The tool Kronos *

C. Daws ** A. Olivero ** S. Tripakis ** S. Yovine **

VERIMAG!
Miniparc-Zirst, Rue Lavoisier,
38330 Montbonnot St. Martin, France.

1 Introduction

Kronos [6, 8] is a tool developed with the aim to assist the user to validate
complex real-time systems. The tool checks whether a real-time system modeled
by a timed automaton [4] satisfies a timing property specified by a formula of
the temporal logic ToTL [3]. KRONOS implements the symbolic model-checking
algorithm presented in [11], where set of states are symbolically represented by
linear constraints over the clocks of the timed automaton.

In this work we present two other verification approaches we have recently
implemented in KRONOS, namely forward analysis and minimization, that rely
on the same symbolic representation of the state space. The emphasis is given in
illustrating the interest of the two approaches rather than thoroughly presenting
their technical details which can be found in [15, 7].

Forward analysis is based on the symbolic simulation of a timed automaton.
By computing the set of all possible runs, starting from some given set of initial
states, we can verify some interesting temporal properties on the behavior of
the system, such as reachability, tnvariance and bounded response. This method
turns to be in many cases more efficient than model-checking and it has the
advantage that it allows error diagnosis.

Minimization consists in constructing the smallest finite quotient of the timed
model with respect to a bisimulation equivalence. This method allows using
timed automata not only for describing the behavior of the system but also for
specifying the requirements. We can then check whether the minimal model of
the system simulates or 1s equivalent to the one of the specification.

The paper is organized as follows. In section 2 we review timed automata. In
section 3 we present the basis of symbolic forward analysis and the algorithms
implemented in KrRONOS, and in section 4 we apply this method for verifying
the FDDI protocol [12]. In section 5 we present the minimization algorithm and
in section 6 we analyze the Fischer’s mutual exclusion protocol [1].

* In DIMACS Workshop on Verification and Control of Hybrid Systems, October 1995.
Lecture Notes in Computer Science 1066, Springer-Verlag.
** E-mail: {Conrado.Daws,Stavros.Tripakis,Sergio.Yovine }@imag.fr.
*** Supported by European Contract KIT 139 HYBSYS. E-mail: alfredo@fing.edu.uy.
! VERIMAG is a joint laboratory of CNRS, INPG, UJF and Verilog SA.

2 Timed automata

2.1 Definition

A timed automaton is an automaton extended with a finite set of real-valued
variables; called clocks, whose values increase uniformly with time. The timing
constraints related to the system are expressed by the association of an enabling
condition to each transition. A clock can be reset to 0 or take the value of another
clock at each transition®.

Formally, a timed automaton A is a tuple (S, X, £, &, I) where:

1. & is a finite set of locations.

2. A 1is a finite set of clocks. A valuation v € V is a function that assigns a
non-negative real-value v(z) € RT to each clock z € X'. Let Wy be the set
of predicates over X defined as a boolean combination of atoms of the form
z#corx—y#He where x,ye X, # € {<,<,=,>,>} and ¢ is an integer.

3. L s a finite set of labels.

4. £ is a finite set of edges. Each edge e is a tuple (s, L, ¥, p, s') where s € § is
the source, s' € S is the target, L C L are the labels,) € Uy is the enabling
condition, and p : X — X U {0} is an assignment. We write v[p] for the
valuation ¢’ such that for each z € X', if p(x) = 0 then o/(x) = 0, otherwise
V(x) = o(p(a)).

5. Let @y be the set of functions ¢ : § — ¥y mapping each location s of the
automaton to a predicate 1. The invariant of A is a function I € ®y. We
write I, for the invariant associated with s.

2.2 Semantics

A state of A is a location and a valuation of clocks satisfying the invariant
associated with the location. Let @ C & x V be the set of states of A, that
is, all pairs (s,v) such that v satisfies I;,. When A is in a state (s,v) € Q, it
can evolve either by moving through an edge that changes the location and the
value of some of the clocks (discrete transition), or by letting time pass without
changing the location (time transition).

Discrete transitions. Let e = (s, L, 1, p,s"). The state (s,v) has a discrete tran-
sition to (s',v’), denoted (s,v) —& (s',4'), if v € ¢ and v’ = v[p]

Time transitions. Let t € Rt we define v + ¢ to be the valuation ¢’ such that
v'(x) is equal to v(x)+1¢ for all # € X'. The state (s,v) € Q has a time transition
to (s,v + 1), denoted (s, v) -0 (s,v+1)if forallt! <t, v+t €.

® The usual definition of timed automata only allows resetting clocks to 0. It has been
shown in [14] that assignments of clock values does not affect decidability.

3 The forward analysis

The forward analysis verification technique is based on the computation of the
symbolic runs from a given set of symbolic states. We give to the runs the
structure of an oriented graph, called the simulation graph. Every symbolic state
that appears in one or more of the runs corresponds to a single node of the graph
and the simulation steps correspond to its arcs.

3.1 Symbolic runs

A symbolic state of the timed automaton A is a pair (s,¢) where s € § and
1 € Wy is a constraint such that (} C ¢ C I;. The symbolic state (s, 1) represents
the set of states (s,v) € Q such that v € ¢. We denote X4 the set of symbolic
states of A. Let us expand the notions of discrete transition and time transition
to symbolic states:

Symbolic discrete step. The discrete successor of (s,9) € X4 through the edge
e = (s,L,%.,p,s") is the symbolic state (s’, post, (¢)) where v € post, (¢) iff
Jv' € Y A, v = 0'[p]. That is, the symbolic state representing the states that
can be reached from some state of (s,) by taking e.

Symbolic time step. The time successor of (s,) € X4 constrained by ¢/ € Uy is
the symbolic state (s, post[¢](1)) such that v € posti[](¢) iff 3t > 0,¢" € ¢
such that v = v/ + ¢ and V#/.0 < ¢ < ¢, v +1 € I; A¢'. That is, the symbolic
state representing the states that can be reached by letting time pass from a
state of (s, ¢) ensuring that ¢’ continuously holds.

A symbolic run m of A starting from (s, ¢) € X4 and constrained by ¢ € &y
is a sequence of symbolic states # = (sg, ¥o)e1{s1,¥1)ea .. .e;{s;, ¢;) ... such that

(s0,%0) = (s, post{[9;](v)) and Vi > 1, {s;, vs) = (si, post;’[9s,](post., (¢i-1))).

3.2 Simulation graph

The simulation graph corresponding to A = (S, X,L,&,I) computed from
S; C Y4 and constrained by ¢ € @y, is the graph SGA(Sr,¢) = (S1,8s,E&5)
where the set of nodes Sg C X4 and the set of edges £ C Sg x £ x Sg are the
smallest sets such that:

1. init: & C Sy is the set of initial states.

2. iter: For every (s,) € Sg and e € £ an edge with source in s and target
in ¢/, if ¢/ = post? [qbs l(post,.(¢)) is not empty, then (s’ ¢') € Ss and
(s, ¥), e, (',) € E5.

3.3 Verification

Given a timed automaton .4 we consider three verification problems that can be
solved by applying the forward analysis: the reachability, the invariance and the
bounded response problems.

Reachability: The reachability problem consists in finding if there is a run of
the system, starting from a state ¢ € Q satisfying |, such that Q can be reached
in a time ¢ # ¢, and for which P holds continuously before Q is reached (where
I,P,Q € ®&x). This problem corresponds to checking the non-emptyness of the
characteristic set of the TcTL formula | A P3U 4 Q.

Algorithmically, this is done by computing SG4(1 A (z = 0),P Vv Q') where
z & X is an extra clock, and Q' = QA (z# ¢). Each time a new symbolic state
(s,) is computed, if yNQ’ # , the algorithm gives a symbolic run that validates
the property.

Invariance: The invariance problem consists in finding if for all the runs start-
ing from all states ¢ € Q satisfying |, the property Q holds for every state of the
runs. This problem corresponds to checking the emptyness of the characteristic
set of the TeTL formula =(1 = VOQ) which is equivalent to | A true3f—Q |
that is, finding if =Q is not reachable from I.

If during the construction of SG4(l, true) the algorithm finds a symbolic
state (s,v) such that ¥ N —=Q # @ then the algorithm exhibits a symbolic run
that invalidates the invariance property.

Bounded response: The bounded response problem consists in finding if for
every run starting from all states ¢ € Q satisfying |, there 1s a state of the run that
satisfies Q in a timet < ¢ for a given ¢ € IN. This problem corresponds to checking
the emptyness of the characteristic set of the TcTL formula =(1 = Y0<cQ)
which is equivalent to | A =Q3Us ctrue | that is, finding if there is no run where
Q holds during more than ¢ time units.

This is done by computing SG4(IA(z =0),7Q V z > ¢) where z ¢ X is an
extra clock. If a symbolic state (s,) such that ¢ N (z > ¢) # @ is found, then
the property 1s not satisfied and a counter-example 1s provided.

4 The FDDI communication protocol

FDDI (Fiber Distributed Data Interface) [12] is a high performance fiber optic
token ring Local Area Network. In this section we show the verification of the
temporal mechanism that limits the possession time of the token by each station.

4.1 Protocol Description

We consider a network composed by N identical stations 51, ..., Sy and a ring,
where the stations can communicate by synchronous messages with high priority
and asynchronous messages with low priority.

Station. Each station S; can be either waiting for the token (Idle;), in posses-
sion of the token and executing the synchronous transmission (T;, ST;) or in
possession of the token and executing the asynchronous transmission (T;, AT;).

The two clocks a station uses to control the possession time of the token are
called TRT; (Token Rotation Timer) and THT; (Token Holding Timer).

— TRT; counts the time since the last reception of the token by the station.
This clock 1s reset to zero each time the station S; takes the token.

— THT; counts the time since the last reception of the token, added to the
time elapsed since the precedent one, given by the value of the clock T'RT;
just before it is re-initialized.

When the station S; receives the token (action TT;), the clock THT; takes the
value of the clock T RT;, T RT; is reset to zero, and the station S; starts sending
synchronous messages (BS;). The duration of the synchronous transmission (ST;)
is given, for each station S;, by a constant SA; (Synchronous Allocation).

When the synchronous transmission ends (action ES;), the station has the
possibility of starting the transmission of asynchronous messages (action BA;)
if the current value of T'HT; minus the time of synchronous transmission SA4;
is greater than a global constant of the system called TTRT (Target Token
Rotation Timer). Before THT; — S A; reaches the value TTRT, the station must
release the token (RT;), ending the asynchronous transmission (EA;) if this one
has began. The behavior of the station S; is described by the timed automaton
Station; of the Figure 1(a).

Ring. The ring controls the transmission of the token between two consecutive
stations S; and S;y1. There is a delay of td (Token Delay) time units, measured
by the clock T, in this transmission. The Figure 1(b) shows the timed automaton
Ring that models the ring for two stations.

System. The timed automaton that models the protocol is obtained as the par-
allel composition FDDIy = Ring || Station; ||...|| Stationy where the
automata synchronize through the actions TT; and RT;.

4.2 Properties verification

We verify here two properties of the FDDI protocol.

Bounded time for accessing the ring. The time elapsed within two consecutives
receptions of the token by any station is bounded by a constant ¢;. We can
express this property in TcTL with the following formula:

(8T; AT =0) = VO, enable(TT;) (1)

where ¢; 1s equal to TTRT + 2N.SA;, and enable(TT;) characterizes the sym-
bolic states where the edge labeled TT; is enabled.

THT; :=TRT;;TRT; =0

=0 TRT; < SA:

TT; BS;

TRT; = SA;N
THT; — SA; > TTRT
RT;
EA, ES;, BA;

TRTY = SAN
THT; — SA; <TTRT

THT, — SA; <TTRT
(a) (b)

Fig. 1. Station; (a) ; Ring (b)

Bounded time for sending asynchronous messages. Fach idle station will send
asynchronous messages before a time ¢3. The formula of T¢TL that describe this
property is:

Tdle; = VO« , AT (2)

where ¢ is equal to (N — 1).TTRT + 2N.SA;.

Table 1 shows the results of the verification of properties (1) and (2), for
different numbers of stations, applying symbolic model-checking (backward anal-
ysis) and symbolic simulation (forward analysis). We show the size of the timed
automaton, the running times in seconds (¢ime), the number of iterations for
model-checking (iter) and the number of symbolic states generated for simula-
tion (symb).

5 Minimization

We briefly present in this section the main ideas of the algorithm developed
in [15] which is an adaptation of the minimal model generation algorithm given
in [5]. In the next section we show that testing our algorithm on the Fischer’s
mutual exclusion protocol reveals more efficient than the minimization algorithm
developed in [2].

automaton |formula backward| forward |eval

#sta|| #loc|#arcs|#clocks temeliter|teme| symb
3 19 25 7 0.50[9]0.15 20 |true
25| 29 6 1018|true
2.50(12]0.30 44 |true
3680 47| 66| 5522|true
10| 15{1.20 92|true
—| —| 507|25532|true

(1)
(2)
(1)
(2)
(1)
(2)
37 | 49 | 13 (1) 61] 18/3.50] 188]true
(1)
8))
8))
(1)
8))
()

4 25 33 9

5 31 41 11

49 65 17 3670 24| 28| T64|true
32917| 27| 73| 1532|true
—| —| 187| 3068|true
—| —| 483| 6140|true
—| — (112312284 |true

6
7 43 57 15 435(21| 10| 380|true
8
9

55 73 19
10 61 81 21
11 67 | 89 23
12 73 97 25

Table 1. Running times for different numbers of stations of the protocol FDDI with
TRTT = 50.N, SA; = 20 and td = 0.

5.1 Symbolic predecessors

Given a timed automaton 4, we define the notions of both discrete and time
predecessors of a symbolic state as follows.

Symbolic discrete predecessor. The discrete predecessor of (s',¢') € X4 through
the edge e = (s, L, ., p, 8') is the symbolic state (s, pre, (¢')) where v € pre, (¢')
iff v € ¢, and v[p] € ¥'.

Symbolic time predecessor. The time predecessor of (s, 1) € X4 constrained by
¢ € Wy is the symbolic state (s,prel[¢'](¢)) such that: v € prej[¢/](¢) iff
At >0, v+tepandV.0<t <t, v+t €I, AY.

5.2 Partitions and bisimulations

Let IT be a partition of @ such that all classes of I7 are symbolic states in 4. For
0,0 € II, let pref[o](c’) stand for either o N pre, (o') or pre,[o](c’). We define
Sucesyp (o) = {0’ | pre[o](c’) # 0} and Predsy(c) = {o’ | pre[c’](a) £ 0}.

A class ¢ € II is stable if for all ¢’ € II, pre[c](c’) € {0, 0}, that is, either
no state in ¢ has a discrete (resp. time) transition to a state in ¢’, or for all
states in ¢ there exists a discrete (resp. time) successor in ¢’. The partition I7
1s a bisimulation if every symbolic state o € IT is stable.

5.3 Minimization algorithm

Given an initial partition 1;,;;, and a set | of initial symbolic states, our goal
i1s to compute the coarsest bisimulation /7 which is finer than I7;,;; containing
only those classes which are reachable from |. IT is computed by the following
algorithm.

II '= Hipit; * = {B €Il | BOLAQ}; A:=0;

while (3B € x \ A) do {

Cp = Split(B,II) ; (1)
if (Cp = {B)) then { (2)
A= AU{B}; % :=% USuces;(B) ; (3)
} else { (4)
x =+ \{B}; I :=(II\{B})UCg; A:= A\ Predsi;(B) ; (5)
if BN1#0 then % :=xU{C€Cg,|CNI#0};

b3

where * 1s the set of classes accessible from | and A C % 1s the set of stable
accessible classes.

The function Split(B,IT) refines the class B with respect to the current
partition (1), by choosing a class C' € IT. If B is found to be stable with respect
to 1, that is, Splét(B,II) = {B} (2), the all successors of B are inserted to
the set of accessible classes (3), since B is accessible. If B is not stable (4),
Split(B,Il) = {Bi, Ba}, where B; = pre[B](C), B> = BN By, and all its

predecessors become unstable (5).

6 Fischer’s mutual—exclusion protocol

We describe and verify here the Fischer’s mutual exclusion protocol [1]. The sys-
tem i1s made up of n timed automata Py, ..., P,, where P; models the behavior of
process i, along with automaton X, modeling the global variable which regulates
access to the critical section (see figure 2). A is an upper bound on the time nec-
essary for P; to set X to ¢, after verifying that X equals 0 ; é is a lower bound on
the time that P; has to wait before re-testing X and entering its critical section,
if the value of X has not changed in the meanwhile.

Observing the behavior of the system. One expects that a correct mutual-exclusion
protocol should behave as the abstract graph shown in figure 3(a). We would like
to check whether this ideal model is indeed equivalent to the minimal one. Since
the latter also contains irrelevant actions, such as “tryi”, “setXi”, as well as
timed transitions, we proceed as follows : (1) we compute the minimal model
of (||P;)]|X using the adapted minimization algorithm described in the previous
section ; (2) we then replace all labels different from “enter_i” and “setX0i” by

try 1 try 2

) enter 1 enter_2
P setX 1 SetX 2
X

Fig. 2. Fischer’s mutual-exclusion protocol specification with TA

the label 7; and (3) we further reduce the resulting graph with respect to the
™ a bisimulation (/;«4), using the tool Aldebaran [9].

Performance results ® are shown in table 2. G, denotes the minimal model,
and G;«4 1ts reduction with respect to =s;+,. For each n, two versions of the
protocol are tested : a correct one, for A = 5,6 = 12 (first line in the table),
and an erroneous, for A = 5,6 = 4 (second line, marked with (*)). Figure 3(b)
depicts G, for n = 2, in the correct case 7. It is easy to see that this graph
is not equivalent to the ideal one in fig. 3(a). The reason is that the version of
Fischer’s protocol we have used so far permits the starvation of a process at
control-state 2, if another process manages to get first into its critical section.

Awvoiding starvation. To remedy the problem of starvation, we add an arc from
state 2 to state 1, in the TA of P;, as shown in figure 4(a). Then, we proceed as
in steps (1),(2),(3) above and we find that the minimal model, for the correct
case, is indeed equivalent to the ideal one in fig. 3(a). Results appear in table 3.

Comparison. The same example has been treated in [2] by minimizing a smaller
TA, namely (|| P;)|| X ||Monitor, where the automaton Monitor (figure 4(b)) cap-
tures the violation of mutual exclusion, by entering an error state. Verification
consists in ensuring that the minimal model contains no error state. Performance
results of the two algorithms ® are shown in table 4.

6 We use a Sparc 10 with 128 Mbytes of main memory. — denotes non-termination.
We show only the time taken for minimization. The reduction with respect to /z,+4
takes negligible time, except in the case marked §, where aldebaran needs 23 secs.

" This figure has been produced by beg_draw [10], a tool for displaying graphs, included
in the Aldebaran package.

8 [2] have used a DEC-5100 with 40 Mbytes of main memory.

bl
etX 02 @ setX01

@

(2)

enter_2
setX 02

enter\1 @
enter 1 en %er_z
setX 01 @ setX 02

(b)

@

enter 1
setX01

Fig. 3. Ideal mutual-exclusion (a) ; Model allowing starvation (b)

try i
(D)=
_ setX i try i

1:=0 y_i:=0
@ enter_i @
yi>0
Pi’
@

enter_1, enter 2

(D

setX 01, setX02
enter L enter 2
error
Monitor
(b)

Fig.4. Process avoiding starvation (a) ; Monitor(b)

n |composite TA Gonin Grrg time

states arcs| states| trans.|states| trans. (secs)
2 28 44 22 26 7 10 0
(*) 57 113 16 48 0
3 152 324 77 108 19 39 0.3
(*) 651| 2,002| 104 804 2.9
4 7521 2,016 252 420 47 140 2.9
(*) 10,163|43,392| 724(15,036|322 }
5 13,552| 11,440 807 1,590 111 485| 31.3
() - - -

Table 2. Fischer’s protocol : minimization of (]| 7;)||.X

n|composite TA Gonin (€ time
states arcs|states|trans.|states|trans. (secs)
28 48 22 30 3 4 0

152 360 7T 132 4 6 0
752 2,240 252| 524 5 8 2
3,552| 12,640 807|1,990 6 10 24

U W= W o

Table 3. Fischer’s protocol : minimization of (|| P/}||X (no starvation)

n |composite TA Gin Grrg time (secs)
states arcs|states| trans.|states|trans. [2]
2 24 34 22 26 7 10 0 1
(*) 7] 85| 12| 27| O 3
3 119 213 T 108 19 39| 0.2 8
) 402(1,117 47| 205| 1.5 887
4 548 1,164 252 420 47| 140(2.1 192
(*) 4437(17,902| 174]1,333]40.4 -
512,402| 5,850 807| 1,590| 111| 485(16.3|not tested
) — — —not tested

Table 4. Fischer’s protocol : minimization of (]|7;)||X||Monitor

7 Conclusion

Both approaches presented in this paper considerably improve KRONOS perfor-
mance and functionalities °.

Forward analysis permits handling examples with a large number of clocks,
as the example of the FDDI protocol shows : up to 25 clocks, which, to our
knowledge, exceeds the clock—space dimension of similar examples treated in
the literature. Moreover, this method is capable of providing a counter—example
sequence, as a diagnosis in the case a system fails to verify an invariance or
bounded response property.

Minimization considerably reduces the number of states and transitions of
large systems, as the example of Fischer’s protocol illustrates. It also allows for
further analysis, using standard techniques for untimed systems, such as com-
parison and reduction with respect to behavioral equivalences. The combination
of timed and untimed minimization allowed us to discover the problem of star-
vation in the first version of the mutual—exclusion protocol.

® For information on how to obtain the tool, please contact the authors.

We stress the fact that Fischer’s protocol has been analyzed many times,
using other real-time verification tools, in particular in [2, 13]. None of these
two analyses, however, deals with starvation, while the versions of the protocol
used are simpler.

Finally, both forward analysis and minimization prove helpful not only for
verification but also for revealing intrinsic problems of modelization, thus giving
better insight to the system analyzed.

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for real-time. In Proc. REX
Workshop “Real-Time: Theory in Practice”. LNCS 600, Springer-Verlag.

2. A. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An implemen-
tation of three algorithms for timing verification based on automata emptiness. In
Proc. 13th IEFE RTSS. IEEE Computer Society Press, 1992.

3. R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time. In-
formation and Computation, 104(1):2-34, 1993.

4. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

5. A. Bouajjani, J.C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal
state graph generation. Science of Computer Programming, 18:247-269, 1992.

6. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO-
NOS. In Proc. FORTFE’9/4, pages 227-242, Bern, Switzerland, October 1994.

7. C. Daws and S. Yovine. Symbolic forward analysis of timed automata. Tech.
Report Spectre 95-16, Verimag, Grenoble, November 1995.

8. C. Daws and S. Yovine. Two examples of verification of multirate timed automata
with KRONOS. In Proc. 1995 IEEF RTSS’95, Pisa, Italy, December 1995. IEEE
Computer Society Press.

9. J.Cl. Fernandez and L. Mounier. A tool set for deciding behavioural equivalences.
In CONCUR’91, Concurrency theory. LNCS 527, Springer Verlag, August 1991.

10. H. Garavel, R. Mateescu, R. Ruffiot, and L.-P. Tock. Binary coded graphs —
reference manuals of the bcg tools. Tech. Report Spectre 95-13, Verimag, Grenoble,
October 1995.

11. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193-244, 1994.

12. R. Jain. FDDI handbook: high-speed networking using fiber and other media.
Addison-Wesley, 1994.

13. K. G. Larsen, P. Petterson, and Y. Wang. Compositional and symbolic model-
checking of real-time systems. In Proc. 1995 IFEE RTS5S5°95, Pisa, Italy, December
1995. IEEE Computer Society Press.

14. A. Olivero. Modélisation et analyse de systémes temporisés et hybrides. These,
Institut National Polytechnique de Grenoble, Grenoble, France, September 1994.

15. S. Tripakis and S. Yovine. Analysis of timed systems based on time—abstracting
bisimulations. Tech. Report Spectre 95-15, Verimag, Grenoble, November 1995.

