An Authorization Framework
Resilient to Policy Evaluation Failures

Jason Crampton! and Michael Huth?

! Information Security Group, Royal Holloway, University of London
2 Department of Computing, Imperial College London

Abstract. In distributed computer systems, it is possible that the eval-
uation of an authorization policy may suffer unexpected failures, perhaps
because a sub-policy cannot be evaluated or a sub-policy cannot be re-
trieved from some remote repository. Ideally, policy evaluation should
be resilient to such failures and, at the very least, fail “gracefully” if
no decision can be computed. We define syntax and semantics for an
XACML-like policy language. The semantics are incremental and re-
flect different assumptions about the manner in which failures can occur.
Unlike XACML, our language uses simple binary operators to combine
sub-policy decisions. This enables us to characterize those few binary
operators likely to be used in practice, and hence to identify a number
of strategies for optimizing policy evaluation and policy representation.

1 Introduction

Many access control models and systems are policy-based, in the sense that a
request for access to protected resources is evaluated with respect to a policy
that defines which requests are authorized. Many languages have been proposed
for the specification of authorization policies, perhaps the best known being
XACML [4,8,12]. However, it is generally acknowledged that XACML suffers
from having poorly defined and counterintuitive semantics, see e.g. [9, 10]. More
formal approaches have provided well-defined semantics and typically use “policy
operators” to construct complex policies from simpler sub-policies [3, 5, 13].

Each component of an XACML policy has a so-called target, and a policy
is applicable to a request only if said request “matches” that policy’s target.
XACML was designed to operate in heterogeneous, distributed environments,
and XACML “policies” (technically, <PolicySet> elements) may reference sub-
policies (<Policy> or <PolicySet> elements) that may be held in remote repos-
itories. In addition to returning the usual allow and deny decisions, the result of
evaluating an XACML policy may be “not applicable” or “indeterminate”, the
latter since evaluations in open, distributed systems may fail.

There are three practical drawbacks to existing, more formal algebraic ap-
proaches to policy languages: first, it becomes difficult to answer the question
“Is this request authorized?”, which is central to any access-control mechanism;
second, it is difficult to see how practical policies can be written in this way; and
finally, no means of handling policy evaluation failures has been provided.

Our goal in this paper is to develop a practical authorization language that
is resilient to authorization evaluation failures, supports different assumptions
for when failures may occur, has rigorous semantics, and leads to optimization
of policy evaluation and policy representation. As a side effect, our framework
allows for a simple static analysis that, at times, can fully recover from evaluation
failures. The contributions of our paper include

— the definition of a simple policy language, which introduces the notion of
resolution function for possible decisions;
— a concise characterization of the most commonly used decision-combining
algorithms as binary decision-combining operators;
— the identification of two important classes of decision-combining operators,
and a discussion of their significance for policy specification and evaluation;
— three different and successively more robust semantics for policy evaluation
and a characterization of the failures with which they can cope;
— a description of how our semantics can be implemented and a discussion of
optimizations that can significantly simplify the evaluation of policies.
To reiterate, our framework presented here combines the rigor of the work on
policy algebras (which tends to use binary operators to compose policies and
bottom-up semantics but does not consider evaluation failures or implementa-
tion) with the practicality of the work on XACML and related languages (which
tends to use decision-combining algorithms and top-down policy evaluation but
lacks the rigor of the work on policy algebras). In other words, our contributions
are to synthesize and extend existing approaches to the specification and evalu-
ation of authorization languages whilst also dealing with evaluation failures.

In the next section, we define our policy language and discuss how binary op-
erators can be used to implement decision-combining functions. We then define
our policy semantics in Sect. 3. In Sect. 4, we describe how our formal semantics
can be realized in practice. In the subsequent section, we also describe our tech-
niques to optimize policy evaluation and discuss the implications and potential
applications of these techniques. We conclude with a summary of the paper and
some discussion of future work in Sect. 5.

2 A Simple Policy Language

The language we use is rather similar to (core) XACML: policies are built from
other policies, and policies may or may not be applicable to requests. However,
our language is much simpler syntactically, although no less expressive.

We assume that the decisions that may arise from policy evaluation are given
by the set D = {a,d, L}, denoting “allow”,“deny” and “not applicable”, respec-
tively. We assume that two decisions may be combined using any one of the
possible binary operators @ of the form @& : D x D — D. We will write & using
infix notation: that is, we prefer = ® y to ®(x,y).

Policy Syntax. Atomic policies have the form (r,a, ¢) or (m,d, ¢), where 7 is
used to determine the applicability of the policy and ¢ is a possible-decisions

resolution-function of type 2P — 2P; we discuss such functions in Sect. 2. If p;
and po are policies, then (, p1, p2, B, @) is a policy, where @ : DxD — D is a sub-
decision combining-operator; we discuss such operators in Sect. 2. Henceforth,
we will usually refer to ¢ as a resolution function and & as a decision operator.

Policy Applicability. Informally, when evaluating a request ¢ with respect to
some policy p, we first determine whether p is applicable to ¢q. The role of 7 in
our policy language is similar to that of <Target> and <Condition> elements in
XACML rules and policies [12], or of access predicates in [6]. We refer to 7 as
the applicability predicate.?

Hence, to build an access control mechanism, we need a language for defining
the applicability predicate and a method for evaluating whether a request sat-
isfies the predicate. In XACML, for example, the syntax for defining <Target>
and <Condition> elements forms part of the core language and the evaluation
method forms part of the implementation of the policy decision point (PDP).
While these issues are certainly important, the concern of this paper is how to
evaluate policies under the assumption that such tools are available.

Decision Operators. We assume that any policy either has no “child” poli-
cies (as in policies of the form (7,2, ¢), where z € {a,d}), or exactly two child
policies. Equivalently, we assume that all decision operators are binary opera-
tors. There are two main reasons for this choice. First, the three most common
methods used to combine a set of decisions — allow-overrides, deny-overrides and
first-applicable [12] — can all be realized using binary operators. Consider, for
example, the family of allow-overrides functions AO,, : D™ — D, n > 2, where

a if x; = a for some 1,
AO, (21,...,2n) =< L ifz; = L for all 4,

d otherwise.

Then it is easy to see that for any n > 2, AO,(x1,...,x,) = (... (x1VE2)V. .. 2,),
where V is defined below in Fig. 1. Similar results hold for deny-overrides and
first-applicable. Second, it is very simple to characterize binary operators and
this provides many opportunities for optimizing policy evaluation (as we shall
see in Sect. 4). We classify operators using the following definitions.

Definition 1 Let @ : D x D — D be a decision operator.
— Ifx®x=x for all x € D, then we say @ is idempotent.
—Ifedl=x=L1Ldx forallx € D, then we say @ is a U-operator.
—Ifredl=1=1&x for all x € D, then we say & is an N-operator.
— We say @ is well-behaved if it is either a U- or an N-operator.

3 If one were to use XACML syntax in order to define our applicability predicate, then
our atomic policies would be analogous to XACML rules, and policies of the form
(m, p1, p2, ®, ¢) would be analogous to XACML policies and policy sets.

Idempotent operators are a natural choice, as idempotency is expected when
composing access-control decisions. In total, there are 3% = 729 possible idem-
potent, binary operators. However, far fewer operators are of practical interest.
In Sect. 4, we consider how restricting attention to idempotent, well-behaved
operators can considerably simplify policy evaluation.

An idempotent, well-behaved decision operator is uniquely defined by the
choices of t ® 1, a® d and d @ a. If we assume that @ is commutative, then
there are only six possible choices for @ (and only four if we assume that a®d €
{a,d}). The decision tables for two of the four commutative, idempotent, well-
behaved binary operators such that a @ d € {a,d} are shown Fig. 1 as V and
A. As we noted above, the operator V has the same effect as the allow-overrides
policy-combining algorithm in XACML, while A has the same effect as the deny-
overrides algorithm.* If @ is not commutative, then there are 18 possible choices
for @ (and eight choices if a® d € {a,d} and d @ a € {a,d}).

The other binary operators shown in Fig. 1 are: V/ and A/, the N-operator
analogues of V and A; and the non-commutative, “first-applicable”, U-operator
>, which returns the first conclusive decision (a or d).

AladL v]adl Aladl V]adl pladl
aljada alaaa ajad.Ll alaal alaaa
diddd dladd didd_L dlad L diddd
llad L llad L I N R llad L

Fig. 1. Decision tables for some binary operators

Resolution Functions. In Sect. 3 we define three different semantics for poli-
cies, which specify how a policy should be evaluated. Two of these evaluation
methods handle exceptional events by considering different possible outcomes,
which leads to the possibility of policy evaluation returning a set of possible
decisions, rather than a single decision, as is more usual in access-control mech-
anisms. The express purpose of the resolution function ¢ is to modify the set of
possible outcomes.

In many cases, ¢ will be the identity function ¢, where +(X) = X for all
X C D. We will simply omit ¢ if ¢ = ¢ (as will be the case in most subsequent
examples). However, we would expect that the top-level policy would define ¢
so that for all X C D, ¢(X) = {z} for some = € {a,d, L}. In other words,
evaluation of the top-level policy always results in a single response.

As for decision operators, very few resolution functions will be of practical
relevance. For a policy (m,p1,p2, ®, @), we might expect ¢ to be “semantically
related” to @: if @ is V (allow-overrides), for example, we might define ¢(X) =

4 Interpreting a as 1 and d as 0, z Ay is analogous to logical AND (when z,y € {a,d})
and V is analogous to logical OR.

{a} if a € X and ¢(X) = X otherwise. However, it must be stressed that X
represents a set of possible outcomes and (even when @ equals V) it is probably
prudent to be conservative and define

{d} ifde X,
p(X)=<{L} ifLeX,

{a} otherwise.

Policy Trees. A policy tree is a convenient way of visualizing a policy and can
be constructed recursively from a policy. A policy of the form (7, p1, p2, ®, ¢) has
a tree with root node (7, ®, ¢) and two child sub-trees p; and ps. A policy of the
form (m,x,), where x € {a,d}, is a leaf node (m,x, ¢). Consider, for example,
the policy

(71'5, (7T37 (7717 a)v (7r27d), /\)7 (7T4va)7 \/),

whose policy tree is shown in Fig. 5(a). Henceforth, we will tend to use this tree
representation of policies.

3 Policy Semantics

Policies are used to evaluate whether an access request is authorized. When a pol-
icy is evaluated, one first checks whether the policy is applicable to the request,
which will be determined by the request and m. Under normal circumstances,
the evaluation of the applicability of a policy returns either true or false.

However, if we wish to account for exceptional circumstances — perhaps it
is not possible to retrieve certain information due to communication, software
or hardware failures, or perhaps the request is malformed — then it may not be
possible to evaluate some component of a policy. As we noted above, it is natural
to then consider the possible outcomes that could have arisen from evaluating
the policy. We use a resolution function ¢ to combine these possible outcomes.

The evaluation of policy p = (7, p1,p2, ®,) at request ¢ is determined by

— the applicability of the policy to ¢ (7);

— the evaluation of the sub-policies of p (p; and ps) at g¢;

— the method by which evaluation results of the sub-policies are combined (®);
— the combination of different possible evaluations of p (using ¢).

We wish to account for indeterminacy that might arise in the evaluation of
policy applicability and in the retrieval of policies. To this end, we consider the
following possibilities.

1. Normal evaluation, where all policy components can be retrieved and the
applicability of all sub-policies can be determined.

2. Indeterminate applicability of sub-policies, where all sub-policies can be re-
trieved, but the applicability of a sub-policy may be impossible to determine.

3. Indeterminate applicability or non-retrievability of some sub-policies.

The second and third items account for differing types of exceptional behavior
that might occur during policy evaluation. These differences are reflected in the
evaluation of the parent policy.

In the presence of indeterminacy, we adopt a conservative evaluation strategy
and consider all possible outcomes. If the applicability of a sub-policy cannot be
determined, then we consider two possibilities when evaluating the parent policy:
that the sub-policy was applicable and that the sub-policy was not applicable.
If a sub-policy cannot be retrieved, then we consider three possibilities: that the
sub-policy was applicable and returned a, that the sub-policy was applicable and
returned d, and that the sub-policy was not applicable. We use ¢ to modify the
set of possible outcomes, for example, by reducing a set of two or more possible
outcomes to a single outcome.

Below, we treat the three assumptions on evaluation failures separately, but
we prove that in each case the semantics are extended in such a way that the
semantics for simpler assumptions are preserved (see Proposition 1, for example).

Our technical development assumes the existence of an evaluation function
e that determines whether policy p is applicable to request q. We define three
methods of evaluation for policies, corresponding to the failure assumptions iden-
tified above. We refer, respectively, to them as Type 1, 2 and 3 semantics.

For a policy p, we write [[p]];(¢) to mean the result of evaluating p at point
q using Type 7 semantics. We write [[p]]; = [[p']]; if and only if for all requests
g, we have e(p,q) = e(p', q) and [[p]]s(q) = [P']}i(a)-

Type 1 Semantics. In this case, we assume that for all policies p and all
requests ¢, either e(p,q) = true or e(p,q) = false. Henceforth, we write t and f
for true and false, respectively.

Our Type 1 semantics is depicted in Fig. 2. An alternative form of the same
semantics, explained in the next section, is given in Fig. 3(a).

(. p1. 2. @), 6111 (0) = { (@@ (plh(@) i elp.0) =t

otherwise;

z ife(p,q) =tand z € {a,d},

[[(m, z, @)1 (q) = {

1 otherwise.

Fig. 2. Type 1 semantics
Note that for all policies p and all requests ¢, we have that [[p]]1(¢q) € {a,d, L}.
This can be proved by a simple induction on the depth of the policy tree.

Type 2 Semantics. For ease of exposition (and to aid implementation), we
introduce a “dummy” policy that is applicable to every request: if p is a policy,

then p is a policy that is identical to p except that 7 is replaced with the reserved
word t. Hence:
— if p=(m,x,¢), where x € {a, d}7 thenﬁdi (t,z, 0);

- lfp = (T(aplap% D, ¢)a then p : (t7p17p27 D, ¢)1
By definition, e(p, ¢) =t for all policies p and all requests g.

Type 2 policy semantics are presented in Fig. 3(b). Note that we can also
define Type 1 semantics for p using p as shown in Fig. 3(a). The uniform pre-
sentation of the semantics in Fig. 3 illustrates how Type 2 semantics are related
to Type 1, and how Type 3 are related to Type 2.

In defining Type 2 semantics, we do not assume that e(p, ¢) takes a unique
value in {t,f}. Hence, we must provide a method of evaluating p if e(p,q) # t
and e(p, q) # f. In this case, we consider two possible evaluations of the policy
tree: one when the policy is applicable and one when the policy is not (when
the response is L). In Fig. 3(b), we see that [[p]]2(¢) introduces a third option
to explicitly handle this possibility.

([Plli(q) ife(p,q) =t,

1L otherwise;

[[p]]1(a) = {

. _ (@) @ [[p2l1(e) if p= (7, p1,p2, D, ¢),
[[pﬂl(q)_{m ifp=(m z,¢), ©€{ad}
(a) Type 1
{[[pll2(a)} if e(p,q) =t,
([pll2(q) = § {L} if e(p, q) =f,

o({L} U {[[Bll2(q)}) otherwise;
[[Za]]Z((I) — {¢({$ Sy:xe [[p1ﬂ2(q),y S [[pQHQ(q)}) lfp = (ﬂ—apl,p% @7¢)a

{z} if p=(mz,¢), z€{a,d}
(b) Type 2
{a d, L} if p cannot be retrieved,
if e(p,q) =t,
{i} if e(p, q) = f,
d({LYU{[[p]]s(q)}) otherwise;
{ ({zoy:ze(pllsl@),y € lpalls(@}) ifp=(mp1,p2,8,9),
{z} if p=(m,x,¢), z € {a,d}.

(c) Type 3

Fig. 3. Three types of policy semantics corresponding to our three failure assumptions

Now, of course, the evaluation of a policy may return a set of possible re-
sponses, rather than a single response. Hence [[p]]2 returns a set of responses, to
which the resolution function ¢ is applied.

Note that for Type 2 and Type 3 semantics, we have assumed that for all
¢ and all z € D, ¢({z}) = {x}, the intuition being that if the evaluation of a
policy returns a single outcome, then ¢ should return that outcome unmodified.
Then Type 2 semantics are an extension of Type 1 semantics, and preserve Type
1 semantics in the following sense.

Proposition 1 Let p be any policy comprising sub-policies p1,...,pr and let
e(p,q) € {t,f} and e(p;,q) € {t.f} for all i. Then [[p]]2(q) = {[[pl]:(a)}

Proof. By induction on the depth of the policy tree. Consider the base case when
the tree has depth 1, whence p = (7, x, ¢) for some x € {a,d}. Then [[p]]1(q) =z
if e(p,q) =t and [[p]]1(q¢) = L otherwise. Now, by assumption, e(p, q) is known.
Therefore, [[p]]2(q) = [[#]]2(q) = {z} if e(p,) = t, and [[pl]2(q) = {L} if e(p,q) =
0. Hence the result holds if the tree has depth 1.

Now suppose that the result holds for all trees of depth less than or equal
to n and suppose the tree for p = (m,p1,p2, ®, @) has depth n + 1. Then, by
assumption, e(p, q), e(p1,q), e(p2,) € {t,f}. Moreover,

[[p1]]1(q) @ [[p2]li(q) if e(p,q) =t,

Plh(a) = {L otherwise.

Now let us consider [[p]]2(q). If e(p,q) = t, then [[p]]a(q) equals [[p]]2(q) =
o({z @y : x € [[p1]]2(q), y € [[p2]l2(9)}). By the inductive hypothesis [[p1]]2(q) =
{[lp1ll1(q)} and [[po]l2(q) = {[lp2]]1(q)}. Hence,

{ € [[p12(9),y € [[p2]l2(0)})
{llp1]l2(q) @ [[p=]l2(a)})

Alternatively, if e(p, q) = L then [[p]]2(q) = {L} = {[[p]]1(¢)}.- Hence, the result
follows by induction. ad

In other words, if the applicability of all component policies can be deter-
mined, then the evaluation of p with respect to Type 2 semantics returns a
unique response which is that obtained by using Type 1 semantics.

Type 3 Semantics. In this case, we do not assume that we can always retrieve
a sub-policy, so it may be the case that we have no policy to evaluate. We can
still attempt to evaluate the root policy by considering all possible responses
that could be returned by a sub-policy. This is reflected in the Type 3 semantics
illustrated in Fig. 3(c), where the evaluation of a policy p simply returns the set
{a,d, L} if p cannot be retrieved.

It is very easy to see that if all policies can be retrieved, the evaluation of
a policy will be the same whether Type 2 or Type 3 semantics are used. More
formally, we have the following result.

Proposition 2 Let p be any policy comprising sub-policies p1,...,pr and sup-
pose that it has been possible to retrieve allp,p1, ..., px. Then [[p]]s(q) = [[p]]2(q).

Proof. Since we assume that all policies are retrievable, the result follows directly
from the definitions of Type 2 and Type 3 semantics. a

4 Policy Evaluation

In this section we consider several evaluation strategies that realize the semantics
defined in the previous section. We first present a simple algorithm that can be
used to implement Type 1 and Type 2 semantics.

Naive Algorithm. We can implement Type 2 semantics directly using an
algorithm of the form shown in Fig. 4. We assume that a tree representation of
the entire policy can always be constructed. (In other words, Type 2 semantics
are sufficient to derive a decision.) The function evaluateTree(,) takes a pointer
to the root of the policy tree and a request and returns the set of possible
authorization decisions for that request with respect to the policy tree. The
function evaluateApplicability(,) determines whether a policy is applicable to a
request (in other words, it is a realization of the function e used in the previous
section), taking a policy and a request as input and returning t, f or neither.

We assume each node in a policy tree has form (7, Iptr, rptr, effect, @), where
effect may be a decision a or d or it may be a decision operator . Hence,
we model a policy of the form (m,a, @), for example, as (m,null,null,a, ¢), and
(7, p1,p2,®,d) as (m, lptr, rptr,®, ¢). In an attempt to keep the pseudo-code
easy to read, we refer directly to the components of a node, so we write 7 in
preference to p.w or p — 7, for example.

Let us now consider the evaluation of the policy illustrated in Fig. 5(a), where
the operators A and V are as defined in Fig. 1. We will write p; to refer to the
policy (sub-)tree with root (m;, ®;). (The indices assigned to the node identifiers
correspond to a post-order traversal of the tree.)

An evaluation tree (for request ¢) is obtained by labeling each node of the
policy tree with its applicability and its response.

Let us now consider the effect of evaluating a request for which we cannot
decide whether certain policies are applicable or not. First, if e(ps,q) # t and
e(p2,q) # f, with all other policies being applicable, then ps returns the set of
(possible) responses {d, L}. Then a A L = a and a Ad = d, which means that p3
returns {d, L}. Hence, ps returns {a}. This example is illustrated in Fig. 5(b).

Finally, suppose that e(ps,q) # t and e(ps, q) # f, the applicability of other
policies being shown in Fig. 5(c). Then we evaluate p; and ps and combine
the results using A to obtain d. To this we add the response L to account for
the possibility that ps may not have been applicable. Hence, the set of possible

[Inputs: pointer to policy tree p; request g¢]
[Outputs: set of decisions]
evaluate Tree(p, q)
if (m ==1t) then
if (Ilptr == null) and (rptr == null) then
return {effect}
else
X = evaluateTree(lptr, q)
Y = evaluate Tree(rptr, q)
result = ()
for all x € X
for all y €Y
result = result U {x © y}
return ¢(result)
else
if (evaluateApplicability(m,q) ==1t) then
T=1t
evaluate Tree(p, q)
else-if (evaluateApplicability(m,q) ==f) then
return {1}
else
T=1
return ¢({L} U evaluateTree(p,q))

Fig. 4. A possible implementation of Type 2 semantics

responses for p3 is {d, L}. If e(p4,q) = f (as shown in Fig. 5(c)), then ps returns
{d, L}. If e(p4, q) =t (not illustrated), then ps returns {a}.

Well-Behaved Operators. A policy p = (7,p1,p2, B,) may not return a
conclusive decision (a or d) even if p is applicable, because neither p; nor ps may
be applicable. There are two standard interpretations of what might be termed
the “effective applicability” of a policy p = (m, p1, p2, B, ¢).
1. One is to regard p as being effectively applicable to every request for which
p is applicable and at least one of p; or py is applicable, as in XACML.
2. The other is to regard p as being applicable to a request only if p, p; and ps
are all applicable.

(71—57 V)
(7T37 /\) (71'4, a)
(m1,2) (72, d) té{a} 7e{d L} te{a} te{d}
(a) The policy tree () e(p2,9) =7 (c) e(ps,q) =7; e(pa,q) =f

Fig. 5. Policy and evaluation trees for policy (75, (73, (71,), (w2,d), A), (74, a), V)

Applicability [[p]]

pl D1 D2 U-operator N-operator
t]t| ot [[p1]] @ [[p:]] [[p1]] @ [[p-]]

t] ot f [[p1]] {1}

] f]t [[p2]] {1}

t| f f {L} {1}

t]t |7 ([[p1]] @ [lp21]) U [[p:]] {L} U ((lp]) @ [lp21)
7]t ({Ipa]] @ [[pa]]) U [Ip2]] {L} U ([lpa] & [lp=])
t | 7| 7 J[pf]@lp2]]) Yllpa] U [lp2]] U {L}{ L} U (([pa]] © [[p2]])
t] fp 7 {L}Ullp2l] {1}

t] 2 f {L} Ullpal] {1}
L {L} U (lpa]] @ [lp2]]) {L}U ([pa]] & [Ip2]])
L e {13 {1}

Table 1. Optimized evaluation of p = (7, p1, p2,) when @ is well-behaved

In the first case, [[p]](q) is defined if e(p, ¢) = t and either e(p1, q) = tor e(p2, q) #
t. In the second case, [[p]](q) is defined if e(p,q) = e(p1,q9) = e(p2,q) = t.
This interpretation appears in several papers on “policy algebras” (see [5], for
example). In both cases, if the policy p is applicable to request g, then the
decision returned by the policy is [[p1]] & [[p2]]-

In fact, each of these interpretations can be realized provided @ is chosen
appropriately. If we want the first interpretation, then we ensure that for all
x € {l,a,d}, 2® L = 1 @&z =z That is, @ is a U-operator. A U-operator
effectively ignores all 1 values, ensuring that p will return a value whenever at
least one of p; or py is applicable. All the standard policy-combining algorithms
in XACML [12] have this behavior. If @ is a U-operator, then we say any p of
the form (-, -, -, ®,-) is a U-policy.

If we want the second interpretation, then we ensure that for all xz, x & L =
1L @2 = 1. That is, @ is a N-operator, which has the effect of returning L
whenever at least one of p; or py is not applicable. If & has this property, then
we say any p of the form (-, -, -, @®,-) is an N-policy.

Optimizing Policy Evaluation. We now show how a policy evaluation tree
can be pruned, without changing its meaning, when the decision operators
are known to be well-behaved (and all sub-policies can be retrieved). Sup-
pose that p uses the identity resolution function, and so p = (m,p1,p2, D).
Table 1 illustrates the evaluation of p given the applicability of p, p; and
p2, and the nature of @. Abusing notation slightly, we write [[p1]] @ [[p2]] for
{1 ® 2 : 21 € [[p1]], 22 € [[p2]]}- We write “—” to denote that the applicability
of a sub-policy is irrelevant to the evaluation of p.

Given a request, we now assume the applicability of every sub-policy is first
evaluated. We can then apply re-writing rules to the policy-evaluation tree on the

basis of the applicability of each sub-policy and the semantics shown in Table 1.
To illustrate this point, we define and prove the correctness of one such re-write
rule in Proposition 3. Similar results exist for the other re-writing rules, but are
omitted due to space constraints.

Proposition 3 Let p = (m,p1,p2, D), where & is well-behaved, and let q be a
request such that e(p,q) = e(p1,q) =t and e(ps,q) =f. Then

)AL} if @ is an N-operator,
pll=(q) = {{[[pl]]g(q)} if © is a U-operator.

Proof. By definition, [[p]]2(q) = {x ® L : z € [[p1]]2(¢)}. If & is an N-operator,
then z @ L = 1 for all x € {a,d, L}; hence [[p]]2(¢) = {L}. If ® is a U-operator,
then z @ L =z for all z € {a,d, L}; hence [[p]]2(q) = [[p1]]2(q)- O

Using these re-writing rules we can simplify the evaluation of a policy consid-
erably. Also, these re-writing rules can be implemented easily using a recursive
post-order tree traversal algorithm [1]. To illustrate, consider the policy repre-
sented by the tree in Fig. 6(a), where each node has been assigned an identifier
of the form p; to facilitate explanation. (The indices assigned to the node iden-
tifiers correspond to a post-order traversal of the tree.) The applicability of each
sub-policy for some request ¢ is indicated to the left of each node.

If all decision operators are N-operators, then we can simplify this evaluation
tree for ¢ to a single node comprising a non-applicable policy. This is because
ps is not applicable (since one of its children is not applicable), which in turn
means that py and ps are not applicable.

The simplified policy-evaluation tree, when all operators are U-operators, is
shown in Fig. 6(b). The sub-tree rooted at policy pg reduces to an evaluation
of p; and the evaluation of p; reduces to an evaluation of ps. Suppose that the
(relevant) leaf policies are pg = (mg,a), ps = (75,a) and pg = (mg,d). Let ®;
denote the decision operator for the policy at node p;. Now 2 ®; L = L @x; ==«
for all operators @; in the policy tree (since, by assumption, @; is a U-operator)
and assuming that @; is idempotent, we have [[po]]2(q) = {a}, [[ps]]2(¢) = {L,a},
[[po]l2(q) = {L,d} and [[p11]]2(q) = {L,a,d,a @11 d} from which we obtain

[[p12]]2(q) ={a,a@i2a,a®12d,a D12 (a P11 d)}
= {a, adiad,adio (a D11 d)} .

By specifying @11 and @12 we can compute [[p12]]2(q). For example:

~J{a} if ©r2 =V,
pia]la(a) = { O e

Thus one may derive a conclusive decision for p (namely {a} in the case that

@12 = A) even if the applicability of some sub-policies cannot be determined.
In practice, all decision operators are likely to be well-behaved. Indeed, all the

standard policy-combining algorithms in XACML (the equivalent of our decision

7eps 7epio

(a) Policy tree and applicability (b) Evaluation tree for U-operators

Fig. 6. Policy evaluation by tree re-writing

operators) are U-operators. Note that we neither require that all operators in
the policy tree are U-operators nor that they are all N-operators in order to use
these re-write rules, simply that they are all well-behaved.

Under the assumption that all decision operators are well-behaved, it is al-
ways possible to perform tree re-writing, thereby simplifying policy evaluation.
A flag in each policy could indicate if it is a U- or an N-policy, thereby indicating
how @ should treat the L value. This provides sufficient information to re-write
the evaluation tree and means that we only need to define x @y for =,y € {a,d}.

Indeed, recalling the discussion in Sect. 2, we can completely specify any
idempotent, well-behaved operator with three pieces of information: a flag indi-
cating whether it is a U- or N-operator, the value of a® d and the value of d & a.
This information can be included in the policy definition (rather than providing
a pointer to a decision table) and used directly by the evaluateTree(,) function.

Partial Evaluation Trees. Type 3 semantics are only relevant when we are
unable to build a complete policy tree. Such a situation could arise when policies
are not self-contained, in the sense that they may reference sub-policies stored
in remote repositories.

Under these operating assumptions, we build an evaluation tree at request
evaluation time. This evaluation tree may not be isomorphic to the policy tree,
since some policy (that would give rise to sub-trees) may not be retrievable at
evaluation time. In constructing the evaluation tree, we label the nodes with an
applicability value (if possible) or with the decision set {a,d, L} otherwise.

To illustrate, let us evaluate the policy depicted in Fig. 6 for request ¢ under
assumption that we cannot retrieve policy pg. Then we construct the (partial)
evaluation tree shown in Fig. 7(a). If all operators are U-operators, we can re-
write this evaluation tree to obtain the tree shown in Fig. 7(b).

{a,d, L} 6 — {d} et

(a) Sub-policy pg could not be retrieved (b) Re-written evaluation tree

Fig. 7. Partial request-time evaluation tree and its rewrite

Then we have

[p1i]ls(q) = {a @11 d.d @11 d, L &11d} = {a 11 d,d};
[[P12]]3(q) = {a @12 (2 @11 d),a D12 d}.

Assuming that @17 and @15 belong to {V, A}, it can be shown that [[p12]]3(q) is
a conclusive decision, except when @152 = A and @11 = V.

Applications. The fact that we can obtain conclusive results from a partial
evaluation of a policy opens up interesting possibilities. We sketch two of them
here briefly.

A first application is an access-control architecture in which there are two
PDPs: one is co-located with the policy-evaluation point (PEP) and is used to
make rapid decisions where possible, while the other may be remote.> The “local”
PDP we envisage is provided with a partial representation of an authorization
policy that returns a (comparatively) quick response to the PEP. If the response
is not conclusive, then the PEP forwards the request to the other PDP which
evaluates the full policy tree and returns a decision.

Consider, for example, the policy tree in Fig. 6(a) and suppose that we expect
that p1g will be applicable to a large percentage of requests. Then we might
choose to provide the local PDP with the tree depicted in Fig. 8 (deliberately
preventing the local PEP from evaluating the whole policy tree by omitting the
relatively complex policies py and pg).

Now suppose that p1g, p11 and pio are applicable to g. Then

{a} if [[p10]]3(q) = {a} and ©11 = ©12 =V,
[[p12]]3(q) = < {d} if [[p10]]3(q) = {d} and ®11 = B12 = A,
{a,d} otherwise.

5 This architecture is structurally similar to those used for authorization recycling that
cache previous authorization decisions at the PEP to improve response times [7].

{37 d7 J‘}

{a,d, L} @ — P10

Fig. 8. The policy evaluated by the local PDP

Clearly, it would be worth providing the local PDP with the reduced policy in
Fig. 8 if @11 = @12 (and it is known that p1g is applicable to many requests).
A second application of our authorization framework is to define a PDP
that can process multiple requests in a single pass through the evaluation tree.
There are many practical instances where it is necessary to decide several differ-
ent access requests in order to determine whether an attempted subject-object
interaction is authorized. Two obvious examples are:
— In Unix, a subject is authorized to access an object only if it is authorized
to access every directory (multiple objects) in said object’s path name.
— In the stack-walk algorithm used in Java, where it is necessary to check that
every subject on the call stack (multiple subjects) is authorized.
In this case, the PDP processes all requests at the same time, treating each of
these as possible evaluations of the tree. We introduce the top-level resolution
function ¢y, where ¢w(X) = {a} if X = {a} and ¢y(X) = {d} otherwise. In
contrast, a role-based PDP can evaluate multiple requests, one for each role for
which the requester is authorized, and use the ¢3 resolution function to compute
a final decision, where ¢3(X) = {a} if a € X and ¢3(X) = {d} otherwise.

5 Concluding Remarks

We have presented a framework for tree-like authorization policies that are re-
silient to evaluation failures. This resiliency is achieved by defining three differ-
ent semantics for those policies, representing three different sets of assumptions
about the operational environment in which these failures may occur.

We have provided a succinct characterization of decision operators, which
yields numerous opportunities for optimizing policy evaluation and policy repre-
sentation. Our semantics improve on existing work in enabling policy evaluation
to be completed even if it is not possible to recover one or more sub-policies.
Our approach is conceptually similar to static analysis [11]. In particular, if our
semantics return a conclusive decision, then our over-approximation of decisions
is precise (Propositions 1 and 2). Our work also enables the design of efficient
PDPs and novel access-control architectures, to be explored in future work.

There are many other ways in which our work could and should be extended.
From a technical perspective, it is important to establish whether our language

can accommodate a fourth decision value to represent conflicting decisions from
sub-policies [6]. Equally important is to establish what set of binary operators
would be sufficient to articulate any desired policy. There are clear parallels
here with establishing a minimal set of logical connectives that is functionally
complete [2]. From a practical perspective, it would naturally be interesting to
develop an XML schema for our policy language, perhaps re-using those parts
of XACML that are used to specify <Target> and <Condition> elements, and
to develop a PDP that implements our policy semantics.

Acknowledgements. The authors would like to thank the anonymous referees
for their comments.

References

1. AHO, A., HOPCROFT, J., AND ULLMAN, J. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1975.

2. AIRreLI, O., AND AVRON, A. The value of the four values. Artificial Intelligence
102 (1998), 97-141.

3. BACKES, M., DURMUTH, M., AND STEINWANDT, R. An algebra for composing
enterprise privacy policies. In Proceedings of the 9th Furopean Symposium on
Research in Computer Security (2004), pp. 33-52.

4. BERTINO, E., CASTANO, S., AND FERRARI, E. Author-X: A comprehensive system
for securing XML documents. IEEE Internet Computing 5, 3 (2001), 21-31.

5. BONATTI, P., VIMERCATI, S. D. C. D., AND SAMARATI, P. An algebra for compos-
ing access control policies. ACM Transactions on Information and System Security
5, 1 (2002), 1-35.

6. BRUNS, G., AND HUTH, M. Access-control policies via Belnap logic: Effective
and efficient composition and analysis. In Proceedings of the 21st IEEE Computer
Security Foundations Symposium (2008), pp. 163-176.

7. CRAMPTON, J., LEUNG, W., AND BEzZNOSOV, K. The secondary and approximate
authorization model and its application to Bell-LaPadula policies. In Proceedings
of 11th ACM Symposium on Access Control Models and Technologies (2006).

8. DaAMIANI, E., DE CAPITANI DI VIMERCATI, S., PARABOSCHI, S., AND SAMARATI,
P. A fine-grained access control system for XML documents. ACM Transactions
on Information and System Security 5, 2 (2002), 169-202.

9. L1, N., WaNG, Q., QArRDAJI, W., BERTINO, E., RAa0, P., LoBo, J., AND LIN,
D. Access control policy combining: Theory meets practice. In Proceedings of 14th
ACM Symposium on Access Control Models and Technologies (2009), pp. 135-144.

10. N1, Q., BERTINO, E., AND LOBO, J. D-algebra for composing access control policy
decisions. In Proceedings of 2009 ACM Symposium on Information, Computer and
Communications Security (2009), pp. 298-309.

11. NieLsoN, F., NIELSON, H., AND HANKIN, C. Principles of Program Analysis.
Springer, 1999.

12. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0, 2005.
OASIS Committee Specification (T. Moses, editor).

13. WIJESEKERA, D., AND JAJODIA, S. A propositional policy algebra for access
control. ACM Transactions on Information and System Security 6, 2 (2003), 286—
235.

