Key AgreementMike Just1 and Serge Vaudenay21 School of Computer Science, Carleton University, Ottawa, ON, Canada, K1S 5B6,e-mail: just@scs.carleton.ca2 Ecole Normale Sup�erieure{DMI, 45, rue d'Ulm, 75230 Paris Cedex 05, France,e-mail: Serge.Vaudenay@ens.frAbstract. We examine key agreement protocols providing (i) key au-thentication (ii) key con�rmation and (iii) forward secrecy. Attacks arepresented against previous two-party key agreement schemes and we sub-sequently present a protocol providing the properties listed above.A generalization of the Burmester-Desmedt (BD) model (Eurocrypt '94)for multi-party key agreement is given, allowing a transformation of anytwo-party key agreement protocol into a multi-party protocol. A multi-party scheme (based on the general model and a speci�c 2-party scheme)is presented that reduces the number of rounds required for key compu-tation compared to the speci�c BD scheme. It is also shown how thespeci�c BD scheme fails to provide key authentication.Key Words: key agreement, authentication, con�rmation, forward se-crecy.1 IntroductionPrivate-key cryptography is widely used in security networks. Though it assumesthat parties who share the same secret key are both secure, and do not revealtheir key, it is still more e�cient than public-key cryptography for most appli-cations. To allow several parties willing to communicate using private-key cryp-tography while avoiding any long-term common private keys, the parties needto �rst agree on the same session key following a key establishment protocol.Key establishment protocols can be divided into two categories. A key trans-fer protocol is a key establishment protocol in which one party securely transfersa key to the other parties participating in the protocol. A key agreement protocolis a key establishment protocol in which the parties contribute information thatjointly establishes a shared secret key. (See [16] for an overview.)In the early origins of public-key cryptography, a two-party key agreementprotocol due to Di�e and Hellman (DH) was proposed [6]. There have been manyattempts to provide authentic key agreement based on DH [7, 11, 12, 13, 20] Ina separate direction, several attempts have been made to extend DH to a multi-party protocol [10, 17, 18], the most e�cient being the result of Burmester andDesmedt [5].This paper deals with key agreement protocols based on DH that use public-key techniques. We do not require the aid of an on-line or trusted third party3.3 We require a trusted center for creating public-key certi�cates for each user. However,



Users interact via an exchange of messages to obtain a common key.Section 2 presents several de�nitions and building blocks that are used inthe construction of our key agreement protocols. Section 3 demonstrates attacksto previous two-party protocols and presents the new key agreement protocol.Section 4 discusses the multi-party model, the speci�c Burmester/Desmedt pro-tocol, as well as our own, and examines attacks against each.1.1 De�nitions and NotationsLet m be a prime and � 2 ZZm� an element with order q, where q is a primesuch that qjm� 1 and computing discrete logarithms in the group generated by� is di�cult (see recommended parameters given in [19]). All operations in thispaper will take place in ZZm, unless otherwise noted. We will be working in anetwork of n users, t of which participate in the key agreement protocol. Eachuser U has a long-term public key pU = �sU for a random secret-key sU2R4ZZq�.We use IU to refer to information identifying user U , i.e. name. We assume thateach user has a copy of every other public key a priori, or equivalently thatcerti�cation is used so that each public-key is identity-based. If this is not thecase then IU will also contain a certi�ed copy of U 's public key. We denote byhK a Message Authentication Code (MAC), i.e. [15]. Furthermore, we assumethat this MAC (of a hash function) behaves as a random oracle in the sense thatits output reveals no meaningful information about its input. See [14] for details.1.2 Summary of ResultsWe begin by examining a Di�e-Hellman based 2-pass key agreement protocolthat has appeared in several variations in the literature. Two minor (repairable)attacks against this scheme are presented as well as two more serious attacksgiven that the attacker has some extra information available to him. It is alsoshown how the property of (perfect) forward secrecy as de�ned in [7] (as well asSection 2) has been mistakenly attributed to this protocol.Subsequently we present a Di�e-Hellman based 3-pass protocol (ProtocolIIA) which provides for (i) key authentication, (ii) key con�rmation and (iii)forward secrecy (see Section 2 for de�nitions). The protocol is based on a generalframework that is evident in several other key agreement schemes found in theliterature. We examine the security of our protocol against some passive andactive attacks.We extend our two-party results by generalizing the speci�c multi-party pro-tocol of Burmester and Desmedt [5] to obtain a multi-party key agreement model.Using our speci�c two-party protocol and this model, we are able to obtain amulti-party protocol (Protocol MIIA) which reduces the amount of communi-cation required between participants (as compared to the scheme of [5]). It isthis can be completed o�-line, and the center is not required to maintain the secrecyof any information for any users.4 We denote an element x chosen randomly and independently from a set S by x2RS.



also shown how the scheme of Burmester and Desmedt [5] fails to provide keyauthentication. Attacks against Protocol MIIA are also examined.2 FundamentalsIn this paper, we build from 1-pass key transfer (KT) protocols to multiple passkey agreement (KA) protocols. Where a KT protocol involves contributions fromonly 1 user, KA protocols involve mutual contributions to the �nal key. Whena KA protocol involves more than 2 users, we refer to it as a multi-party keyagreement (MPKA) protocol. If referring to properties that apply to both two-party and multi-party protocols, we simply refer to KA protocols.We say that a key agreement protocol is successful if each of the partiesaccepts the identity of the other party, and terminate with the same key. Theprotocol provides key authentication if the ability for computing the key impliesknowledge of the secret corresponding to the identity of one expected participant.Key authentication implies key con�dentiality. For if only intended parties cancompute the key, then unintended parties cannot compute the key. Key con�r-mation (direct authentication in [7]) is provided if the protocol aborts unless par-ticipants demonstrate knowledge of the same shared session key. Note that in thiscontext an encrypted exchange subsequent to the KA protocol \demonstratesknowledge" of the key. The distinction is that for key con�rmation, knowledgeof the key is demonstrated prior to the end of the KA protocol (and is usuallyachieved by encrypting or hashing a known quantity). A key agreement proto-col provides forward secrecy (perfect forward secrecy in [7] and [9]) if the lossof any long-term secret keying material does not allow the compromise of keysfrom previously wire-tapped sessions. Since perfect usually makes reference toinformation theory, we avoid it here. We note the compromise of long-term se-cret keys does not necessarily mean that they were obtained via an inversionof the long-term public key. Since users must store their secret keys for use inkey computation, the secret keys may also be obtained through lack of suitablephysical security measures.Our goal throughout is for a dynamic set of users to securely compute asession key K for the purpose of participating in a secure communication ses-sion. Long-term public keys for each user serve to authenticate while short-termper-session tokens serve to add freshness to the KA protocol and hence to thecomputation of K.2.1 Key Transfer ProtocolsThe traditional DH problem (upon which our protocols are based) can be statedas follows.Given � as de�ned in Section 1.1 and inputs y = �x and y0 = �x0 , com-pute (we omit reference to m for simplicity) DH(�; y; y0) = �xx0 . Likewise, forlong-term public parameters pA = �sA and pB = �sB , we have DH(�; y; pA) =



A Bx2RZZq; y = �x y; I = IA����������������! K = ysB (= �xsB)K = pBxx2RZZq; y = pBx y; I = IA����������������! K = ysB�1(= �x)K = �x Fig. 1. Protocol IA(top) and IB(bottom)�sAx and DH(�; pA; pB) = �sAsB .5 The DH problem is the basis for the two1-pass KA (i.e. Key Transfer) protocols given in Figure 1. Protocol IA can beconsidered to be a DH protocol with one �xed parameter. Protocol IB is a simplevariation on the �rst.The key computation for Protocol IA is DH(�; y; pB) and DH(pB ; pBx; �) forProtocol IB. Since each computation has one �xed parameter, these protocolsare no harder than a DH computation (with two random parameters). Due topage limitations, protocols based on Protocol IB appear in Appendix A.2.2 Framework for Key AuthenticationThe framework for our KA protocols follows similar work from [2, 7, 11, 12,13, 20]. It consists of a 3-pass authentic key agreement protocol as shown inFigure 2. The values y and y0 are random tokens generated by each user (thatwill be used in the key computation). The o�sets \1:" and \2:" are includedto prevent potential rebound attacks possible given the similarity of the inputsto the hash by both A and B. I and I 0 refer to the identities of the respectiveparticipants. The terms < y > and < y0 > refer to pseudo-corroboration of thefact that the originating user actually constructed the term enclosed in the <>s.(By pseudo-corroboration we mean that it is not a true zero-knowledge proof ofpossession, nor is it as costly as one.) Particularly for our case, given that userA has constructed y = �x, A should also be able to produce < y >= (y0p0)xfor random y0. The di�culty of this task is considered in Theorem 2. (We notethat such precautions have also been noted by Burmester [4].) As mentioned inSection 1.1, we assume that the output of hK behaves as a random oracle inthat it reveals no meaningful information about its input. The output of thishash serves to provide for key con�rmation as well as the pseudo-corroborationdescribed above.This framework is by no means entirely new and is clearly evident in theworks cited above. Whereas encryption and signatures are used in the respective5 This is an abuse of notation. Since pA and pB are �xed for each protocol run, theirinclusion in the calculation should be distinguished from y and y0 which are randomlychosen for each run. The result being that an ability to compute DH(�; y; y0) impliesan ability to compute DH(�; y; pB) yet the reverse implication is still open.



A By; I�����������������������������!y0; I 0; hK(2 : y0; y; I 0; I; < y0 >) �����������������������������hK(1 : y; y0; I; I 0; < y >)�����������������������������!Fig. 2. Generic Authenticated Key Agreementschemes of Krawczyk [11] and Di�e et al. [7] for authentication, we incorporatethe public keys of each user directly into the key computation, as was done in[13, 12, 20]. Also, the use of a MAC for providing key con�rmation replaces theuse of an encryption function (which is unnecessary since there is no decryptiontaking place { and relaxes the possibility of export restrictions).Though not as formalized as the work of [2] (which assumes only the exis-tence of a pseudorandom function), the reliance on the DH problem by each ofthe remaining works cited above (including the current paper) allows for the pro-vision of forward secrecy (a property not achieved in [2]). Such a property maybe attractive for the robustness of the security in most commercial applicationswhere customers does not always protect their secret long-term key su�ciently.3 Authenticated Key AgreementIn this section, we extend Protocol IA to provide for authenticated key agree-ment. (Similarly, see Appendix A for extensions of Protocol IB.) The desirableproperties being (i) key authentication, (ii) key con�rmation and (iii) forwardsecrecy (see Section 2). (The provision of these properties are examined moreclosely in Section 3.2.) Throughout the section, p = pA is the public key ex-tracted from I, while p0 = pB is extracted from I 0 (though the same notationfollows if the public keys are a priori available).3.1 Protocols Based on IAConsider the two party key agreement protocol between users A and B from [13]given in Figure 3. (Similar protocols for which there was no key con�rmation aregiven in [12, 20] and were attacked by Burmester [4].) Two minor attacks againstProtocol A0 in the absence of a proper implementation are{ E impersonates B to A. In place of B, E sends fy0 = 0; I 0 = IB ; z0 =hK(y0; I; I 0)g to A.A believes that B is the only party that is able to computeK. However, since K = 0, the key is easily obtained (by E or anyone else),hence a lack of key authentication.



A Bx2RZZq ; y = �x y; I = IA����������������! x02RZZq; y0 = �x0K = px0ysBz0 = hK(y0; I; I 0)K = (y0)sA(p0)x y0; I 0 = IB ; z0 ����������������z0 ?= hK(y0; I; I 0)Fig. 3. Protocol A0: K = �sAx0+sBx{ E impersonates A to A. This more subtle attack succeeds so long as Adoes not verify that he is communicating with \himself". Suppose A is anautomated system providing access to an encrypted session with a computerdatabase. Access is granted to those users who successfully complete theprotocol. After an initiation of the protocol by A, E selects ~x2RZZq andsimulates the protocol as if x0 = ~x � x. i.e. E computes y0 = �~x=y, as wellas K = pA~x and sends fy0, I 0 = IA, z0 = hK(y0; I; I 0)g to A.Obvious solutions to both attacks are to implement the protocol so that trivialmessages such as y (or y0) = 0 or 1 are disallowed and that I 6= I 0. The lattercondition may be too restrictive. Possibly for maintenance purposes, some ap-plications may want the option of having I = I 0. However, the following moreserious attacks motivate a solution that also appears to thwart the second attackdescribed above.{ E impersonates B to A. (Given that E possesses sA.) It is obviousthat sA allows E to impersonate A to any user. However, suppose that A isan Automatic Teller Machine and the engineer E who initially performs thesetup of A, is able to obtain sA. After A initiates the protocol, E choosesy0 = �~x=pB . Given sA and ~x, E can easily compute K.{ E impersonates B to A (or A to B). (Given that E possesses�sAsB .) Since sA and sB are long-term secrets this attack allows unlimitedimpersonations given only DH(�; pA; pB). To impersonate A, E computesand sends y = �~x=pA to B. Given ~x and �sAsB , E can easily compute K.Similarly, E can impersonate B to A.In each of these last two attacks, E does not know the discrete logarithm of itstoken, i.e. y or y0, motivating the inclusion of a demonstration of knowledge ofthe construction of the token as discussed in Section 2 and included in ProtocolIIA below. Also of note for Protocol A0 is the fact that it does not providefor forward secrecy (as claimed in [13]). Note that recovery of both long-termsecret keys sA and sB allows the computation of K = ysB (y0)sA for all previoussessions involving A and B. In Figure 4 we present Protocol IIA which appearsto prevent the aforementioned attacks and uses the framework from Figure 2.



A Bx2RZZq; y = �x y; I = IA����������������! x02RZZq; y0 = �x0w0 = (yp)x0 ;K = w0ysBz0 = hK(2 : y0; y; I 0; I; w0)w0 = (y0)x+sA y0; I 0 = IB ; z0 ����������������w = (y0p0)x;K = w(y0)sAz0 ?= hK(2 : y0; y; I 0; I; w0)z = hK(1 : y; y0; I; I 0; w) z����������������! w = (y)x0+sBz ?= hK(1 : y; y0; I; I 0; w)Fig. 4. Protocol IIA: K = �xx0+x0sA+xsB3.2 Passive and Active AttacksIn this section, we analyze the resistance of Protocol IIA to passive and activeattacks by demonstrating equivalence to variations of the DH problem. (Similararguements can be made for Protocol IIB from Appendix A.) Hence, throughoutthis section, we assume that DH computations (as described in Section 2) areinfeasible without the proper, corresponding secret information. Also, we assumethat the hash hK behaves like a random oracle, in the sense that it's outputcannot be distinguished from random output.A passive attack whose aim is key recovery for a given session involves eaves-dropping on messages passed between participants for that session. The attackis successful if the session key can be recovered with a probabilistic polynomialtime algorithm given as input, the eavesdropped message passes as well as anyother publicly available parameters.Theorem1. Protocol IIA is secure against passive attack and provides forwardsecrecy unless the Di�e-Hellman problem can be solved.We note that given a DH oracle, one can easily solve for the session key inprotocol IIA using only a passive attack. This is done by computingK = DH(�; y; y0)DH(�; y; pB)DH(�; y0; pA):Proof. (sketch) Consider Protocol IIA. We need to show that recovery of alllong-term secret keys does not allow recovery of previous session keys. Assumethe opposite is true. Then given sA and sB corresponding to the respective long-term public keys pA and pB allows recovery of the key K = �xx0+xsB+x0sA . Fromthis, we are able to compute �xx0 for random y and y0; a contradiction to theassumption that DH computations are computationally infeasible.



Since computing the �nal key with the extra knowledge of sA and sB is hard,it must be at least as hard without it. Protocol IIA is therefore secure againstpassive attacks. utAn impersonation attack involves an attacker who is given access to all pub-licly available information and attempts to successfully complete a protocol withB (resp. A) by impersonating A (resp. B). Recall that a key agreement protocolis successful if each of the parties accept the identity of the other, and terminatewith the same key. Note that since Protocol IIA provides key con�rmation, thisassumes knowledge of the session key K.Theorem2. Protocol IIA is secure against impersonation attack given that Pro-tocol IA is secure.Proof. (sketch) If z0 is accepted by A, it has necessarily been produced by some-one who is able to compute both the pair (y0; (yp)x0 ) and the key K by usingthe (supposed) random y. From K and (yp)x0 , is it easy to compute ysB . Sincey is fresh and sB is supposed to be secret, z0 has been forged by B unless IA isinsecure.Similarly, if z is accepted by B, it has been produced by someone able tocompute y0sA from a fresh y0. utNotice that for Theorem 2, there is an implicit assumption that Protocol IAdoes not reveal any partial information, i.e. each run of Protocol IA produces akey of the form DH(�; y; pB) for some random y and �xed pB. Also note that thisdoes not preclude more imaginative attacks. It simply states that one participantcannot successfully complete Protocol IIA by impersonating another, given onlythe publicly available parameters.4 Authenticated Multi-Party Key AgreementWe propose here a generic construction of a multi-party key agreement protocolMP from a two-party key agreement protocol P.6 We assume that all usersu1; u2; : : : ; ut are arranged on a ring and we will consider indices of ui to betaken between 1 to t modulo t.1. Each pair (ui; ui+1) processes protocol P to obtain a session key Ki.2. Each ui computes and broadcasts Wi � KiKi�1 .3. Upon receiving the broadcasts from other users, ui computes the keyK � Ki�1tWit�1Wi+1t�2 � � �Wi�2 � K1K2 � � �Kt:Equivalently, we can use Wi = Ki � Ki�1 and K = K1 + : : : + Kt (or evenWi = Ki � Ki�1 and K = K1 � : : : � Kt), for example. Since addition ismuch cheaper than multiplication, such computations have an obvious practical6 The construction is a generalization of the scheme from [5].



bene�t. Veri�cation that all the following discussions hold for this modi�cationis left to the reader.For a speci�c implementation of this model we use Protocol IIA from Sec-tion 3 to obtain the respective multi-party protocol MIIA (likewise for ProtocolIIB from Appendix A). Notice that for Protocol MIIA, ui sends the same token(i.e. yi = y0i) to both ui+1 and ui�1.4.1 Attack to Burmester/Desmedt SchemeIn this section we demonstrate how the scheme of Burmester and Desmedt (BD)[5] does not provide key authentication. BD is a speci�c case of the model de-scribe above with DH as protocol P and makes use of zero-knowledge techniquesfor authenticating each user. We make use of an attack �rst put forth in [13].The adversary E positions himself between any two users A and B andconvinces B that he shares a key with E (though E will be unable to computeK), yet B actually shares K with A. A believes (and in fact does) share Kwith B. Hence, key authentication is not provided as the person with whom Bbelieves he is sharing the key (namely E), is not able to actually compute thekey (as only A and B can compute the key). Subsequent to this attack, messagesthat A sends to B will be interpreted by B as coming from E. One can imaginean attack where B is a bank and A and E are customers.From [5], each user i has a public key pair (�i; i) where �i = �vi andi = �wi . This version assumes that users' public keys are a priori available.The attack proceeds as follows. A selects x2RZZq and sends fy := �x; I := IAgto B. E intercepts the communication so now A authenticates y to E witha zero-knowledge interactive proof of knowledge of the discrete log of �AyA(namely vAy + wA) using methods described in [5]. E sends y to B, and usinghis public key pair (�E ; E), authenticates y to B. B sends fy0; I := IBg to E.E simply forwards this message to A and allows B to authenticate y0 to A. Aand B complete the protocol by broadcasting WA and WB respectively.The attack succeeds because of the lack of \binding" between the messagesexchanged between A and B and lack of protection of the names of the in-tended recipients of the messages. These properties are identi�ed in [1] as beingimportant for obtaining a secure and authentic cryptographic protocol.The authentication between pairs of users in [5] requires 1 round for the DHkey token exchange, k rounds for the authentication of the tokens (for a securityparameter k) and 1 round for the broadcast of the Wi's, giving a total of k + 2rounds. Protocol MIIA requires 3 rounds for the processing of Protocol IIA(including authentication of tokens) and 1 round for the broadcast of the Wi's,giving a total of 4 rounds. If more than 2 rounds are used for the authenticationof the tokens in the Burmester-Desmedt scheme, our schemes are more e�cientin terms of the number of rounds.



4.2 Passive AttacksIn this section, we show that the multi-partymodel speci�cally implemented withProtocol IIA (to produce MIIA) is provably secure against a passive attacker.(Similar arguements can be made for an implementation with Protocol IIB fromAppendix A.) This is done by illustrating their equivalence to the respectiveschemes from Section 3 (using the same techniques as given in [5]).Theorem3. Given an even, polynomial number t of randomly chosen users withlong-term keys that are uniformly distributed, Protocol MIIA is as secure againstpassive attacks as Protocols IIA.Proof. We �rst note that breaking Protocol IIA obviously enables one to breakProtocol MIIA (solve for each Ki followed by computation of their product).Now, given p1 = pB = �sB , y1 = y0 = �x0 , pt = pA = �sA and yt = y = �x,we want to solve for the key �xtx1+xts1+x1st (i.e. �xx0+xsB+x0sA from ProtocolIIA) by using an oracle that solves for the MIIA key. We must �rst preparethe remaining input to the MIIA oracle. We �rst compute for i = 2; : : : ; t� 1,pi = pi�2�bi and yi = yi�2�ci using random bi and ci. This \randomizes" thevirtual users as if we had si = si�2 + bi and xi = xi�2 + ci providing a gooddistribution. For i = 1; : : : ; t� 2, we can now computeWi = �pi+1yi+1pi�1yi�1�xi �yi+1yi�1�si = (�bi+1�ci+1)xi(�ci+1 )xi = ybi+1i (yipi)ci+1Since t is even, we also have thatpt � p2g�b2 � p4g�b2�b4 � � � � � pt�2g�b2�b4�����bt�2p1 � p3g�b3 � p5g�b3�b5 � � � � � pt�1g�b3�b5�����bt�1 ;(and similarly for yt and y1) allowing us to computeWt�1 � � ptytpt�2yt�2�xt�1 � ytyt�2�st�1� (yt�1)�b3�b5�����bt�1(yt�1pt�1)�c3�c5�����ct�1Wt � � p1y1pt�1yt�1�xt � y1yt�1�st� (yt)�b3�b5�����bt�1(ytpt)�c3�c5�����ct�1 :Inputting all the yi, pi and Wi to the MIIA oracle, produces the output K.We have Ki = �xi�1xi+xisi�1+xi�1siybi+1i (yipi)ci+1. From K and the Wi, we canobtain any Ki. More speci�cally, for u1 we solve for K1, from which we obtain�xtx1+xts1+x1st . ut



4.3 Information Revealed by the ProtocolWe need to verify whether theWi's broadcast by each user reveal any informationabout the secret key si. Given the public key pi of user ui, we assign pi�1, pi+1 todishonest users ui�1 and ui+1 and allow them to simultaneously execute a multi-party protocol to obtain yi and Wi from ui. We present an attack on protocolMIA to illustrate this issue, and show the security of Protocol MIIA.In MIA, using the real public keys of the dishonest users, we get Wi = pi+1xiyi�1siand yi = �xi . Colluding users can compute pi+1xi = yisi+1 obtaining yi�1si .Hence, this protocol (no matter if it aborts) can be followed to use ui as anoracle to raise any chosen yi�1 to the secret key si. We can easily imagine howthis allows recovery of a previous session key: in a previous session, ~Ki�1 is ~ysii�1,and since ~yi�1 can be eavesdropped on the channel, one can ask ui to raise it tosi to obtain ~Ki�1, followed easily by computation of the previous session key ~K.If they complete Protocol MIIA (hence succeeded Protocol IIA), colludingusers ui�1 and ui+1 obtain from ui, Wi = KiKi�1 as well as y0i and yi. Sinceui�1 (ui+1) has been able to produce zi�1 (z0i+1) and complete IIA before Wiis broadcast, he knew how to compute Ki�1 (Ki).7 Thus, active attacks do notrecover more information than passive ones from the Wi.4.4 Active AttacksFor Protocol MIIA, a traditional impersonation attack where user E successfullycompletes a protocol (including key computation in our case) with B (resp. A)by impersonating A (resp. B) would occur in step 1 from Section 4. (Recall fromthe previous section, theWi released during step 2 provide no extra information.)According to Theorem 2, this is unlikely.In all of the MP schemes we have investigated thus far, there has been animplicit assumption that if you were able to successfully complete a protocolwith several users, then each of these users is honest. Relaxing this assumptionintroduces the following possible attacks (which are applicable to our schemesas well as the Burmester-Desmedt scheme).Consider a multi-party protocol between users A, B, C and D who are ori-ented on a ring. If C's left and right partners are B and D (i.e. the users withwhom C will perform protocol P) then B, C and D can collude by shielding C.By this we mean that B and D can construct their messages such that C canimpersonate some Z. This is possible since no direct authentication is performedbetween users A and C. At the end of the protocol, A could be made believethat the protocol consists of users A, B, Z and D. Of course, this would notallow C (impersonating Z) to compute the key on his own (see Section 3.2) butthe key can be given to C by one of B or D (C's colluding partners).A solution to this attack is to include an additional step at the end of theprotocol whereby each user i broadcasts the quantity si(hK(W1;W2; : : : ;Wt)),7 This is necessary under the assumption that knowledge of Ki�1 (or Ki) is necessaryfor computation of the keyed hash in Protocol IIA.



which is i's signature on the keyed hash of the Wi's broadcast in step 2 of themulti-party protocol described in Section 4. Since our protocols are public-keybased, the signature scheme can be easily implemented using ElGamal signatures[8] for example.Note that the solution above works assuming that C is not able to falsify Z'ssignature. A possible attack to this assumption occurs in [3]. Here, the authorspresent a so-called Middleperson Attack. Suppose we have Protocol 1, consistingof users A, B and C and Protocol 2 consisting of users B, C and Z. The attackinvolves C sitting in the middle of the two simultaneous protocols. C wouldimpersonate Z in Protocol 1 and impersonate A in Protocol 2. Any challengesthat C would be required to compute (as if they came fromZ), including possiblesignatures, in Protocol 1 would be obtained directly from Z in Protocol 2 (andvice-versa for impersonating A in Protocol 2). At this point, users see ProtocolI as consisting of users A, B and Z and Protocol II of users B, A and Z. Similarto the attack above, C would be unable to compute the key on his own as heis really only acting as a `wire' between the two protocols, and passing alongmessages. Once again, he would require a collusion with B to obtain K (for theattack to be of any real use).The solution presented to the attack in [3] was a hardware one rather thana crytographic one. Also note that the property of key authentication was neverreally violated since that principal attacker C was never able to compute thekey on his own. Depending upon the application, the practicality of such attacksmust be individually examined.5 ConclusionIn this paper, we presented two new key agreement protocols, the two-party Pro-tocol IIA and its multi-party counterpart, Protocol MIIA. Protocol IIA appearsto improve upon several others for which long-term public keys are used in thekey computation (and for which several attacks were given here). Their use inkey computation is an alternative to the use of digital signatures.Protocol MIIA is derived from our generalization of the multi-party protocolof Burmester and Desmedt (BD) [5]. A nice feature of the protocol is that itallows for authentication of participating users without requiring that each userauthenticate every other user. Though one must be careful with such methodsas evidenced by the shielding attack from Section 4.4.Protocol MIIA di�ers from the scheme of BD in how participants are authen-ticated. Rather than using zero-knowledge techniques (which are susceptible tothe attack from Section 4.1), we essentially use Di�e-Hellman computations inkey con�rmation. It seems likely that many of the other two-party key agreementprotocols mentioned here can also provide for a multi-party protocol using thegeneralization from Section 4.Acknowledgements. Thanks to Paul Van Oorschot for suggesting the currenttopic for research. Using a di�erent group structure for the computation of the



Wi and Ki in Section 4 was suggested by Kazue Sako. Thanks to an anony-mous referee for the fourth attack (where E possess �sAsB ) given in Section 3.1.Thanks to Yvo Desmedt for pointing out the existence of [4].Note. The �rst author is supported by an NSERC graduate fellowship. Thesecond author is employed by the CNRS. This work was partially completedwhile the second author was visiting the School of Computer Science at CarletonUniversity and supported by an NSERC grant.References1. M. Abadi, R. Needham, \Prudent Engineering Practice for Cryptographic Proto-cols", DEC SRC Research Report 125, June 1, 1994.2. M. Bellare, P. Rogaway, \Entity Authentication and Key Distribution", Advancesin Cryptology: Proceedings of CRYPTO '93, Springer-Verlag, 1993, pp.232-249.3. S. Bengio, G. Brassard, Y. Desmedt, C. Goutier, J. Quisquater, \Secure Implemen-tation of Identi�cation Systems", Journal of Cryptology, Vol. 4, 1991, pp. 175-183.4. M. Burmester, \On the Risk of Opening Distributed Keys", Advances in Cryptology:Proceedings of Crypto '94, Springer-Verlag, 1994, pp.308-317.5. M. Burmester, Y. Desmedt, \A Secure and E�cient Conference Key DistributionSystem", Advances in Cryptology: Proceedings of Eurocrypt '94, Springer-Verlag,1995, pp.275-286.6. W. Di�e, M. Hellman, \New Directions in Cryptography", IEEE Transactions onInformation Theory, IT-22(6), November 1976, pp.644-654.7. W. Di�e, P.C. van Oorschot, M.J. Wiener, \Authentication and Authenticated KeyExchanges", Designs, Codes and Cryptography, Vol. 2, 1992, pp. 107-125.8. T. ElGamal, \A Public Key Cryptosystem and a Signature Scheme Based on Dis-crete Logarithms", IEEE Transactions on Information Theory, Vol. 31, pp. 469-472,1985.9. C. G�unther, \An Identity-Based Key Exchange Protocol", Advances in Cryptology:Proceedings of Eurocrypt '89, Springer-Verlag, 1989, pp.29-37.10. I. Ingemarsson, D. Tang, C. Wong, \A Conference Key Distribution System", IEEETransactions on Information Theory, Vol. IT-28, No.5, Sept. 1982, pp.714-720.11. H. Krawczyk, \SKEME: A Versatile Secure Key Exchange Mechanism for Inter-net", Proceedings of the Internet Society Symposium on Network and DistributedSystem Security, Feb. 1996 (also presented at the Crypto '95 rump session).12. T. Matsumoto, Y. Takashima, H. Imai, \On Seeking Smart Public-Key Distribu-tion Systems", The Transactions of the IECE of Japan, Vol. E. 69, No. 2, February1986, pp. 99-106.13. A. Menezes, M. Qu, S. Vanstone, \Some New Key Agreement Protocols ProvidingImplicit Authentication", presented at the Workshop on Selected Areas in Cryptog-raphy (SAC '95), Carleton University, Ottawa, ON., pp. 22-32.14. D. Pointcheval, J. Stern, \Security Proofs for Signature Schemes", Advances inCryptology: Proceedings of Eurocrypt '96, Springer-Verlag, 1996, pp.387-398.15. B. Preneel, Cryptographic Hash Functions, Kluwer Academic Publishers (to ap-pear, 1996).16. R. Rueppel, P. van Oorschot, \Modern Key Agreement Techniques", ComputerCommunications Journal, Vol. 17, July 1994, pp. 458-465.



17. D. Steer, L. Strawczynski, W. Di�e, M. Wiener, \A Secure Audio TeleconferenceSystem", Advances in Cryptology: Proceedings of CRYPTO '88, Springer-Verlag,1988, pp.520-528.18. M. Steiner, G. Tsudik, M. Waidner, \Di�e-Hellman Key Distribution Extended toGroup Communication", 3rd ACM Conference on Computer and CommunicationsSecurity, New Dehli, India, March 14-16, 1996.19. P. van Oorschot, M. Wiener, \On Di�e-Hellman Key Agreement with Short Ex-ponents", Advances in Cryptology: Proceedings of Eurocrypt '96, Springer-Verlag,1996, pp.332-343.20. Y. Yacobi, \A Key Distribution `Paradox' ", Advances in Cryptology: Proceedingsof CRYPTO '90, Springer-Verlag, 1990, pp.268-273.A Protocols Based on IBThe protocols in Figure 5 require a priori knowledge of public keys (or an extramessage pass). Protocol B0 was given in [13] (an adaptation of a scheme from[12]). Similar attacks to those presented in Section 3.1 can be mounted againstProtocol B0. Protocol IIB prevents the attacks and provides forward secrecy.The key computation is identical to the two-pass protocols from [13, 12].A Bx2RZZq; y = pBx y; I = IA����������������! x02RZZq ; y0 = px0K = �x0ysB�1z0 = hK(y0; I; I 0)K = (y0)sA�1�x y0; I 0 = IB ; z0 ����������������z0 ?= hK(y0; I; I 0)x2RZZq; y = pBx y; I = IA����������������! x02RZZq ; y0 = px0w0 = �x0 ;K = ysB�1x0z0 = hK(2 : y0; y; I 0; I; w0)w0 = (y0)sA�1 y0; I 0 = IB ; z0 ����������������w = �x;K = (y0)sA�1xz0 ?= hK(2 : y0; y; I 0; I; w0)z = hK(1 : y; y0; I; I 0; w) z����������������! w = (y)sB�1z ?= hK(1 : y; y0; I; I 0; w)Fig. 5. Protocol B0(top): K = �x+x0 ; Protocol IIB(bottom): K = �xx0This article was processed using the LATEX macro package with LLNCS style


