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Abstract— Teams of mobile robots have been recently pro-
posed as effective means of completing complex missions
involving multiple tasks spatially distributed over a large area.
A central problem in such domains is multi-robot routing,
namely the problem of coordinating a team of robots in terms
of the locations they should visit and the routes they should
follow in order to accomplish their common mission. A typical
assumption made in prior work on multi-robot routing is that
robots are able to communicate uninterruptedly at all times
independently of their locations. In this paper, we investigate the
multi-robot routing problem under communication constraints,
reflecting on the fact that real mobile robots have a limited
range of communication and the requirement that connectivity
must remain intact (even through relaying) during the entire
mission. We propose four algorithms for this problem, all
based on the same reactive framework, ranging from greedy
to deliberative approaches. All algorithms are tested in various
scenarios implemented using the Player-Stage robot simulation
environment. Our results demonstrate that effective multi-robot
routing can be achieved even under limited communication
range with moderate loss compared to the case of infinite
communication range.

I. INTRODUCTION

Recent research progress in robotics has allowed the

use of robot teams in various real-world applications, such

as search-and-rescue missions, area exploration, and field

demining. Teams of robots can be advantageous over single

robots; they offer greater flexibility through dynamic team

coordination and reorganization, greater efficiency through

parallel task execution, and greater reliability through re-

source redundancy.

A central problem in teams of mobile robots relates to

locomotion coordination, when the tasks comprising the

mission are spatially distributed over a geographical area.

The problem of routing robots over available paths between

target locations (corresponding to specific tasks) is known as

multi-robot routing. The objective is to find a route for each

robot, so that each target location is visited exactly once by

exactly one robot (no waste of resources), all target locations

are eventually visited by some robot (mission completeness),

and the entire routing mission is accomplished successfully

in the best possible way (optimization of performance).

Most prior work on multi-robot routing, implicitly or

explicitly, makes the assumption that the robots of the

team are able to communicate at all times independently
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of their present location. This assumption holds true when

the mission is extended over a small geographical area, for

example, inside a building. However, in many interesting

real-world applications missions are extended over large

geographical areas, where network connectivity cannot be

taken for granted. Mobile robots typically use a wireless

connection to communicate with the other team members;

it is, therefore, natural to assume that the communication

range of each robot extends to a circular area around its

current location up to a certain radius; any communication

outside this area is not possible. Maintaining full connectivity

between team members does not necessarily imply that each

robot communicates directly with all other robots, but rather

that any robot can reach any other robot either directly or by

relaying messages through some other robot(s). Therefore, it

is required at all times that the minimum spanning tree over

all robot locations has no edge longer than the maximum

communication radius.

In this paper, we take limited communication constraints

explicitly into consideration during the planning of routes.

Such an approach is deemed necessary by the fact that

each target may not be reachable independently by a single

robot, without the support of other robots acting as relays.

In effect, each distant target is eventually served by a group

of robots, resulting in complicated allocation schemes. We

propose four algorithms for multi-robot routing under limited

communication. In this preliminary work on this problem, we

focus solely on reactive allocations, whereby robot routes

are built incrementally one target location at a time with

the possibility of dynamically changing target allocations.

However, in all cases, the resulting allocations allow the

robots to accomplish a routing mission without breaking their

connectivity requirement. This is guaranteed by an underly-

ing motion-control mechanism based on virtual spring forces

that keeps the robots together. We further test and compare all

algorithms against each other in realistic multi-robot routing

scenarios with varying degrees of communication range.

The remainder of the paper is organized a follows: In the

next section, we review related work. Section III defines

the multi-robot routing problem and Section IV discusses

the issue of limited connectivity and the base mechanism

that ensures network connectivity at all times. Section V

describes the algorithms we propose; these algorithms are

empirically evaluated in Section VI. Finally, we discuss

future work in Section VII and conclude.

II. RELATED WORK

Communication constraints add a new level of complexity

to the task allocation problem, however they bring the multi-
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robot routing problem closer to reality. Basic approaches op-

portunistically take advantage of network connectivity when

available [1], but do not explicitly avoid network splits. To do

so, a further possibility is to dictate task generation besides

task allocation. In exploration, for example, goals may be

decided as the result of cost functions that depend on signal

quality [2]. This is difficult to carry over to more general

applications, where tasks are provided by external sources

and, thus, cannot be created based on system preferences.

Approaches where task generation is not controlled and

connectivity is an explicit requirement are scarce. In the past

a behavioral approach has been proposed, where connectivity

maintenance is addressed, but is not guaranteed [3]. Other

approaches rely on assumptions about the signal decay func-

tion [4] or the line-of-sight view [5]. However, it is known [6]

that such models can badly misrepresent the real behavior

of the signal. This may lead to failures in algorithms [7] or

temporary connectivity losses.

The reactive allocation method proposed in this paper

builds on an approach that treats connectivity as a strong,

inviolable constraint. At the time of this writing we are not

aware of other works which combine such solid network

requirements with arbitrary routing tasks.

III. MULTI-ROBOT ROUTING

A multi-robot routing problem is formally specified by

a set of robots, R = {r1,r2, . . . ,rn}, a set of targets, T =
{t1, t2, . . . , tm}, the locations of all robots and targets on

the two-dimensional plane, and a non-negative cost function

c(i, j), i, j ∈ R ∪ T , which denotes some abstract cost of

moving between locations i and j in either direction (e.g.,

distance, energy, time, etc.). Robots are assumed to be

identical, therefore the same cost function applies to all of

them. Typical cost measures, such as travel distance, travel

time, or energy consumption between locations satisfy these

assumptions in any typical environment.

The objective of multi-robot routing is to find an allocation

of targets to robots and paths for all robots, so that all targets

are visited and a team objective function is minimized1. In

general, a team objective is expressed as

min
A

f
(

g(r1,A1), . . . ,g(rn,An)
)

,

where function g measures the performance of each robot,

function f measures the performance of the team, and A =
{A1,A2, . . . ,An} is a partition of the targets, such that targets

in Ai are allocated to robot ri. In this paper, we consider

three intuitive team objectives [8]:

MINSUM: Minimize the sum of the robot path costs over all robots.

MINMAX: Minimize the maximum robot path cost over all robots.

MINAVE: Minimize the average target path cost over all targets.

The robot path cost of a robot r is the sum of the costs along

its entire path, from its initial location to the last target on

its path. The target path cost of a target t is the total cost of

1Although we assume that robots are not required to return to their initial
locations, our algorithms and results apply also to the case of closed tours.
Similarly, they apply to maximization of a utility function.

the path traversed by robot r (the unique robot assigned to

visit t) from its initial location up to target t along its path.

The three team objectives above can be expressed in

terms of our generic team objective structure. Let RPC(ri,Ai)
denote the robot path cost for robot ri to visit all targets in Ai

from its current location. Similarly, let CT PC(ri,Ai) denote

the cumulative target path cost of all targets in Ai, again,

if robot ri visits all targets in Ai from its current location.

Then, the three team objectives can be expressed as

MINSUM : min
A

∑
j

RPC(r j,A j),

MINMAX : min
A

max
j

RPC(r j,A j),

MINAVE : min
A

1

m
∑

j

CT PC(r j,A j).

Solving the multi-robot routing problem optimally under any

of the above objectives is NP-hard [9]. Therefore, several

researchers have focused on developing algorithms which

deliver good allocations in practically efficient time.

IV. LIMITED CONNECTIVITY

A typical assumption made in multi-robot routing is that

robots are able to communicate uninterruptedly at all times

as they move, independently of their locations. In this

paper, we investigate the multi-robot routing problem under

communication constraints reflecting on the fact that real

mobile robots have a limited range of communication and

the requirement that connectivity must remain intact (even

through relaying) during the entire mission.

Our routing algorithms are designed to work over an

underlying mechanism that addresses solely the connectivity

problem. This mechanism guarantees that, for reasonably

continuous signal decay functions, the robotic team will at

all times form a connected MANET2 with real time traffic

capabilities and optimal signal quality. This is enforced by

giving higher priority to the coordinated motion subsystem

over motion requests coming from other modules, such as

task allocation. In essence, while the task allocation module

is allowed to assign a target location to every robot at all

times, the robots may fail to move towards it, if MANET

maintenance requires it. Thus, task allocation must take this

fact into account and guarantee that mission completion

is possible without breaking the connectivity constraints or

causing deadlock equilibrium states.

Contrary to other proposed solutions, where assumptions

made on the signal qualities (line of sight, fixed radius

coverage) may be violated at execution time if reality does

not match them, our routing approach offers the advantage

that connectivity constraints are never violated. Furthermore,

our task allocation module has been designed with minimal

and reasonable assumptions on real signal quality. Our only

assumption dictates that, for two robots able to communicate

directly, a third one between them is also able to talk to

either of them. As long as this assumption holds, mission

2Mobile Ad-hoc NETwork.
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Fig. 1. The robots are initially unable to reach the goal. Net forces will
bring them near or align them with the base. At that point one of them will be
able to move forward. Robots forming a chain have maximum reachability.

Fig. 2. An example of a MANET with virtual springs over links of low
quality pertaining to the maximal quality spanning tree. Note that any single
robot is not necessarily within the communication range of all the other
robots. The robot clusters for task allocation derived from the connected
components over springs are {R1,R4},{R2,R3,R5},{R6}.

completion is guaranteed for all goals within reach. In the

worst case, a single chain is formed by all robots (Fig. 1).

A. Connectivity enforcement

Connectivity is enforced by a cooperative navigation sys-

tem developed at the University of Zaragoza [10], [11].

Robots forming a MANET are allowed to move only in

ways that do not break network connectivity. This is achieved

by continuous monitoring of all robot-to-robot signal qual-

ities (done as part of the real time networking protocol

RT-WMP [10]) and building a virtual route along the span-

ning tree of maximum quality. The objective is to enable

communication between any two robots at all times through

this spanning tree.

Mobility is governed by the simulation of a physical

spring-damper mesh model (Fig. 2), henceforth referred to as

spring. Any link in the network spanning tree that falls below

a safe quality level (Fig. 3) becomes a virtual spring that

exerts attracting force between the robots that are about to

cause a network split. As long as the link is above the safety

level, no spring and, thus, no attracting force between the two

robots appears. Robots move in reaction to the sum of forces

exerted by springs upon them. Springs may appear because

of insufficient link quality, but also because of goals, which

act with a fixed attracting force, and because of obstacles,

which exert a repelling force. These forces are translated into

velocities that match the robot real capabilities (including

non-holonomicity). This model ensures (a) smooth, jerk-

free robot motion, (b) MANET connectivity maintenance, as

there is always a spanning tree covering the entire network,

and (c) maximal freedom of movement, as the spanning

Fig. 3. Typical degradation of the radio signal quality as a function of
the distance between transmitter and receiver. When quality falls below a
safety threshold (st), a spring is activated to prevent network disconnection.

tree contains the minimum number of required links (and,

ultimately, springs) to maintain a connected graph.

B. Task allocation strategy

We now describe the principal traits of our allocation

strategy. In general, our strategy is based on assigning tasks

to clusters of robots, consisting of robots linked (at any

hop distance) by the controlled network links (springs) of

the spanning tree (Fig. 2). All robots in the same cluster

are assigned to the same task. This allocation guarantees

that robots within a cluster do not exert conflicting forces

upon each other towards different directions, which could

cause deadlock equilibria. Instead, they are all trying to move

towards the same goal, which guarantees that eventually they

will from a chain with maximum reachability (Fig. 1).

Additionally, we define as execution timespan, the arbi-

trary time elapsed between the consecutive completion of

two tasks. A robot supercluster (S-cluster henceforth) is a

set formed by those clusters that, at any point during an

execution timespan, have become temporarily linked by a

spring. At the beginning of each execution timespan, each

cluster defines a trivial S-cluster. As springs appear during

each execution timespan, S-clusters of larger size are formed.

By furthermore imposing the same task to all robots in

a S-cluster, it is guaranteed that cyclic allocations do not

happen as clusters change. Since S-clusters can only grow

in size within an execution timespan, at least one task among

those assigned to the robot clusters forming the S-cluster will

not be abandoned; in the extreme case, it would be a single

goal assigned to all robots in the team. Should this happen,

either all the robots can reach the goal (by forming a chain)

and finish the current execution timespan, or the task is too

far to be completed and shall be discarded from the mission.

S-clusters are reset at the end of every execution timespan to

allow for higher team throughput. The accompanying video

clip offers examples of cluster formation during execution.

In summary, our task allocation strategy is characterized

by the following properties: (a) it is reactive, as it reallocates

tasks whenever the spring mesh changes, (b) it degrades

gracefully, as it guarantees execution of at least one task at

each time, and (c) it is complete, as it eventually completes

the whole mission.

V. ALLOCATION ALGORITHMS

While the basic strategy remains the same, the key step

of assigning pending tasks to S-clusters may be tailored to
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fit different needs according to the team objective. This is

advantageous because we can retain the properties of the

basic strategy, while using this step as a swappable allocation

algorithm. This paper discusses four allocation algorithms,

focusing on their multi-robot routing properties.

A. Greedy Allocation

The Greedy Allocation algorithm is the simplest approach

to the allocation problem. In our implementation, the closest

task to any robot is chosen and is propagated/allocated to all

its S-cluster mates. This process is repeated until all robots

have a goal. This Greedy Allocation algorithm is the only

one presented herein that does not make any attempt at long-

term, global planning. It serves as the comparison baseline

for distributed algorithms.

B. TSP-Based Allocation

The motivation behind this algorithm is to avoid robot

spreading, which leads to spring appearance and performance

degradation. As a first step, a single-robot TSP3 solution is

computed. (In this work, the problem instance sizes permit

the use of and optimal solver [12]; otherwise we would use

any of the many known heuristics for good approximate

solutions.) Let SCt be the current S-clusters count at time

t. At each reallocation, the first SCt goals in the global TSP

plan are allocated to the SCt S-clusters using the well-known

Hungarian method. This way, tasks are consumed by the

team in the order dictated by the global TSP plan.

C. Clock Allocation

Our experiments with the two previous algorithms show

that many times the robots naturally follow a sweeping be-

havior while maintaining an approximate abreast formation,

as will be seen in Section VI. The Clock Allocation algorithm

tries to explicitly induce this behavior, by precomputing a

plan in which tasks are ordered by their angle in polar

coordinates, starting at the closest one to any robot. The

origin is placed at the middle of the working area, where

the base is located. This plan is subsequently allocated to

S-clusters and targets are consumed as explained in the TSP-

Based Allocation algorithm.

D. Auction Allocation

With this algorithm we aim at influencing directly one of

the three metrics presented in Section III. Drawing from past

literature on auction-based multi-robot routing methods [9],

we use auctions to preplan the order of tasks, according to an

appropriate bidding rule [8] that relates to the desired metric.

While, in principle, we could use an auction to generate a

single plan, like TSP-Based Allocation, this algorithm goes

further and builds several smaller plans to be executed in

parallel by different S-clusters according to a schedule geared

towards optimizing the desired metric. This parallelism must

be carefully exploited. Some tasks may be so distant that it

would be impossible to reach them in parallel; an attempt

would merely force the degradation of the team into a single

3Traveling salesman problem.

S-cluster and completion of only one task, while others

would be postponed.

In order to tackle this issue, the auction algorithm attempts

to predict the number of robots needed to reach each goal

from the initial (base) location. This prediction is based

on the assumption that signal quality remains satisfactory

within a known distance L, which when exceeded causes a

spring to appear, if no other network route exists. With d

denoting the goal distance to the base, tasks are classified

in sets defined by the predicted number N =
⌊

d
L

⌋

+ 1 of

robots required to reach them from the base. It should be

noted that this prediction, based on expected spring length,

does not invalidate the properties of the basic task allocation

strategy; it merely acts as a guess, which can only degrade

performance, if wrong.

Tasks are auctioned sequentially set by set, with increasing

N = 1,2, . . . ,n, where n is the number of robots. For each set,

at most SN =
⌊

n
N

⌋

plans can be carried out simultaneously

in parallel for reaching targets in that set, since otherwise

we would need more robots than available. Initially, for

N = 1, the auction will result in the formation of up to

n partial parallel plans. From those, only up to n/2 plans

will participate in the auction set for N = 2. In general,

the number of partial plans eligible to win tasks during the

auction decreases with each farther set of tasks; within an

auction set N, as soon as SN different partial plans from

the previous set win tasks, the remaining partial plans are

finalized. Only one plan will survive for the tasks in auction

set N = n. By construction, these plans can be carried out

in parallel during execution; as short plans are completed,

robots are freed up to join another robot cluster assigned to

a longer plan, and so on, until all robots form a single cluster

assigned to the longest plan.

VI. EXPERIMENTAL RESULTS

A. Simulation setup

In this preliminary study, we consider multi-robot missions

where robots are deployed from a single base point and

mission tasks cover a circular geographical area around this

point. A single robot (or a station) remains at the central point

and serves as the communication base, whereas all other

robots can freely move around the area constrained only by

the connectivity requirement. In this study, we only consider

uniformly random distribution of tasks and no obstacles in

the physical environment, representing exploration, mapping,

or sample collection scenarios over a large terrain. As

our goal is to study the feasibility of multi-robot routing

under communication constraints, these choices represent

an attempt to filter out bias coming from structured task

distribution and/or specific obstacle layout.

Our simulation environment is based on the Player/Stage

robot simulator [13] which offers realistic mobile robot

dynamics. Our robot team consists of simulated Pioneer 3AT

robots, one of which is always serving as the communication

base and stays at the central point of deployment. Even

though there are no physical, static obstacles in the envi-

ronment, our robots are equipped with obstacle avoidance
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Fig. 5. Total distances traveled by all robots for each algorithm. Mean
values and the 95% confidence intervals are shown in each case.

Fig. 6. Total mission completion time for each algorithm. Mean values
and the 95% confidence intervals are shown in each case.

capabilities to dynamically avoid collisions with each other.

For any given mission, our software measures the actual team

performance with respect to all metrics studied in this paper.

More specifically, in our experimental setup, there are

n = 8 mobile robots and m = 100 targets. The targets are

uniformly randomly distributed over a circular area with a

radius of 24 units. We study four communication ranges

between the robots: (a) L = ∞, where there is no constraint

and any robot can reach any target, (b) L = 8 units, where at

most 3 robots are needed for reaching each target, (c) L = 4

units, where at most 6 robots are needed to reach the most

distant targets, and (d) L = 3 units, where all 8 robots are

necessary for reaching the most distant targets.

B. Simulation results

Performance for each of the proposed algorithms is mea-

sured in terms of the criteria described in Section III.

These metrics are (a) total distance traveled by all robots

combined (MINSUM), (b) mission timespan (MINMAX), and

(c) average task completion time (MINAVE). In addition,

for comparison purposes, we assessed the performance of

classical multi-robot routing with auctions in the absence of

communication constraints.

Fig. 4 shows two snapshots of each algorithm execution.

Greedy has a characteristic spreading-out behavior, while

TSP-Based and Clock exhibit the sweeping motion already

described. Four parallel plans generated by Auction (with the

Fig. 7. Average task completion time for each algorithm. Mean values and
the 95% confidence intervals are shown in each case.

MINSUM bidding rule) are visible at startup.

Fig. 5 to Fig. 7 show the average performance of each

algorithm with respect to each metric. We observe that TSP-

Based and especially Clock are the most insensitive to the

connectivity range L, with almost no penalty for L = 8.

On the other hand, Greedy and Auction for all bidding

rules quickly degrade with decreasing L. The plans built by

Auction (using any of the three bidding rules) are difficult

to adhere to in our reactive setup, because spring appearance

often disrupts the predicted task execution order.

We notice that good performance under no constraints

(L = ∞), for example in the Greedy and Auction case,

does not necessarily carry over when communication is

limited. TSP-Based and Clock are worse in the absence

of constraints, but degrade at a lesser rate than the rest of

the algorithms as constraints come into play. This is due to

the characteristic sweeping pattern these algorithms induce.

Furthermore, to its favor, Clock is computationally negligible

(O(m logm)), unlike TSP-Based or Auction (O((n+m)3)).
The good performance of the sweeping behaviors suggests

that partial parallel sweeps may improve the obtained results.

In contrast, the parallel plans of Auction require more precise

control over the spring spanning tree configuration to be of

better use. We intend to explore this venue in the future.

In terms of objectives, MINMAX and MINAVE behave

similarly, which has been observed also in other works on

robot routing without constraints. This is due to the influence

of maximum time on the average time. It is worth noting that

there is little impact on MINSUM for all tested values of L in

the case of sweeping behaviors like TSP-Based and Clock;

this fact may be useful in scenarios where predicting power

consumption is important.

VII. CONCLUSION

We have studied the problem of multi-robot routing under

limited communication range. We have presented several

algorithms for reactive task allocation when network con-

nectivity is an inviolable constraint. Our proposal guarantees

mission completion in open spaces and is customizable by

means of swappable algorithms in order to optimize preferred

performance metrics. We have studied common metrics

used in multi-robot routing problems, such as team energy
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a) Greedy b) TSP-Based c) Clock d) Auction MINSUM

Fig. 4. Two snapshots of each algorithm in action, at initial (top) and intermediate (bottom) mission execution. Lines indicate task ordering.

consumption, mission timespan, and average task comple-

tion time. We have used realistic simulations (Player/Stage

based) in order to test our algorithms and evaluated these

metrics in scenarios with uniformly distributed random tasks

around a central, static base. The penalty inflicted by the

communication constraints is within one order of magnitude

in all studied cases, and increases in most occasions with

the inverse of the communication range. These findings show

that effective multi-robot routing can be achieved even under

limited communication range with moderate loss compared

to the case of infinite communication range.

We have identified weaknesses and strengths of our al-

gorithms with respect to these metrics and possible venues

for improvement. In particular, the TSP-Based and Clock

algorithms exhibit small sensitivity to the actual communi-

cation range, which makes them appropriate for situations

where the actual communication range is not known in

advance. However, our attempts at using auctions to optimize

particular metrics did not achieve competitive results; further

work is needed in order to take full advantage of the ability to

schedule robot clusters in parallel. Some runs of the auction

algorithm indicate that improvements over the TSP-based

and Clock ones are possible, as auctions take into account

explicitly the team performance metric, as well as the dis-

tribution of targets. Nevertheless, to exploit successfully this

advantage some degree of control over the topology of the

underlying connectivity spanning tree is necessary.

Beyond the improvement modifications suggested by the

presented experiments, future work will address realistic

considerations, such as completeness in the presence of

complex obstacles (culs-de-sac, large obstacles), structured

and dynamic task distribution (areas with clustered targets,

dynamically generated tasks), support of multiple static or

even mobile bases, and providing MANET support to mobile

uncontrolled units (e.g. human teams in a disaster scenario).
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