Authenticated Multi-Party Key Agreement

Mike Just' and Serge Vaudenay?

1 School of Computer Science, Carleton University, Ottawa, ON, Canada, K18 5B6,
e-mail: just@scs.carleton.ca
2 Ecole Normale Supérieure-DMI, 45, rue d’Ulm, 75230 Paris Cedex 05, France,
e-mail: Serge.Vaudenay@ens.fr

Abstract. We examine key agreement protocols providing (i) key au-
thentication (ii) key confirmation and (iii) forward secrecy. Attacks are
presented against previous two-party key agreement schemes and we sub-
sequently present a protocol providing the properties listed above.

A generalization of the Burmester-Desmedt (BD) model (Eurocrypt "94)
for multi-party key agreement is given, allowing a transformation of any
two-party key agreement protocol into a multi-party protocol. A multi-
party scheme (based on the general model and a specific 2-party scheme)
is presented that reduces the number of rounds required for key compu-
tation compared to the specific BD scheme. It is also shown how the
specific BD scheme fails to provide key authentication.

Key Words: key agreement, authentication, confirmation, forward se-
crecy.

1 Introduction

Private-key cryptography is widely used in security networks. Though it assumes
that parties who share the same secret key are both secure, and do not reveal
their key, it is still more efficient than public-key cryptography for most appli-
cations. To allow several parties willing to communicate using private-key cryp-
tography while avoiding any long-term common private keys, the parties need
to first agree on the same session key following a key establishment protocol.

Key establishment protocols can be divided into two categories. A key trans-
fer protocol is a key establishment protocol in which one party securely transfers
a key to the other parties participating in the protocol. A key agreement protocol
is a key establishment protocol in which the parties contribute information that
jointly establishes a shared secret key. (See [16] for an overview.)

In the early origins of public-key cryptography, a two-party key agreement
protocol due to Diffie and Hellman (DH) was proposed [6]. There have been many
attempts to provide authentic key agreement based on DH [7, 11, 12, 13, 20] In
a separate direction, several attempts have been made to extend DH to a multi-
party protocol [10, 17, 18], the most efficient being the result of Burmester and
Desmedt [5].

This paper deals with key agreement protocols based on DH that use public-
key techniques. We do not require the aid of an on-line or trusted third party>.

3 We require a trusted center for creating public-key certificates for each user. However,

Users interact via an exchange of messages to obtain a common key.

Section 2 presents several definitions and building blocks that are used in
the construction of our key agreement protocols. Section 3 demonstrates attacks
to previous two-party protocols and presents the new key agreement protocol.
Section 4 discusses the multi-party model, the specific Burmester/Desmedt pro-
tocol, as well as our own, and examines attacks against each.

1.1 Definitions and Notations

Let m be a prime and o € 7Z,,,* an element with order ¢, where ¢ is a prime
such that ¢|m — 1 and computing discrete logarithms in the group generated by
« is difficult (see recommended parameters given in [19]). All operations in this
paper will take place in ZZ,,, unless otherwise noted. We will be working in a
network of n users, ¢ of which participate in the key agreement protocol. Each
user U has a long-term public key py = oV for a random secret-key sy €g?Z,".
We use Iy to refer to information identifying user U, i.e. name. We assume that
each user has a copy of every other public key a priori, or equivalently that
certification is used so that each public-key is identity-based. If this is not the
case then Iy will also contain a certified copy of U’s public key. We denote by
hx a Message Authentication Code (MAC), i.e. [15]. Furthermore, we assume
that this MAC (of a hash function) behaves as a random oracle in the sense that
its output reveals no meaningful information about its input. See [14] for details.

1.2 Summary of Results

We begin by examining a Diffie-Hellman based 2-pass key agreement protocol
that has appeared in several variations in the literature. Two minor (repairable)
attacks against this scheme are presented as well as two more serious attacks
given that the attacker has some extra information available to him. It is also
shown how the property of (perfect) forward secrecy as defined in [7] (as well as
Section 2) has been mistakenly attributed to this protocol.

Subsequently we present a Diffie-Hellman based 3-pass protocol (Protocol
ITA) which provides for (i) key authentication, (ii) key confirmation and (iii)
forward secrecy (see Section 2 for definitions). The protocol is based on a general
framework that is evident in several other key agreement schemes found in the
literature. We examine the security of our protocol against some passive and
active attacks.

We extend our two-party results by generalizing the specific multi-party pro-
tocol of Burmester and Desmedt [5] to obtain a multi-party key agreement model.
Using our specific two-party protocol and this model, we are able to obtain a
multi-party protocol (Protocol MITA) which reduces the amount of communi-
cation required between participants (as compared to the scheme of [5]). It is

this can be completed off-line, and the center is not required to maintain the secrecy
of any information for any users.
* We denote an element chosen randomly and independently from a set S by z€xS.

also shown how the scheme of Burmester and Desmedt [5] fails to provide key
authentication. Attacks against Protocol MIIA are also examined.

2 Fundamentals

In this paper, we build from 1-pass key transfer (KT) protocols to multiple pass
key agreement (KA) protocols. Where a KT protocol involves contributions from
only 1 user, KA protocols involve mutual contributions to the final key. When
a KA protocol involves more than 2 users, we refer to it as a multi-party key
agreement (MPKA) protocol. If referring to properties that apply to both two-
party and multi-party protocols, we simply refer to KA protocols.

We say that a key agreement protocol is successful if each of the parties
accepts the identity of the other party, and terminate with the same key. The
protocol provides key authentication if the ability for computing the key implies
knowledge of the secret corresponding to the identity of one expected participant.
Key authentication implies key confidentiality. For if only intended parties can
compute the key, then unintended parties cannot compute the key. Key confir-
mation (direct authentication in [7]) is provided if the protocol aborts unless par-
ticipants demonstrate knowledge of the same shared session key. Note that in this
context an encrypted exchange subsequent to the KA protocol “demonstrates
knowledge” of the key. The distinction is that for key confirmation, knowledge
of the key is demonstrated prior to the end of the KA protocol (and is usually
achieved by encrypting or hashing a known quantity). A key agreement proto-
col provides forward secrecy (perfect forward secrecy in [7] and [9]) if the loss
of any long-term secret keying material does not allow the compromise of keys
from previously wire-tapped sessions. Since perfect usually makes reference to
information theory, we avoid it here. We note the compromise of long-term se-
cret keys does not necessarily mean that they were obtained via an inversion
of the long-term public key. Since users must store their secret keys for use in
key computation, the secret keys may also be obtained through lack of suitable
physical security measures.

Our goal throughout is for a dynamic set of users to securely compute a
session key K for the purpose of participating in a secure communication ses-
sion. Long-term public keys for each user serve to authenticate while short-term
per-session tokens serve to add freshness to the KA protocol and hence to the
computation of K.

2.1 Key Transfer Protocols

The traditional DH problem (upon which our protocols are based) can be stated
as follows. Given « as defined in Section 1.1 and inputs y = o® and ¢y’ = oﬂ”l, com-
pute (we omit reference to m for simplicity) DH(es y, ') = a®®' . Likewise, for
long-term public parameters py = o®4 and pp = a*B, we have DH(a;y,pa) =

A B
yaI =14 .
rCrlg,y = a K =y*2(=a"5)
K =pp”*
yaI = IA . -1
re€rflq,y = pB” K = y’B (: ozx)
K=a"

Fig. 1. Protocol IA(top) and IB(bottom)

a*4® and DH(a;pa,pp) = a*4*5.5 The DH problem is the basis for the two
1-pass KA (i.e. Key Transfer) protocols given in Figure 1. Protocol IA can be
considered to be a DH protocol with one fixed parameter. Protocol IB is a simple
variation on the first.

The key computation for Protocol IA is DH(«; y, pp) and DH(pp; pp®, «) for
Protocol IB. Since each computation has one fixed parameter, these protocols
are no harder than a DH computation (with two random parameters). Due to
page limitations, protocols based on Protocol IB appear in Appendix A.

2.2 Framework for Key Authentication

The framework for our KA protocols follows similar work from [2, 7, 11, 12,
13, 20]. It consists of a 3-pass authentic key agreement protocol as shown in
Figure 2. The values y and ' are random tokens generated by each user (that
will be used in the key computation). The offsets “1:” and “2:” are included
to prevent potential rebound attacks possible given the similarity of the inputs
to the hash by both A and B. I and I’ refer to the identities of the respective
participants. The terms < y > and < y' > refer to pseudo-corroboration of the
fact that the originating user actually constructed the term enclosed in the <>s.
(By pseudo-corroboration we mean that it is not a true zero-knowledge proof of
possession, nor is it as costly as one.) Particularly for our case, given that user
A has constructed y = o, 4 should also be able to produce < y >= (y'p')*
for random 3'. The difficulty of this task is considered in Theorem 2. (We note
that such precautions have also been noted by Burmester [4].) As mentioned in
Section 1.1, we assume that the output of hx behaves as a random oracle in
that it reveals no meaningful information about its input. The output of this
hash serves to provide for key confirmation as well as the pseudo-corroboration
described above.

This framework is by no means entirely new and is clearly evident in the
works cited above. Whereas encryption and signatures are used in the respective

® This is an abuse of notation. Since p4 and pgp are fixed for each protocol run, their
inclusion in the calculation should be distinguished from y and y’ which are randomly
chosen for each run. The result being that an ability to compute DH(«; y, y') implies
an ability to compute DH(«o;y, p5) yet the reverse implication is still open.

y, I

ylaIlahK(z : ylaya IlaIa < yl >)

hK(l:yaylaIaIl7< y>)

Fig. 2. Generic Authenticated Key Agreement

schemes of Krawczyk [11] and Diffie et al. [7] for authentication, we incorporate
the public keys of each user directly into the key computation, as was done in
[13, 12, 20]. Also, the use of a MAC for providing key confirmation replaces the
use of an encryption function (which is unnecessary since there is no decryption
taking place — and relaxes the possibility of export restrictions).

Though not as formalized as the work of [2] (which assumes only the exis-
tence of a pseudorandom function), the reliance on the DH problem by each of
the remaining works cited above (including the current paper) allows for the pro-
vision of forward secrecy (a property not achieved in [2]). Such a property may
be attractive for the robustness of the security in most commercial applications
where customers does not always protect their secret long-term key sufficiently.

3 Authenticated Key Agreement

In this section, we extend Protocol IA to provide for authenticated key agree-
ment. (Similarly, see Appendix A for extensions of Protocol IB.) The desirable
properties being (i) key authentication, (ii) key confirmation and (iii) forward
secrecy (see Section 2). (The provision of these properties are examined more
closely in Section 3.2.) Throughout the section, p = py is the public key ex-
tracted from I, while p’ = pp is extracted from I’ (though the same notation
follows if the public keys are a priori available).

3.1 Protocols Based on TA

Counsider the two party key agreement protocol between users 4 and B from [13]
given in Figure 3. (Similar protocols for which there was no key confirmation are
given in [12, 20] and were attacked by Burmester [4].) Two minor attacks against
Protocol A0 in the absence of a proper implementation are

— E IMPERSONATES B To A. In place of B, E sends {y = 0,I' = Ig, 2 =
hig(y',I,I')} to A. A believes that B is the only party that is able to compute
K. However, since K = 0, the key is easily obtained (by E or anyone else),
hence a lack of key authentication.

A B

rerlly,y = a” ARl ¥ €Ty Y ="
K:pxlysB
2 =hg(y,I,I)

ylaIl :IBazl

IX’ — (yl)sA(pl)x
2 =hg(y,I,T)

Fig. 3. Protocol A0: K = atav tepT

— E IMPERSONATES A4 TO A. This more subtle attack succeeds so long as A
does not verify that he is communicating with “himself”. Suppose 4 is an
automated system providing access to an encrypted session with a computer
database. Access is granted to those users who successfully complete the
protocol. After an initiation of the protocol by A, E selects £€r7, and
simulates the protocol as if ' = # — z. i.e. E computes y' = a®/y, as well
as K = pa® and sends {y/, I' = Ia, 2’ = hx(y', I, 1)} to A.

Obvious solutions to both attacks are to implement the protocol so that trivial
messages such as y (or y') = 0 or 1 are disallowed and that I # I'. The latter
condition may be too restrictive. Possibly for maintenance purposes, some ap-
plications may want the option of having I = I'. However, the following more
serious attacks motivate a solution that also appears to thwart the second attack
described above.

— F IMPERSONATES B TO A. (GIVEN THAT E POSSESSES s4.) It is obvious
that s4 allows E to impersonate A to any user. However, suppose that A is
an Automatic Teller Machine and the engineer F who initially performs the
setup of A, is able to obtain s4. After A initiates the protocol, E chooses
y = a®/pp. Given s4 and #, E can easily compute K.

— F IMPERSONATES B To A (orR 4 To B). (GIVEN THAT E POSSESSES
a®4%B) Since s4 and sp are long-term secrets this attack allows unlimited
impersonations given only DH(«;pa, pp). To impersonate A, E computes
and sends y = a®/p4 to B. Given & and a*4*E, E can easily compute K.
Similarly, F can impersonate B to A.

In each of these last two attacks, E does not know the discrete logarithm of its
token, i.e. y or ¥, motivating the inclusion of a demonstration of knowledge of
the construction of the token as discussed in Section 2 and included in Protocol
ITA below. Also of note for Protocol A0 is the fact that it does not provide
for forward secrecy (as claimed in [13]). Note that recovery of both long-term
secret keys s4 and sp allows the computation of K = y*5(y')*4 for all previous
sessions involving A and B. In Figure 4 we present Protocol ITA which appears
to prevent the aforementioned attacks and uses the framework from Figure 2.

A B
y, I =14 , , '
rCrlg,y = a ' Erlly,y = a
w' = (yp)" K = w'y'®
Z = hK(2 : ylaya IlaIa wl)
roTr ’
w/:(y/)x+sA yaI —IBaz
w = (ylpl)x’ IX’ — w(yl)sA
z = hK(z : ylaya IlaIa wl)
Z = hK(l : yaylaIaIlaw)
- w = (y)*' t*8
z=hg(l:y,y,I,I' w)

Fig. 4. Protocol ITA: K = QT Fe satass

3.2 Passive and Active Attacks

In this section, we analyze the resistance of Protocol ITA to passive and active
attacks by demonstrating equivalence to variations of the DH problem. (Similar
arguements can be made for Protocol IIB from Appendix A.) Hence, throughout
this section, we assume that DH computations (as described in Section 2) are
infeasible without the proper, corresponding secret information. Also, we assume
that the hash hx behaves like a random oracle, in the sense that it’s output
cannot be distinguished from random output.

A passive attack whose aim is key recovery for a given session involves eaves-
dropping on messages passed between participants for that session. The attack
is successful if the session key can be recovered with a probabilistic polynomial
time algorithm given as input, the eavesdropped message passes as well as any
other publicly available parameters.

Theorem 1. Protocol IIA is secure against passive attack and provides forward
secrecy unless the Diffie-Hellman problem can be solved.

We note that given a DH oracle, one can easily solve for the session key in
protocol ITA using only a passive attack. This is done by computing

K = DH(e;y, v)DH(a; y, pp)DH(; ¢/, pa).

Proof. (sketch) Consider Protocol ITA. We need to show that recovery of all
long-term secret keys does not allow recovery of previous session keys. Assume
the opposite is true. Then given s4 and sp corresponding to the respective long-
term public keys p4 and pp allows recovery of the key K = ot teseta’sa Prom
this, we are able to compute o™ for random y and y'; a contradiction to the
assumption that DH computations are computationally infeasible.

Since computing the final key with the extra knowledge of s4 and sp is hard,
it must be at least as hard without it. Protocol IIA is therefore secure against
passive attacks. O

An impersonation attack involves an attacker who is given access to all pub-
licly available information and attempts to successfully complete a protocol with
B (resp. A) by impersonating 4 (resp. B). Recall that a key agreement protocol
is successful if each of the parties accept the identity of the other, and terminate
with the same key. Note that since Protocol ITA provides key confirmation, this
assumes knowledge of the session key K.

Theorem 2. Protocol ITA is secure against impersonation attack given that Pro-
tocol IA is secure.

Proof. (sketch) If 2’ is accepted by A, it has necessarily been produced by some-
one who is able to compute both the pair (v, (yp)xl) and the key K by using
the (supposed) random y. From K and (yp)xl, is it easy to compute y*Z. Since
y is fresh and sp is supposed to be secret, 2’ has been forged by B unless IA is
insecure.

Similarly, if z is accepted by B, it has been produced by someone able to
compute 3 ** from a fresh ¢'. |

Notice that for Theorem 2, there is an implicit assumption that Protocol TA
does not reveal any partial information, i.e. each run of Protocol TA produces a
key of the form DH(«; y, pp) for some random y and fixed pp. Also note that this
does not preclude more imaginative attacks. It simply states that one participant
cannot successfully complete Protocol ITA by impersonating another, given only
the publicly available parameters.

4 Authenticated Multi-Party Key Agreement

We propose here a generic construction of a multi-party key agreement protocol
MP from a two-party key agreement protocol P.® We assume that all users
Uy, g, ..., u; are arranged on a ring and we will consider indices of u; to be
taken between 1 to ¢ modulo t.

1. Each pair (u;, ui+1) processes protocol P to obtain a session key K;.

2. Each u; computes and broadcasts W; = KK_’I.

3. Upon receiving the broadcasts from other users, u; computes the key

K=K_/'W'"'W,.,' % .. W,_, = KK, --- K;.

Equivalently, we can use W; = K; — K;,_; and K = K; + ...+ K; (or even
Wy = K; & K-y and K = K1 & ... % K;), for example. Since addition is
much cheaper than multiplication, such computations have an obvious practical

® The construction is a generalization of the scheme from [5].

benefit. Verification that all the following discussions hold for this modification
is left to the reader.

For a specific implementation of this model we use Protocol ITA from Sec-
tion 3 to obtain the respective multi-party protocol MIIA (likewise for Protocol
IIB from Appendix A). Notice that for Protocol MIIA, u; sends the same token
(i.e. y; = y}) to both w;41 and u;_1.

4.1 Attack to Burmester/Desmedt Scheme

In this section we demonstrate how the scheme of Burmester and Desmedt (BD)
[5] does not provide key authentication. BD is a specific case of the model de-
scribe above with DH as protocol P and makes use of zero-knowledge techniques
for authenticating each user. We make use of an attack first put forth in [13].

The adversary E positions himself between any two users A and B and
convinces B that he shares a key with E (though E will be unable to compute
K), yet B actually shares K with A. A believes (and in fact does) share K
with B. Hence, key authentication is not provided as the person with whom B
believes he is sharing the key (namely E), is not able to actually compute the
key (as only A and B can compute the key). Subsequent to this attack, messages
that A sends to B will be interpreted by B as coming from E. One can imagine
an attack where B is a bank and 4 and F are customers.

From [5], each user ¢ has a public key pair (5;,7:;) where 3 = o' and
~v; = «"i. This version assumes that users’ public keys are a priori available.
The attack proceeds as follows. A selects #€rZ, and sends {y := o®, I := 14}
to B. E intercepts the communication so now A authenticates y to E with
a zero-knowledge interactive proof of knowledge of the discrete log of 84Yv4
(namely v4y + w4) using methods described in [5]. E sends y to B, and using
his public key pair (8g,ve), authenticates y to B. B sends {y/,I := Ip} to E.
E simply forwards this message to 4 and allows B to authenticate y to 4. A
and B complete the protocol by broadcasting W4 and Wg respectively.

The attack succeeds because of the lack of “binding” between the messages
exchanged between A and B and lack of protection of the names of the in-
tended recipients of the messages. These properties are identified in [1] as being
important for obtaining a secure and authentic cryptographic protocol.

The authentication between pairs of users in [5] requires 1 round for the DH
key token exchange, k rounds for the authentication of the tokens (for a security
parameter k) and 1 round for the broadcast of the W;’s, giving a total of k + 2
rounds. Protocol MIIA requires 3 rounds for the processing of Protocol ITA
(including authentication of tokens) and 1 round for the broadcast of the W;’s,
giving a total of 4 rounds. If more than 2 rounds are used for the authentication
of the tokens in the Burmester-Desmedt scheme, our schemes are more efficient
in terms of the number of rounds.

4.2 Passive Attacks

In this section, we show that the multi-party model specifically implemented with
Protocol ITA (to produce MIIA) is provably secure against a passive attacker.
(Similar arguements can be made for an implementation with Protocol IIB from
Appendix A.) This is done by illustrating their equivalence to the respective
schemes from Section 3 (using the same techniques as given in [5]).

Theorem 3. Given an even, polynomial numbert of randomly chosen users with
long-term keys that are uniformly distributed, Protocol MIIA is as secure against
passive attacks as Protocols ITA.

Proof. We first note that breaking Protocol ITIA obviously enables one to break
Protocol MIIA (solve for each K; followed by computation of their product).

Now, given p1=pB = a’F, y = yl = axla Pt =pa =4 and Yy —y=a",
we want to solve for the key q@t“1F@ts1H@1se (j ¢ a®v'+ess+e’sa from Protocol
ITA) by using an oracle that solves for the MITA key. We must first prepare
the remaining input to the MIIA oracle. We first compute for : = 2,...,¢t — 1,
pi = pi_oa® and y; = yi_sa® using random b; and ¢;. This “randomizes” the
virtual users as if we had s; = s;_9 4+ b; and z; = x;_9 4+ ¢; providing a good
distribution. For ¢ = 1,...,# — 2, we can now compute

T; s
Wi = <pi+1yi+1> <yi+1> _ (ab,+1ac,+1)x,(ac,+1)x, _ y?z+1 (yipi)cH—l
Pi-1Yi-1 Yi-1

Since t is even, we also have that

ba—by — —bo—by—--—by_p

2 —

Pt = D20 " = pag”

by — —bs—bs —

P1=p3g "’ =psg = .= g bbb

(and similarly for y and y;) allowing us to compute

Tt—1 St—1
Dt Yt
Pt—2Yi—2 Yt—2

(yr—1) 7070 (g py g

T St
< b1 > < Y1 >
DPt—1Yt—-1 Yi—1

= (yt)—bs—bs—"'—bt—l (ytpt)—cs—cs—"'—ct—l .

)—03—05—"'—Ct—1

Wy

Inputting all the y;, p; and W; to the MIIA oracle, produces the output K.
We have K; = oﬂ“—lx"”’s’—l+x’—1s’yf’+l(yipi)c’+1. From K and the W;, we can

obtain any K;. More specifically, for u; we solve for K, from which we obtain
axtx1+xt51+xlst‘ O

4.3 Information Revealed by the Protocol

We need to verify whether the W;’s broadcast by each user reveal any information
about the secret key s;. Given the public key p; of user u;, we assign p;_1, piy1 to
dishonest users u;_1 and u; 41 and allow them to simultaneously execute a multi-
party protocol to obtain y; and W; from wu;. We present an attack on protocol
MIA to illustrate this issue, and show the security of Protocol MITA.

In MIA, using the real public keys of the dishonest users, we get W; = I;’J:—II:Z
and y; = o Colluding users can compute p;11%* = y;°+* obtaining y,_1°.

Hence, this protocol (no matter if it aborts) can be followed to use w; as an
oracle to raise any chosen y;_; to the secret key s;. We can easily imagine how
this allows recovery of a previous session key: in a previous session, K;_1 is vy,
and since g;_1 can be eavesdropped on the channel, one can ask u; to raise it to
s; to obtain K;_1, followed easily by computation of the previous session key K.

If they complete Protocol MITA (hence succeeded Protocol ITA), colluding
users u;j—1 and u;41 obtain from wu;, W; = Klf_’l as well as y; and y;. Since
ui_1 (uiy1) has been able to produce z;_1 (z{,,) and complete ITA before W;
is broadcast, he knew how to compute K;_; (K;).” Thus, active attacks do not
recover more information than passive ones from the Wj.

4.4 Active Attacks

For Protocol MITA, a traditional impersonation attack where user E successfully
completes a protocol (including key computation in our case) with B (resp. A)
by impersonating A (resp. B) would occur in step 1 from Section 4. (Recall from
the previous section, the W; released during step 2 provide no extra information.)
According to Theorem 2, this is unlikely.

In all of the MP schemes we have investigated thus far, there has been an
implicit assumption that if you were able to successfully complete a protocol
with several users, then each of these users is honest. Relaxing this assumption
introduces the following possible attacks (which are applicable to our schemes
as well as the Burmester-Desmedt scheme).

Consider a multi-party protocol between users A4, B, C' and D who are ori-
ented on a ring. If C’s left and right partners are B and D (i.e. the users with
whom C will perform protocol P) then B, C' and D can collude by shielding C.
By this we mean that B and D can construct their messages such that C' can
impersonate some Z. This is possible since no direct authentication is performed
between users A and C. At the end of the protocol, A could be made believe
that the protocol consists of users A, B, Z and D. Of course, this would not
allow C' (impersonating Z) to compute the key on his own (see Section 3.2) but
the key can be given to C' by one of B or D (C’s colluding partners).

A solution to this attack is to include an additional step at the end of the
protocol whereby each user ¢ broadcasts the quantity s;(hgx (Wi, Wy, ..., Wy)),

" This is necessary under the assumption that knowledge of K;_; (or Ki) 18 necessary
for computation of the keyed hash in Protocol IIA.

which is ¢’s signature on the keyed hash of the W;’s broadcast in step 2 of the
multi-party protocol described in Section 4. Since our protocols are public-key
based, the signature scheme can be easily implemented using ElGamal signatures
[8] for example.

Note that the solution above works assuming that C' is not able to falsify Z’s
signature. A possible attack to this assumption occurs in [3]. Here, the authors
present a so-called Middleperson Attack. Suppose we have Protocol 1, consisting
of users 4, B and C' and Protocol 2 consisting of users B, C' and Z. The attack
involves C' sitting in the middle of the two simultaneous protocols. C' would
impersonate Z in Protocol 1 and impersonate 4 in Protocol 2. Any challenges
that C would be required to compute (as if they came from Z), including possible
signatures, in Protocol 1 would be obtained directly from Z in Protocol 2 (and
vice-versa for impersonating A in Protocol 2). At this point, users see Protocol
I as consisting of users 4, B and Z and Protocol II of users B, A and Z. Similar
to the attack above, C' would be unable to compute the key on his own as he
is really only acting as a ‘wire’ between the two protocols, and passing along
messages. Once again, he would require a collusion with B to obtain K (for the
attack to be of any real use).

The solution presented to the attack in [3] was a hardware one rather than
a crytographic one. Also note that the property of key authentication was never
really violated since that principal attacker C was never able to compute the
key on his own. Depending upon the application, the practicality of such attacks
must be individually examined.

5 Conclusion

In this paper, we presented two new key agreement protocols, the two-party Pro-
tocol ITA and its multi-party counterpart, Protocol MITA. Protocol ITA appears
to improve upon several others for which long-term public keys are used in the
key computation (and for which several attacks were given here). Their use in
key computation is an alternative to the use of digital signatures.

Protocol MIIA is derived from our generalization of the multi-party protocol
of Burmester and Desmedt (BD) [5]. A nice feature of the protocol is that it
allows for authentication of participating users without requiring that each user
authenticate every other user. Though one must be careful with such methods
as evidenced by the shielding attack from Section 4.4.

Protocol MITA differs from the scheme of BD in how participants are authen-
ticated. Rather than using zero-knowledge techniques (which are susceptible to
the attack from Section 4.1), we essentially use Diffie-Hellman computations in
key confirmation. It seems likely that many of the other two-party key agreement
protocols mentioned here can also provide for a multi-party protocol using the
generalization from Section 4.

Acknowledgements. Thanks to Paul Van Oorschot for suggesting the current
topic for research. Using a different group structure for the computation of the

W; and K; in Section 4 was suggested by Kazue Sako. Thanks to an anony-
mous referee for the fourth attack (where E possess a®4°2) given in Section 3.1.
Thanks to Yvo Desmedt for pointing out the existence of [4].

Note. The first author is supported by an NSERC graduate fellowship. The
second author is employed by the CNRS. This work was partially completed
while the second author was visiting the School of Computer Science at Carleton
University and supported by an NSERC grant.

References

1.

10.

11.

12.

13.

14.

15.

16.

M. Abadi, R. Needham, “Prudent Engineering Practice for Cryptographic Proto-
cols”, DEC SRC Research Report 125, June 1, 1994.

. M. Bellare, P. Rogaway, “Entity Authentication and Key Distribution”, Advances

in Cryptology: Proceedings of CRYPTQO ’93, Springer-Verlag, 1993, pp.232-249.

S. Bengio, G. Brassard, Y. Desmedt, C. Goutier, J. Quisquater, “Secure Implemen-
tation of Identification Systems”, Journal of Cryptology, Vol. 4, 1991, pp. 175-183.
M. Burmester, “On the Risk of Opening Distributed Keys”, Advances in Cryptology:
Proceedings of Crypto ’94, Springer-Verlag, 1994, pp.308-317.

M. Burmester, Y. Desmedt, “A Secure and Efficient Conference Key Distribution
System”, Advances in Cryptology: Proceedings of Eurocrypt 94, Springer-Verlag,
1995, pp.275-286.

W. Diffie, M. Hellman, “New Directions in Cryptography”, IEEE Transactions on
Information Theory, IT-22(6), November 1976, pp.644-654.

W. Diffie, P.C. van Oorschot, M.J. Wiener, “Authentication and Authenticated Key
Exchanges”, Designs, Codes and Cryptography, Vol. 2, 1992, pp. 107-125.

. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Dis-

crete Logarithms” | IEEE Transactions on Information Theory, Vol. 31, pp. 469-472,
1985.

C. Gunther, “An Identity-Based Key Exchange Protocol”;, Advances in Cryptology:
Proceedings of Eurocrypt ‘89, Springer-Verlag, 1989 pp.29-37.

I. Ingemarsson, D. Tang, C. Wong, “A Conference Key Distribution System”, IEEE
Transactions on Information Theory, Vol. IT-28, No.5, Sept. 1982, pp.714-720.

H. Krawczyk, “SKEME: A Versatile Secure Key Exchange Mechanism for Inter-
net”, Proceedings of the Internet Society Symposium on Network and Distributed
System Security, Feb. 1996 (also presented at the Crypto '95 rump session).

T. Matsumoto, Y. Takashima, H. Imai, “On Seeking Smart Public-Key Distribu-
tion Systems”, The Transactions of the IECE of Japan, Vol. E. 69, No. 2, February
1986, pp. 99-106.

A. Menezes, M. Qu, S. Vanstone, “Some New Key Agreement Protocols Providing
Implicit Authentication”, presented at the Workshop on Selected Areas in Cryptog-
raphy (SAC ’95), Carleton University, Ottawa, ON., pp. 22-32.

D. Pointcheval, J. Stern, “Security Proofs for Signature Schemes”, Advances in
Cryptology: Proceedings of Eurocrypt '96, Springer-Verlag, 1996, pp.387-398.

B. Preneel, Cryptographic Hash Functions, Kluwer Academic Publishers (to ap-
pear, 1996).

R. Rueppel, P. van Oorschot, “Modern Key Agreement Techniques”, Computer
Commaunications Journal, Vol. 17, July 1994, pp. 458-465.

17. D. Steer, L. Strawczynski, W. Diffie, M. Wiener, “A Secure Audio Teleconference
System”, Advances in Cryptology: Proceedings of CRYPTO ’88, Springer-Verlag,
1988, pp.520-528.

18. M. Steiner, G. Tsudik, M. Waidner, “Diffie-Hellman Key Distribution Extended to
Group Communication”, 8rd ACM Conference on Computer and Communications
Security, New Dehli, India, March 14-16, 1996.

19. P. van Oorschot, M. Wiener, “On Diffie-Hellman Key Agreement with Short Ex-
ponents”, Advances in Cryptology: Proceedings of Eurocrypt 96, Springer-Verlag,
1996, pp.332-343.

20. Y. Yacobi, “A Key Distribution ‘Paradox’ ”, Advances in Cryptology: Proceedings
of CRYPTO ’90, Springer-Verlag, 1990, pp.268-273.

A Protocols Based on IB

The protocols in Figure 5 require a priori knowledge of public keys (or an extra
message pass). Protocol B0 was given in [13] (an adaptation of a scheme from
[12]). Similar attacks to those presented in Section 3.1 can be mounted against
Protocol B0O. Protocol IIB prevents the attacks and provides forward secrecy.
The key computation is identical to the two-pass protocols from [13, 12].

A B
" yaI = IA , , o
v€rly,y = pB v'€rlly, Yy =p
K= oﬂ”lysB_1

2 =hg(y,I,T)
-1 ylaIl:IBazl
K:(y’)s“ a®

z’;hK(y’,I,I’)

z yl=1Ia ' ’ z!
t€rZg,y = pB v'ERly, Y = p
w' = o/”l,K = ysB_lxl
z = hK(2 : ylaya IlaIa wl)
! ! __ !
w/I(y/)sA_l yaI —IBaz
w=a" K =(y) "
2! ; hK(z : ylaya IlaIa wl)
z=hg(l:y,¢,I,I' w)
z

w=(y)*s"
z=hg(l:y,y,I,I' w)

1

Fig. 5. Protocol BO(top): K = a™+*"; Protocol IIB(bottom): K =

This article was processed using the B'TEX macro package with LLNCS style

