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Abstract
A sequence of events in vascular and stromal cells maintained in a highly coordinated manner
regulates angiogenesis and tissue remodeling. These processes are mediated by the ability of cells
to respond to environmental cues and activate surface integrins. Physiological and pathological
processes in vascular biology are dependent on the specificity of important signaling mechanisms
that are activated through the association between growth factors, their receptors, integrins, and their
specific extracellular matrix ligands. A large body of evidence from in vitro and in vivo models
demonstrates the importance of coordination of signals from the extracellular environment that
activates specific tyrosine kinase receptors and integrins in order to regulate angiogenic processes
in vivo. In addition to complex formation between growth factor receptors and integrins, growth
factors and cytokines also directly interact with integrins, depending upon their concentration levels
in the environment, and differentially regulate integrin-related processes. Recent studies from a
number of laboratories including ours have provided important novel insights into the involvement
of many signaling events that improve our existing knowledge on the cross-talk between growth
factor receptors and integrins in the regulation of angiogenesis. In this review, our focus will be on
updating the recent developments in the field of integrin-growth factor receptor associations and their
implications in the vascular processes.

Introduction
Angiogenesis, the process of formation of new blood vessels from the pre-existing vasculature
[1], is necessary for physiological processes, including embryogenesis, wound healing, and
the normal response to hypoxic conditions and additionally underlies a number of pathologies,
such as tumor development, rheumatoid arthritis, diabetic microvascular disease, macular
degeneration, ischemia, and inflammation [2]. Development and remodeling of the vascular
system and associated tissues require complex interactions of signals and physical forces
orchestrating the activities of endothelial cells, pericytes, fibroblasts, and smooth muscle cells
[3]. Endothelium, the vasculature’s inner lining, is responsible for the initiation of
angiogenesis, and crucial for this process is the ability of endothelium to attach to extracellular
matrix (ECM) proteins and migrate to form endothelial tubes [4]. Formation of the initial
endothelial tubes is followed by recruitment of stromal and inflammatory cells ultimately
resulting in a network of matured blood vessels [4]. These series of events are regulated by a
number of growth factors, cytokines, and ECM proteins and their receptors [5]. Initial
endothelial tube formation requires the coordinated integration of mitogenic and migratory
signals elicited by pro-angiogenic growth factors such as vascular endothelial growth factor
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(VEGF) [6]. Induction of endothelial cell migration by VEGF also depends on interactions
between endothelium and various ECM proteins mediated by integrins [7]. Major integrins on
endothelial cells include αvβ3, αvβ5, α5β1, and α6β4, which serve as receptors for vitronectin,
fibronectin, and laminin, respectively [7]. Among these, integrin αvβ3 has been shown to be
particularly important for the angiogenic stimulation by VEGF and other growth factors [8–
10].

In the last decade, an increasing body of evidences demonstrate that integrins are not mere
ECM receptors, but major regulators of the biological activity of several signaling systems
within the cell. A number of laboratories, including ours, have demonstrated that the specificity
of molecular signaling in the endothelium during development and during pathological
processes is determined by a synergism between growth factor receptors and cell adhesion
molecules [11–16]. Integrins and growth factor receptors are known to independently regulate
angiogenesis [17,18]. However, the combined effects of growth factors and ECM proteins via
their respective receptors appear to be essential for endothelial activation and
neovascularization [19,20]). For the better understanding of the molecular mechanisms
underlying physiological and pathological angiogenesis, analysis of cross-talk between growth
factor receptors and integrins with emphasis on the signaling cascades elicited by this
interaction would be essential. Therefore, in this review, we will focus on the recent
developments in our understanding of the interactions between growth factor receptors and
integrins and the functional consequences of their synergism.

Integrins and ECM Interactions
Interactions between cells and ECM proteins are crucial for virtually all tissue responses,
including cell movement, proliferation, and matrix remodeling [21]. Integrins represent that
most important family of ECM receptors [7] and are found in all multicellular organisms
ranging from sponges to mammals [22]. The biological significance of the range of ECM-
integrin specificities during cell adhesion and migration remains an important issue. Integrins
are present on the cell surface as heterodimers, each composed of non-homologous trans-
membrane α and β subunits, both of which are involved in the recognition of ligands and
regulate bi-directional signaling [7]. ‘Outside–in signaling’ provides the cells cues from the
extracellular environment, while ‘inside–out signaling’ results in changes in the conformation
of integrins, thus promoting modifications in their functional activity [23]. Vascular cells,
which include endothelial cells, pericytes, fibroblasts, and smooth muscle cells, express
numerous integrins including α1β1, α2β1, α4β1, α5β1, αvβ1, αvβ3, αvβ5, α6β1, and α6β4 [7] and,
therefore, are able to interact with a wide range of ligands. Thus, integrins have been widely
implicated in the regulation of angiogenesis [24].

Changes in ECM environment result in the induction of multiple cellular signaling pathways
in vascular cells via integrins [25]. These include activation of Ras, PI3 Kinase-Akt signaling,
MAP kinase, Src and Rac, Rho, cdc42 GTPases [26–29]. Furthermore, recognition of ECM
by some integrins such as αvβ3 results in the phosphorylation of integrin cytoplasmic tyrosine
residues, which, in turn, promotes recruitment of intracellular adaptor proteins [15,30].

In many instances, activation of the intracellular signaling cascade triggered by growth factors
is substantially amplified if endothelial cells are attached to ECM [31]. This clearly indicates
that integrin- and growth factor-mediated cellular responses synergize and function to
coordinate the biochemical responses of multiple cell types.

Integrin and Growth Factor Receptor Cross-Talk
A role of growth factors and their tyrosine kinase receptors in integrin-dependent processes
such as ECM recognition, migration, matrix assembly, tissue remodeling, and angiogenesis is
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gradually emerging. Optimal cell stimulation with epidermal growth factor (EGF), platelet-
derived growth factor (PDGF), insulin like growth factor-1 (IGF-1), or VEGF [15,32–34], is
greatly influenced by integrin-mediated cell adhesion to the respective ECM protein. In
vascular smooth muscle cells, EGF or IGF-1 responses depend on integrin αvβ3 [35–37],
whereas functions of EGF-stimulated kidney epithelial cells depends on β1 integrins [33]. The
physiological importance of IGF-1/αvβ3 association is further supported by the fact that
treatment with αvβ3 antagonists reduce IGF-1 signaling and development of atherosclerotic
lesions [38,39]. Detailed information on interaction between growth factor receptors and
integrins is provided in Table 1.

The capacity of growth factor stimulation to synergize with the ECM ligand associated signals
may be due to the co-clustering of these receptors on the cell surface. Co-immunoprecipitation
has been an important approach to identify physical interactions between growth factor
receptors and integrins in vascular cells. Integrin αvβ3 has been reported to interact with the
PDGF receptor (PDGFR) and VEGFR-2 [13,15,40,41]; as well as IRS-1, a cyto-plasmic signal
transduction mediator of insulin and IGF receptors [42]. Additionally, integrins α6β4 and
α6β1 interact with ErB-2 receptor in human breast carcinoma epithelial cells upon EGF
stimulation [43,44]. An integrin-activating anti-α6 antibody promotes association between
α6β4 and ErB-2, which, in turn, might be responsible for enhanced cell proliferation and
invasion as a result of stimulation by the antibody [44]. The most recent data also indicate that
integrin α6β4 induces ErB-3 expression in breast carcinoma cells [45].

VEGF and VEGF Receptors
The mitogen VEGF regulates key steps in the initiation of angiogenesis such as endothelial
cell activation, vascular permeability, trans-migration of inflammatory cells, endothelial
migration, and proliferation [46]. VEGFs are a family of secreted polypeptides which, similar
to PDGF, has a highly conserved cysteine-knot structure that is responsible for receptor
binding. VEGF-A, the founder member of the family, is generally described as VEGF or
vascular permeability factor (VPF). Endothelial responses by VEGF are exerted through
binding to two homologous membrane tyrosine kinase receptors present on the surface of
endothelial cells: VEGFR-1, encoded by the gene Flt1, and VEGFR-2, encoded by Flk1/
KDR [47]. On endothelial cells, neuropilin is another receptor for VEGF that increases the
affinity of VEGFR-2 for VEGF [48]. Gene knockout of VEGFR-1 and VEGFR-2 in mice
results in lethality [49,50] indicating that these receptors are essential for the angiogenesis
process during embryogenesis. A recent study also shows that partial knockdown of VEGFR-1
regulates excessive angiogenesis in response to VEGFR-2 activation [51].

Intrinsic tyrosine kinase activity in VEGFRs is triggered by ligand-induced homodimerization
and oligomerization. Although reports suggest the formation of heterodimers between
VEGFR-1 and VEGFR-2 [6,52], its role in endothelial cells is still ambiguous. Although
VEGFR-1 knockout in mice results in embryonic lethality [49], knockouts expressing
VEGFR-1 lacking its kinase domain possesses normal vasculature [53]. In contrast, strong
phosphorylation of tyrosine residues in VEGFR-2 has been observed upon homodimerization
[54]. Residues Y1175 and Y1214 have been described as major autophosphorylation sites on
VEGFR-2 [55]. Other residues such as Y951 and Y996 in the kinase insert domain and Y1054
and Y1059 in the kinase catalytic domain [53] are putative phosphorylation sites that may be
important for VEGFR-2’s interaction with other molecules or receptors.

Recent studies demonstrate that the role of VEGFR-1 in postnatal angiogenesis is more
complicated than initially recognized. Treatment with placental growth factor (PlGF), a
VEGFR-1 specific ligand, promotes angiogenesis in vitro and in vivo [56]. Over-expression
of PlGF also results in enhanced angiogenesis in tumor and skin [57]. It has been reported that
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PlGF stimulates oligomerization of VEGFR-1 and VEGFR-2, leading to trans-activation of
VEGFR-2 and promotion of angiogenesis [56]. Meantime, over-expression of PlGF in many
cancer cell lines inhibited angiogenesis and tumor growth via inhibition of homodimerization
of VEGFR-2 [58]. A recent study also shows that partial knockdown of VEGFR-1 regulates
excessive angiogenesis in response to VEGFR-2 activation [51].

Integrin αvβ3 and VEGFR-2 Association
During initiation of angiogenesis, endothelial cells sprouting out of existing blood vessels
adhere to a provisional ECM rich in vitronectin and fibrinogen via integrin αvβ3 [15,59].
Stimulation of endothelial cells with VEGF results in the formation of a complex between
VEGFR-2 and integrin αvβ3 [15]. No similar effect was observed for collagen receptor α2β1
and laminin receptors α6β1 and α6β4 [19,20]. Moreover, collagen, a ligand for α2β1 and α1β1
integrins, exerted an inhibitory effect on VEGFR-2 [60]. Endothelial cell adhesion to collagen
reduced VEGF-induced VEGFR-2 phosphorylation by recruiting tyrosine phosphatase SHP2
to the phosphorylated tyrosine 1117 residue of VEGFR-2. One of the key functional
consequences of an interaction between αvβ3 and VEGFR-2 is augmentation of integrin αvβ3
activity or its activation.

An anti-β3 monoclonal antibody BV4, which inhibits adhesion to vitronectin (prototypic ligand
for αvβ3) decreased phosphorylation of VEGFR-2 suggesting an important function of αvβ3 in
the activation of the angiogenic program in endothelial cells [34]. In general, the blockade of
αvβ3 results in diminished autophosphorylation of VEGFR-2 while integrin activation with
LIBS-like activating antibodies or engagement by natural ligand promotes VEGFR-2
phosphorylation [13]. Our recent study showed that VEGFR-2 forms a complex with β3
integrin subunit, but not with β1 or β5, when stimulated with VEGF [13,14] (Fig. 1). This
complex can be observed in vivo as well as in cell culture [13]. Stimulation of endothelial cells
by VEGF in the presence of ECM proteins induces phosphorylation of the β3 cytoplasmic
tyrosine residues, which, in turn, is required for association between VEGFR-2 and β3 [14].
Mutations of both tyrosines within αvβ3 cytoplasmic domain to phenylalanine abolish the
complex formation between αvβ3 and VEGFR-2 resulting in diminished VEGFR-2 activation
by VEGF [14]. Other studies demonstrate that the extracellular but not the cytoplasmic domain
of VEGFR-2 is crucial for integrin-VEGFR-2 cross signaling [32]. Although the structural
details of the complex between αvβ3 and VEGFR-2 remain unclear, its formation might be
dependent on both the extracellular and cytoplasmic domains of the β3 subunit [14,15,34].

Once engaged by multivalent or immobilized ligands such as fibrin or fibrinogen, integrin
αvβ3 is able to form clusters on the cell surface, an ability important for recruitment of additional
components of this multireceptor complex that include VEGFR-2 and PI3K [61,62].
Illustration of the impact of αvβ3 integrin clustering on this complex was demonstrated using
anti-β3 antibody, which interferes with αvβ3 clustering but not with cell adhesion to ECM
[63]. In addition to perturbing the formation of the complex, this antibody markedly inhibited
VEGFR-2-mediated phosphorylation, PI3 kinase activation, focal adhesion dynamics, and
migration of endothelial cells in response to VEGF. And vice versa, the clustering of integrins
might promote certain cellular responses [61]. The complex between VEGFR-2 and αvβ3 has
also been implicated in mediating the pro-angiogenic effects of Factor XIII (FXIII) of the
coagulation cascade [64]. This activated transglutaminase crosslinks integrin β3 to VEG-FR-2,
thus enhancing their interaction and resulting in complex formation [65]. Interestingly,
VEGFR-2 is not the only VEGF receptor known to interact with integrins. Stimulation of
VEGFR-3 by VEGF-C or VEGF-D results in selective association between VEGFR-3 and
integrin α5β1 in lymphatic endothelial cells and this interaction appears to be involved in the
regulation of lymphangiogenesis [66,67].
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Integrin Growth Factor Receptor Cross-Talk Analysis with Knockout Mouse
Models

Research during the last decade has resulted in the development and characterization of a
number of knockout mouse models related to cardiovascular biology. This has provided
important insights into the importance of integrins and growth factor receptors, associating to
transduce downstream signals to regulate vascular development in a number of angiogenesis
dependent processes. For example, in mice the lack of fibronectin or integrin α5β1 results in
embryonic lethality, indicating the importance of this integrin and its ligand in embryonic
vasculogenesis [68]. This was further supported by studies involving gene ablation of integrin
α5 in mice, where endothelial structure formation is impaired in embryoid bodies [68,69]. In
combination, these studies indicate the importance of fibronectin receptor in embryonic
angiogenesis. In contrast, although integrin αv gene knockout in mice is lethal [70], ablation
of integrins β5 and/or β3 results in normal development of embryo and normal postnatal
angiogenesis [71]. Both integrins β5 and/or β3 null mice have extensive tumor induced
angiogenesis in vivo [71]. Since much of the other vasculature development appears to be
normal, it clearly indicates that a compensatory mechanism does exist in these knockout mice.
Endothelial cells in integrins β5 and/ or β3 mouse vasculature express higher amounts of VEG-
FR-2, thus demonstrating a possible compensatory mechanism. In addition, this effect also
indicates a close association between VEGFR-2 and integrin αvβ3 in endothelial cell activation
and angiogenesis. A true function of integrin αvβ3 has been revealed by a knockin mouse model
(DiYF mice) with two integrin β3 cytoplasmic tyrosine residues mutated to phenylalanine (see
below) [14]. In this case, pathological angiogenesis induced by tumor implantation is
significantly reduced in DiYF mice compared to WT. Besides this, study also reveals that
mutations in two integrin β3 cytoplasmic tyrosine residues block the formation of complex
between VEGFR-2 and integrin upon stimulation with VEGF. Another study reports that
although mice lacking integrin β5 develop normal vasculature, these mice have specific VEGF-
induced vascular permeability defects [72]. Collectively, studies in these transgenic mice
clearly demonstrate the importance of association between VEGFR-2 and integrin αvβ3 or
integrin αvβ5 in VEGF induced angiogenic responses.

Role of Src Family of Kinases in Integrin Growth Factor Receptor Association
The Src family of kinases is a group of non-receptor tyrosine kinases that are activated both
by activation of growth factor receptors and integrins through ‘outside–in signaling’ [73].
Major members of this family include cSrc, Fyn, Lyn, and Yes [74]. Many previous reports
have suggested the Src family of kinases as potential regulators of integrin-growth factor
receptor association in vascular cells [75]. Src has been reported to interact with EGFR to
regulate cell proliferation [76], and in association with PDGFR, it induces integrin dependent
cell adhesion and migration [77]. A functional overlap between the members in the same cell
types is evident from specific knockout studies in mice. Although cSrc null mice develop
normal blood vessels, they exhibit osteoporosis and impaired vascular permeability in response
to VEGF [78,79]. Interestingly, mice deficient in Yes also exhibit defects in VEGF induced
vascular permeability [80], suggesting non-redundant functions of these two Src kinases in the
regulation of vascular permeability. In contrast, Fyn-deficient mice do not exhibit a defect in
vascular leakage induced by VEGF [81]. Mice lacking Src kinases cSrc, Yes, and Fyn (SYF)
develop blood-filled islands in the embryo leading to lethality [82]. These reports demonstrate
that, if not all, many of the functional requirements of the Src family of tyrosine kinases are
compensated for in the absence of one. However, together, they are absolutely necessary for
the normal development of embryonic and post-natal vasculature.

A recent study in our lab has demonstrated the non-redundant function of cSrc in vascular cells
in the regulation of integrin αvβ3 and VEGFR-2 complex formation via inside–out signaling
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[15]. Phosphorylation by VEGF stimulation of both Y747 and Y759 in the integrin β3
cytoplasmic domain was observed to be enhanced when endothelial cells are plated on
vitronectin compared to other ECM proteins. Antibodies that specifically block the function
of αv or β3, but not β1 or β5, inhibited VEGF stimulated tyrosine phosphorylation of both
integrin β3 and VEGFR-2. Immunoprecipitation analysis revealed that stimulation with VEGF
results in complex formation between VEGFR-2 and integrin β3 and not with β1 or β5 [13].
Treatment with Src inhibitors completely blocked VEGF mediated complex formation between
VEGFR-2 and integrin β3 (Fig. 1). At basal activity, only Yes is associated with integrin β3
and treatment with VEGF had no effect on modulating its interaction with integrin β3. In
contrast, cSrc interaction with integrin β3 was enhanced upon VEGF stimulation. Fyn did not
interact with integrin β3 in either of the conditions. These data suggested the non-overlapping
role of cSrc in the regulation of VEGFR-2 and integrin β3 association.

Further analysis revealed the importance of Src kinases in the phosphorylation of integrin β3
cytoplasmic tyrosine residues [13]. Phosphorylation of integrin β3 was significantly reduced
in SYF null mice. While treatment with Src inhibitor or expression with dominant negative
cSrc inhibited phosphorylation of integrin β3 cytoplasmic tyrosine residues, expression with
the constitutively active form of cSrc resulted in enhanced phosphorylation of both Y747 and
Y759. Most importantly, in vitro phosphorylation assay demonstrated that recombinant cSrc
phosphorylates integrin β3 at the cytoplasmic tyrosine residues. Specific inactivation of cSrc
results in inhibition of complex formation between VEGFR-2 and integrin β3 resulting in
impaired binding to the specific αvβ3 ligand vitronectin, but not to other integrin ligands like
collagen and laminin. These facts point out the direct and specific involvement of c-Src in the
regulation of αvβ3 interaction with ECM. These induced structural changes caused by β3
phosphorylation promoted signaling that resulted in pre-capillary tube formation and enhanced
chemotaxis upon VEGF stimulation.

Integrin αvβ3 and VEGFR-2 Cross-Talk Analysis with DiYF Transgenic Mice
Studies demonstrating the importance of cSrc in regulating the association between VEGFR-2
and integrin β3 indicated the importance of integrin β3 tyrosine residues in their complex
formation. This report was further strengthened by the data derived from knockin mice, where
the two tyrosine residues Y747 and Y759 are mutated to phenylalanine [14]. In the DiYF (two
Y to F mutations in the integrin β3 cytoplasmic domain) knockin mouse model,
phosphorylation of VEGFR-2 in response to VEGF is impaired. DiYF mutations in integrin
β3 cytoplasmic domain also resulted in the blockade of complex formation between integrin
β3 and VEGFR-2.

Reduced interaction between VEGFR-2 and integrin β3, impaired VEGF signaling and reduced
VEGFR-2 phosphorylation in DiYF endothelial cells resulted in their impaired adhesion and
migration on vitronectin and entactin, two major αvβ3 ligands in the tissues and basement
membrane, respectively [83]. In vivo, tumor angiogenesis was impaired in DiYF mice resulting
in reduced tumor growth [14]. Overall, these studies in DiYF knockin mice reveal the
importance of the two tyrosine residues in integrin β3 in the formation of complex with
VEGFR-2, which then results in conformational activation via inside–out signaling, which
enhances its affinity for the ECM substrate, vitronectin.

Integrin and FGF Receptor Association
Interaction between VEGFR-2 and αvβ3 integrin regulates VEGF signaling and interactions of
endothelial cells with vitronectin, fibrin, and entactin/nidogen [14,84]. However, pro-
angiogenic activities are not limited to VEGF and these selected components of matrix.
Originally, it had been shown that neutralizing antibody against αvβ3 integrin diminished bFGF
stimulated vascular survival and endothelial cell migration, suggesting the cooperation
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between FGF-RTK and integrin αvβ3 in angiogenesis [85]. Also, similar to VEGF, stimulation
of endothelial cells with bFGF might also promote activation of αvβ3 [59]. However, the
molecular mechanisms underlying the cooperation between these receptors are not yet
elucidated, with the exception of a study showing the importance of endothelial cell
engagement by fibrinogen during complex formation of FGF-RTK and αvβ3 upon bFGF
stimulation [86]. In addition, FGF receptor-3 has also been implicated to interact with various
types of integrins [87].

Integrin and Tie-2 Association
Besides VEGFR and FGF-R, a third major receptor tyrosine kinase that has been implicated
in the regulation of endothelial function and angiogenesis is Tie-2 receptor, which binds to its
ligands Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2) [88]. Both angiopoietins interact
with the same receptor, Tie-2, and reciprocally regulate vascular stability [89]. While Ang-1
is essential for the maturation of blood vessels and reduction in vascular permeability, thereby
stabilizing the newly formed blood vessels [90], Ang-2, competes with Ang-1 for the Tie-2
receptor and enhances vascular permeability and destabilization of blood vessels [91], which
is a prerequisite for VEGF mediated vascular permeability and extravasation [92].

A recent report suggests that in order for Ang-1 to regulate vascular stabilization, its receptor
Tie-2 has to be associated with integrin α5β1 [93] (Fig. 2). Engagement of integrin α5β1 by
fibronectin increases integrin interaction with Tie-2 in a time and concentration dependent
manner. This results in Tie-2 phosphorylation in response to threshold levels of Ang-1. While
in complex with integrin α5β1, Tie-2 activity is sustained for longer than an hour compared to
transient effects upon Ang-1 stimulation in the absence of fibronectin. Thus, similar to αvβ3
and VEGFR-2, there is a functional alliance between integrin α5β1 and Tie-2 receptor (Fig. 2).
In endothelial cells attached to fibronectin, Ang-1 stimulates recruitment of p85 to Tie-2 [88]
and FAK to the cytoplasmic tails of integrin α5β1 [41] within focal adhesions. This complex
formation between Tie-2 and integrin α5β1 appears to involve the activation of PI-3 kinase
signaling downstream of FAK activation [88,94]. In addition to its interaction with integrin
α5β1, FAK is also reported to regulate vascular permeability in response to VEGF activation
involving integrin αvβ5 [95]. Moreover, another report shows that Ang-1 can directly bind to
integrin α5β1 even in the absence of Tie-2 receptor [93]. Overall, these studies show that Tie-2
and integrin α5β1 form complexes in order to regulate vascular stabilization.

Integrins and Met Association
In addition to the major tyrosine kinase receptors discussed above, angiogenesis is also under
the tight control of many pleiotropic molecules such as hepatocyte growth factor (HGF), which
interacts with and activates Met, a receptor tyrosine kinase [96]. A number of in vitro and in
vivo models demonstrate that HGF activates Met on the endothelial cell surface and promotes
angiogenesis [97]. Importantly, HGF regulates matrix recognition by endothelial integrins
[98]. HGF, largely synthesized and secreted by platelets, forms hetero-complexes with
vitronectin and fibronectin, two important ligands for integrins αvβ3 and α5β1 [99]. These
hetero-complexes, VN/HGF and FN/HGF, trigger association between Met and integrins
αvβ3 and α5β1, respectively [98] (Fig. 3). As a result, autophosphorylation of Met in the
presence of ECM is enhanced compared to that in the absence of VN or FN. Moreover, another
report demonstrates that complex formation between Met and integrin α6β4, a laminin receptor
[100], is necessary for the regulation of tumor angiogenesis [101], thus demonstrating the
importance of Met/integrin α6β4 association in pathological angiogenesis.
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Regulation of Integrin Function by Semaphorins
Semaphorins (Sema) are a family of secreted and membrane bound cytokines that signal
through four classes of plexins (type A–D), a family of membrane receptors characterized by
the presence in their cytosolic tail, two domains with homology to the R-Ras GTPase activating
proteins (GAPs), separated by a linker region that can bind other small GTPases, such as Rnd-1
and Rac1 [19,20]. Sema of secreted class 3 group also employ Neurophilin (Nrp-1 or -2) as
co-receptors in association with type A or type D plexins [19,20]. Nrp-1 was initially shown
to act as a VEGFR-2 co-receptor with implications in cardiovascular development [48,102–
104]. Observations in vitro and in vivo that endothelial cells exhibit autocrine loops of several
Sema 3 other than Sema 3A [105], suggest that multiple Sema 3 could cooperate to regulate
angiogenesis. In endothelial cells, plexinD1 and to a lesser extend plexinA2, are the most
abundant plexins, which possesses significantly higher affinities for Sema3A and Sema3C
[106].

At the level of endothelial cells, both Sema3A and Sema3F have shown to inhibit adhesion
and migration via inhibition of integrins [107]. This was later confirmed in other cell types as
well [108]. In contrast, Sema3C, which possesses an Arg-Gly-Asp (RGD) motif, has been
reported to serve as a ligand for integrins and promote endothelial cell adhesion and migration
[109]. Endothelial cell adhesion and migration is also regulated by Sema4D via PlexinB1
stimulation and suppression of R-Ras activity, which in turn inhibits integrin β1 activation
[110]. Sema4D thus promotes association between PlexinB1 and Met tyrosine kinase receptor
and prevents interaction between integrin β1 and Met [111]. Collectively, these reports suggest
that semaphorins, via interaction with multiple growth factors, might inhibit growth factor
stimulated activation of integrins and cross-talk.

Integrins and their Interactions with Angiogenic Modulators
The complex ECM, which has a very high affinity for many soluble growth factors, has been
demonstrated to act as sequestering machinery for growth factors such as TGFβ [112]. Recent
reports demonstrate that many pro- and anti-angiogenic molecules may be entrapped in the
ECM and be directly recognized by integrins. Integrin α9β1 has been shown to recognize
immobilized VEGF-A165 and VEGF-A121 [113,114]. In response to these immobilized
growth factors, VEGF, VEGFR-2, and integrin α9β1 form a complex and transduce signals in
an adaptive manner [114]. The same integrin had later been shown to interact with VEGF-C,
VEGF-D, and HGF, and the lack of these interactions might explain the abnormal lymphatic
development in integrin α9 knockout mice [113]. Additionally, integrins α3β1 and αvβ3 have
been reported to interact with VEGF-A165 and VEGF-A189, but not with VEGF-A121
[115]. A recent report indicates that bFGF might also directly bind to integrin αvβ3 and regulate
bFGF-induced endothelial activation and angiogenesis involving ERK and Akt activation
[116]. Detailed information on interaction between angiogenic modulators and integrins is
provided in Table 2.

Integrins are also known to partially mediate pro-angiogenic effects of Ang-1 and Ang-2 via
direct interactions [117]. The region of Ang-1 and -2 that binds to integrins is located within
the fibrinogen-like domain (QHREDGS), which resembles the integrin recognition motifs
KRLDGS or REDV of fibrinogen and fibronectin, respectively [93,118–120]. Both endothelial
cells and fibroblasts adhere to Ang-1 and Ang-2. However, only Ang-2 is able to promote cell
spreading and cytoskeletal remodeling [118]. Ang-1 has been reported to serve as an important
ligand for integrin α5β1 in the absence of Tie-2, a well characterized receptor for both Ang-1
and -2 [118]. These observations combined with the cooperation between Tie-2 and integrin
α5β1 discussed above indicate that Ang-1 has the potential to trigger both inside–out and
outside–in signals. In many cell types lacking Tie-2, Ang-1 and -2 interact directly with
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integrins. In cardiomyocytes integrins α2β1, α5β1, α6β1, α6β4, αvβ1, and αvβ3 have been shown
to bind to Ang-1, resulting in Akt activation and cell survival [121]. Glioma cells have also
been reported to attach to Ang-2 using many of these receptors, with the exception for αvβ1
[120]. Breast cancer epithelial cells bind to Ang-2 and promote migration involving integrin
α5β1 [122]. Altogether, these reports indicate that direct interaction between integrins and
Ang-1 and -2 modulate the process of angiogenesis.

Proteolytic degradation of ECM results in the release of a number of anti-angiogenic molecules
that have the ability to bind and inactivate endothelial integrins, thus resulting in inhibition of
endothelial tube formation and angiogenesis [123]. While ECM ligands interact with and
activate integrins on the endothelial cell surface, thus protecting the cells from anoikis [124],
integrins engaged by the ECM fragments after proteolytic degradation induce apoptosis and
inhibit proliferation and migration of endothelial cells [41]. One such molecule is endostatin,
which is a C-terminal non-collagenous domain of type XVIII collagen that exerts inhibitory
effects on integrin α5β1 through an Argrich peptide at its N-terminus [125]. Proteolytic
degradation of non-collagenous domain of the α-chain of type IV collagen results in three
different anti-angiogenic molecules namely tumstatin, arresten, and canstatin [126]. Among
these, tumstatin binds to integrin αvβ3 and promotes apoptosis, as a result of inhibition of FAK,
Akt, and mTOR signaling [127,128]. Arresten, generated from the non-collagenous domain of
the α1 chain of type IV collagen, competes with collagen IV binding to integrin α1β1 thus
inhibiting endothelial cell interaction with collagen and vitronectin [21,129]. Canstatin, derived
from the α2 chain of type IV collagen, binds to integrin αvβ3 and αvβ5 resulting in endothelial
cell activation of caspases and promotion of endothelial cell apoptosis [130]. Altogether, these
reports indicate that ECM can promote and inhibit endothelial integrin activity, which is
dependent on its intact or fragmented nature.

Angiostatin is another known anti-angiogenic molecule that is proteolytically derived internal
fragment of serine protease plasminogen. This contains various members of the five
plasminogen “kringle” domains, depending on the sites of proteolysis. Different forms of
angiostatin exhibit different activities. A number of groups have sought to identify the native
cell surface binding site(s) for angiostatin, resulting in at least five different binding sites
proposed for angiostatin on the surface of endothelial cells [131]. Angiostatins have been
reported to bind to integrin αvβ3 thereby inhibiting angiogenesis [132].

Conclusions
Anti-angiogenic therapy is emerging as an effective tool for the treatment of many different
types of cancers. Modulation of angiogenesis can also be useful for other angiogenesis-
dependent anomalies such as ischemia, myocardial infarction, and post-surgery wound
complications as well as physiological processes such as embryogenesis. These associations
that regulate the assembly and remodeling of ECM by the vascular cells are also necessary for
the integrity and remodeling of injured tissue. Many of the current day methods for targeting
angiogenesis are via inhibitors and monoclonal antibodies against integrins, growth factors and
growth factor receptors. Many of these therapeutic approaches have suffered major setbacks,
mainly due to the uncertainties in the complex signaling networks these receptors regulate in
vascular cells and the injured tissue. A complete analysis of the signaling pathways regulating
the complex association between multiple growth factors, their receptors and integrins will be
extremely useful in order to improve the existing methods of targeting angiogenesis involving
these receptors. Hence, further validation of existing hypotheses in the mechanistic aspects of
integrin-growth factor receptor association by the next generation of researchers is essential.
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Fig. 1.
Effect of extracellular matrix proteins and VEGF on integrin αvβ3 and VEGFR-2 interaction.
Engagement of endothelial β3 integrin with extracellular matrix proteins such as vitronectin
(VN) in the presence of VEGF interaction with VEGFR-2 (Flk-1) results in a number of
modifications on both the receptors that trigger intracellular signaling cascade. These
conformational changes and modifications by phosphorylation augment the complex formation
between intgrin β3 and VEGFR-2. Upon stimulation with VEGF, VEGFR-2 undergoes auto-
phosphorylation of a number of tyrosine residues in the cytoplasmic domain. Src kinase,
activated downstream of this signaling, phosphorylates two tyrosine residues in the
cytoplasmic domain of β3 integrin (Y747 and Y759) which is necessary for the interaction
between the two receptors
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Fig. 2.
Effect of extracellular matrix proteins and Angiopoietin-1 on integrin α5β1 and Tie-2
interaction. Activation of integrin α5β1 by attachment to fibronectin increases its interaction
with Tie-2. Upon activation of integrin α5β1, Tie-2 is phosphorylated in the presence of the
specific ligand Ang-1. In endothelial cells attached to fibronectin, Ang-1 stimulates recruitment
of p85 to Tie-2 and FAK to the cytoplasmic tails of integrin α5β1 clusters in the focal adhesions.
This complex formation between Tie-2 and integrin α5β1 involves activation of PI-3 kinase
signaling. Alternatively, Ang-1 also directly binds to integrin α5β1 even in the absence of Tie-2
receptor. Altogether, interaction between integrin α5β1 and Tie-2 results in vascular
stabilization and maturation
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Fig. 3.
Effect of interactions between extracellular matrix proteins and hepatocyte growth factor
(HGF) on complex formation among integrin α5β1, integrin αvβ3, and Met. HGF, largely
synthesized and secreted by platelets, forms hetero-complexes with vitronectin and fibronectin,
two important ligands for integrins αvβ3 and α5β1. These hetero-complexes, VN/HGF and FN/
HGF, trigger association between Met and integrins αvβ3 and α5β1, respectively. This
subsequently leads to enhanced auto-phosphorylation of Met
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Table 1

Direct interactions between growth factor receptors and integrins

Growth factor receptor Integrin(s) References

VEGFR2/Flk1 αvβ3 [15,34]

VEGFR3/Flt4 α5β1 [66,67]

PDGFR αvβ3 [32,40]

FGFR3 αvβ3, α5β1 [86,87]

IRS-1 αvβ3, α5β1 [42]

Tie-2 α5β1 [93]

ErB-2 α6β4, α6β1 [43,44]

ErB-3 α5β1 [45]

PlexinB1 α5β1 [111]

Met αvβ3,α5β1,α6β4 [99,101]
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Table 2

Direct interactions between integrins and angiogenic modulators

Growth factor Integrin(s) References

VEGFA-165 αvβ3, α3β1, α9β1 [113–115]

Angiopoietin-1 α5β1 [117]

Angiopoietin-2 α5β1 [117]

PDGF αvβ3 [40]

IGF αvβ5 [38,43,84]

EGF αvβ3, αvβ5, α5β1 [33,36,38,43,84]

Tumstatin αvβ3 [127,128]

Arresten α1β1 [129]

Canstatin αvβ3, αvβ5 [130]

Endostatin α5β1 [125]
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