
A General Compiler Framework for Speculative
Multithreading

Anasua Bhowmik
Computer Sciences Department

University of Maryland
College Park, MD 20742

anasua@cs.umd.edu

Manoj Franklin
ECE Department and UMIACS

University of Maryland
College Park, MD 20742

manoj@eng.umd.edu

ABSTRACTSpe
ulative multithreading (SpMT) promises to be an ef-fe
tive me
hanism for parallelizing non-numeri
 programs,whi
h tend to use irregular data stru
tures with pointersand have
omplex
ows of
ontrol. Proper thread sele
tionis
ru
ial to obtaining good speedup in an SpMT system.This paper presents a
ompiler framework for partitioninga sequential program into multiple threads for parallel exe-
ution in an SpMT system. This framework is very general,and support a wide variety of threads, su
h as spe
ulativethreads, non-spe
ulative threads, loop-
entri
 threads, andout-of-order thread spawning. To do eÆ
ient partitioning,the
ompiler uses pro�ling, intra-pro
edural pointer anal-ysis, data dependen
e information and
ontrol dependen
einformation. Our
ompiler framework is implemented on theSUIF-Ma
hSUIF platform, and is able to partition large pro-grams, su
h as the SPEC ben
hmarks. A simulation-basedevaluation of the generated threads shows that an averagespeedup of 3
an be obtained with 6 pro
essing elements fornon-numeri
 programs. This speedup redu
es to 2 if we useonly loop-based threads.Keywords: data dependen
e, parallelization, spe
ulativemultithreading (SpMT), thread-level parallelism (TLP)
1. INTRODUCTIONRedu
ing the
ompletion time of a single
omputationtask has been one of the de�ning
hallenges of
omputers
ien
e and engineering for the last several de
ades. Theprimary means of in
reasing pro
essor performan
e, besidesin
reasing the
lo
k speed and redu
ing the memory laten
y,has always been the exploitation of the inherent parallelismpresent in programs, with the use of a
ombination of soft-ware and hardware te
hniques. Parallelization has been agood su

ess for s
ienti�
 appli
ations, but not quite so forthe non-numeri
 appli
ation. Non-numeri
 programs use ir-regular data stru
tures and have
omplex
ontrol
ows thatmake them hard to parallelize.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’02,August 10-13, 2002, Winnipeg, Manitoba, Canada.
Copyright 2002 ACM 1-58113-529-7/02/0008 ...$5.00.

The emergen
e of the spe
ulative multithreading (SpMT)model in the last de
ade has provided the mu
h awaitedbreakthrough for the important set of non-numeri
 appli
a-tions. Many studies on spe
ulative multithreading (SpMT)
on�rm that there is signi�
ant performan
e potential in ex-e
uting multiple threads from the same program in parallel.Hardware support for spe
ulative thread exe
ution makesit possible for the
ompiler to parallelize sequential appli
a-tions without worrying about data and
ontrol dependen
es.However, hardware support for spe
ulation is not suÆ
ientto a
hieve high speedup from the appli
ation programs andwe need good
ompiler support as well to extra
t parallelismfrom the programs. In
ompiling programs for the multi-threaded ar
hite
ture the most important task is thread par-titioning, i.e., partitioning a program into separate threadsof exe
ution.The major
ontribution of this paper is to present andevaluate a general
ompiler framework for SpMT systems.This
ompiler partitions sequential programs into multiplethreads for parallel exe
ution in an SpMT pro
essor. Our fo-
us is primarily on non-numeri
 appli
ations, whi
h are gen-erally more diÆ
ult to partition into threads. Traditionalwork in parallelization has targeted s
ienti�
 appli
ations,and has fo
ussed mainly on loops where the loop bounds aregenerally prede�ned and the loops a

ess regular data stru
-tures like arrays. On the other hand, in non-numeri
 appli-
ations, the loops often have large loop bodies with
omplex
ontrol
ow, loop-
arried dependen
es and loop bounds that
annot be resolved stati
ally. So these loops
annot be easilyparallelized with traditional te
hniques. Also, unlike s
ien-ti�
 appli
ations, non-numeri
 appli
ations a

ess irregulardata stru
tures with an abundan
e of pointers. Moreover,sometimes the non-numeri
 programs spend more time out-side the loops. So many of the te
hniques used for s
ienti�
programs
annot be dire
tly applied to non-numeri
 pro-grams to extra
t parallelism.To obtain good speedup for non-numeri
 programs, our
ompiler
onsiders both the loop regions and the non-loopregions of programs. It uses
ontrol dependen
e informationand pro�le information to guide the partitioning. We haveused SUIF and MACHSUIF
ompiler platforms to developour
ompiler. Using our
ompiler framework, we have beenable to
ompile a wide range of non-numeri
 appli
ations,in
luding programs from the SPEC 2000 and Olden ben
h-mark suites.Our work di�ers from earlier works on SpMT
ompilation[13℄ [18℄ [19℄ primarily in 4 ways: (i) Most of the earlier

work [13℄ [18℄ primarily targets loop-level parallelism only,whereas our
ompiler targets other kinds of parallelism also.(ii) Our SpMT model is more general than the one usedin earlier
ompiler work, and supports spawning of threadsfrom anywhere in a thread; in [19℄ a thread
an be spawnedonly from the beginning of another thread. (iii) Our
om-piler framework supports out-of-order spawning of threads,whereas earlier
ompilers support only sequential spawningof threads. (iv) Our Compiler framework expli
itly exploits
ontrol dependen
e information in forming the threads.Our studies with di�erent types of
ompiler-generated threadshave led to the following
on
lusions:� Signi�
ant speedups
an be obtained with low degreesof multithreading for the non-numeri
 appli
ations.� For non-numeri
 programs, it is not suÆ
ient to exploitloop-level parallelism only, the form of parallelism thatis almost ex
lusively targeted in prior resear
h; it isimportant to look at other types of threads as well.� For non-numeri
 programs, it is important to spawnthreads spe
ulatively.� For non-numeri
 programs, it is important to exploit
ontrol independen
e.The rest of this paper is organized as follows. Se
tion 2provides ba
kground information on SpMT, in
luding thethread exe
ution model and various issues related to threadpartitioning. Se
tion 3 details our SpMT
ompiler frame-work, and thread partitioning algorithm. Se
tion 4 presentsthe simulation environment and a detailed evaluation of ourthread partitioning algorithm. Se
tion 5 presents a sum-mary and the major
on
lusions of this paper.
2. SPECULATIVE MULTITHREADING (SPMT)Compilers and programmers have made signi�
ant progressin parallelizing regular numeri
 appli
ations. However, theyhave had little or no su

ess in doing the same for highlyirregular numeri
 or espe
ially non-numeri
 appli
ations [9℄.In su
h appli
ations,
ontrol
ow as well as memory ad-dresses often depend on run-time behavior, whi
h makesit very diÆ
ult to partition a program into independentthreads.This exe
ution model is
loser to sequential
ontrol
ow,and envisions a stri
t sequential ordering among the threads.Threads are extra
ted from sequential
ode and are spe
ula-tively run in parallel, without violating the sequential pro-gram semanti
s. In
ase of misspe
ulation, the results ofthe spe
ulative thread and of subsequent threads are dis-
arded. The
ontrol
ow of the sequential
ode imposes anorder on the threads, we
an use the terms prede
essor andsu

essor to qualify the relation between any given pair ofthreads. This means that inter-thread
ommuni
ation be-tween any two threads (if any) is stri
tly in one dire
tion, asdi
tated by the sequential thread ordering. Thus, no expli
itsyn
hronization operations are ne
essary, as the sequentialsemanti
s of the threads guarantee proper syn
hronization.This relaxation allows us to \parallelize" non-numeri
 ap-pli
ations without expli
it syn
hronization, even if there isa potential inter-thread data dependen
e.Example SpMT models are the multis
alar model [4℄ [16℄,the superthreading model [18℄, and the tra
e pro
essing model

[8℄ [14℄. SpMT is appealing be
ause it provides the power ofparallel pro
essing to speed up ordinary appli
ations, whi
hare typi
ally written as sequential programs.
2.1 SpMT Thread Communication ModelInter-thread
ommuni
ation refers to passing data valuesbetween two or more threads. Communi
ation
an takepla
e at the level of register spa
e, memory address spa
e,and I/O spa
e, with the registers being the level
losest tothe pro
essor. The most general model, whi
h is followedin most of the SpMT proposals, is to let inter-thread
om-muni
ation take pla
e at all of these levels. Thus, multi-ple threads share the same register name spa
e (and thesame memory address spa
e). Inter-thread
ommuni
ationhappens impli
itly due to reads and writes to the sharedregisters1 (and to shared memory lo
ations). Our
om-piler framework also uses this most general
ommuni
ationmodel.
2.2 Spawning StrategiesIn an SpMT pro
essor, a dynami
 thread's lifetime has3 important events: spawning, a
tivation, and retirement.Spawning refers to
reating a new instan
e of a stati
 thread,and is analogous to the fork me
hanism used in
onventionalparallel pro
essing. A
tivation refers to assigning a spawnedthread to a pro
essing element (PE). Retirement refers tothe a
t of a
ompleted thread relinquishing its PE (after ithas
ommitted its results).
2.2.0.1 Spawning Point:.An important issue in an SpMT model
on
erns the pointsin a thread from where other threads are spawned. Twopossibilities exist:� Spawning from only the beginning of a thread� Spawning from anywhere in a threadThe �rst
ase uses an eager spawning strategy, with a viewto maximize PE utilization by minimizing the time an idlePE waits for a thread to be a
tivated in it. A potentialdrawba
k with this approa
h is that a spe
ulative threadmay be spawned prematurely without
onsidering enoughrun-time information. Furthermore, often there may not bean idle PE at the time a thread is spawned. In the se
ondapproa
h, a thread
an be spawned from anywhere within athread. This allows the spawning to be delayed, say, until aparti
ular bran
h or data dependen
e gets resolved.
2.2.0.2 Loop Iterations versus Non-loop Threads:.Loop iterations have been the traditional target of paral-lelization at all levels|programmer,
ompiler, and hardware|and form an obvious
andidate for forming threads. Ea
hiteration of a loop
an be spe
i�ed as a thread that runsin parallel with other iterations of that loop. For example,in Figure 1(b), Thread 1 is a loop-
entri
 thread, i.e everyiteration of the loop is exe
uted as a separate thread. Theonly form of
ontrol dependen
es shared between multiplethreads of this kind are loop termination bran
hes, whoseout
omes are generally biased towards loop
ontinuation,even in non-numeri
 programs. The degree of TLP that
an1A shared register name spa
e
an be implemented at themi
roar
hite
ture level in a distributed manner.

be extra
ted will be moderated, however, by loop-
arrieddependen
es. In non-numeri
 programs, many of the loopshave at least some amount of loop-
arried data dependen
es.To get good speedup for non-numeri
 programs, it is im-portant to
onsider threads other than loop iterations, inaddition to loop iteration based threads.
2.2.0.3 Speculative versus Non-speculative Threads:.Spe
ulative spawning is the essen
e of SpMT ar
hite
-tures. A spe
ulative spawning is where the existen
e of thespawned thread is
ontrol dependent on a
onditional bran
hthat follows the spawning point (as per sequential programorder). Many non-numeri
 programs, however, tend to havea noti
eable per
entage of
ontrol mispredi
tions, ne
essi-tating frequent re
overy a
tions. Therefore, it is importantto exploit
ontrol independen
e [2℄, possibly by identify-ing threads that are non-spe
ulative from the
ontrol pointof view. When exe
uting a
ontrol-non-spe
ulative threadin parallel with its initiator, failure to
orre
tly predi
t abran
h within the initiator thread does not a�e
t the exis-ten
e of the non-spe
ulative thread, although it
an poten-tially a�e
t its exe
ution through inter-thread data depen-den
es. E�e
tive use of
ontrol independen
e informationthus helps to rea
h distant
ode, despite the presen
e ofmispredi
ted bran
hes in between. Noti
e that if a spe
u-lative thread T1 spawns a non-spe
ulative thread T2, thenT2 is non-spe
ulative from T1's point of view, but not fromT1's initiator's point of view.Sti
king to loop-based threads and non-spe
ulative threadsalone may not yield good speedup for some programs. Some-times, it may be desirable to start a thread from a point thatis
ontrol dependent on the
ontrol
ow through the previousthread. This is parti
ularly desirable when alternate
ontroldependent paths have widely di�ering lengths. For example,in Figure 1(a), Thread 2 is a spe
ulative when spawned frombasi
 blo
k A, be
ause basi
 blo
k C is
ontrol dependenton blo
k B and A. Spe
ulative threads
an also exploit moreparallelism than is possible with
onventional multipro
es-sors that la
k a re
overy me
hanism. In fa
t, as we will see,for many of the non-numeri
 programs, spe
ulative threadsare a must for exploiting thread-level parallelism.
2.2.0.4 Out-of-Order Spawning of Threads:.Lastly, an SpMT may or may not support out-of-orderspawning of threads. If out-of-order spawning is not al-lowed, then all of the dynami
 threads are spawned stri
tlyin program order. If out-of-order spawning is allowed, thenthreads are not ne
essarily spawned in program order, and asingle thread may spawn multiple threads. In order to avoiddeadlo
k in su
h a situation, the SpMT pro
essor may haveto o

asionally pre-empt some of the (sequentially younger)threads. We
an also
onsider SpMT models with limitedout-of-order spawning. In
ase of out-of-order depth of 1,for instan
e, at most one prede
essor thread
an be spawnedafter a thread has been spawned. Therefore, if the threadhas to be preempted be
ause of a prede
essor thread be-ing spawned later, the PE has to store the state of at mostone other thread. Nested spawning is parti
ularly useful toharness the parallelism present in nested loops.Our
ompiler framework is very general, and supports allof the spawning strategies, in
luding spawning from any-where in a thread, and nesting. In our experimental se
tion,

Thread 1

Thread 3

Thread 2 C

Thread 1

Thread 2

b) CFG with Loop

a) CFG with complex control flow

D

A

B

E

F

Figure 1: Di�erent Kinds of Threadswe fo
us on three types of threads|loop-
entri
 threads,
ontrol non-spe
ulative threads, and
ontrol spe
ulative threads.Figure 1 shows these types of threads.
2.3 Performance Issues in SpMT Thread Se-

lectionPerhaps the most
ru
ial de
ision in any SpMT environ-ment is thread sele
tion. This involves
onsidering
omplexfa
tors su
h as inter-thread data dependen
es, probabilityfor bran
h mispredi
tion within a thread, load balan
ing,et
.
2.3.0.5 Thread Granularity:.Thread size is an important parameter to
onsider in par-titioning a program into threads. Short threads may notexpose adequate parallelism, and may in
ur high overheaddepending on the thread initiation me
hanisms used. Multi-threading begins to make sense when threads are larger thana traditional size instru
tion window. On the other hand, itmay not be possible to have very large size threads be
auseof the huge bu�ering requirements. Moreover, if threads arevery large, then re
overy a
tions due to mispredi
tions willbe very expensive.
2.3.0.6 Load Balancing:.Another fa
tor to
onsider in de
iding thread partition-ing is to redu
e the varian
e in thread sizes. In an SpMTsystem, even if a parti
ular thread is non-spe
ulative fromthe
ontrol point of view, some of the data values used bythat thread may be spe
ulative, be
ause of data dependen
espe
ulation [5℄, intra-thread
ontrol spe
ulation, and possi-bly data value spe
ulation [10℄. Be
ause of this spe
ulativenature, a thread
annot be
ommitted until all of its dataoperands are veri�ed to be
orre
t, even if its exe
ution was
ompleted a long time ba
k. Of
ourse, it is possible to initi-ate other threads in its hardware sequen
er while the threadis awaiting retirement (as in [16℄); but there is a pra
ti
allimit to how many su
h threads
an be made to wait forretirement, be
ause of the need to store the state informa-tion of all pending threads. In short, thread size imbalan
e

an be tolerated to some extent, but widely di�ering threadsizes should be avoided as mu
h as possible.
2.3.0.7 Inter-Thread Data Dependences:.An important fa
tor to
onsider when partitioning a pro-gram into threads is inter-thread data dependen
es. Theya�e
t both inter-thread data
ommuni
ation and determinehow mu
h thread-level parallelism exists. The e�e
t of adata dependen
e depends on the produ
er's and
onsumer'srespe
tive positions in their threads. It is not possible to de-te
t all data dependen
es stati
ally at
ompile time be
auseof aliasing. It is also not possible to determine a

uratelythe relative timing of the dependent instru
tions in di�er-ent threads be
ause of fa
tors like
onditional bran
hes and
a
he misses. The
ompiler
an use some pro�le informa-tion and heuristi
s to estimate the relative distan
e betweenthe dependent instru
tions. The
ompiler
an also performintra-thread s
heduling to further redu
e the delay.
2.3.0.8 Thread Prioritization:.Compilers typi
ally do not assume a �xed number of PEswhile performing thread partitioning. On a pro
essor thathas a limited number of PEs, some strategy has to be imple-mented to prioritize the available threads. One simple strat-egy is to prioritize the threads a

ording to their sequentialexe
ution order. The motivation is that a sequentially olderthread perhaps has a higher likelihood of
ompleting earlier.This strategy is employed in the multis
alar pro
essor [16℄,superthreading pro
essor [18℄, and tra
e pro
essor [14℄. If asequentially younger thread is both
ontrol independent anddata independent of the previous threads, however, theremay be merit in assigning a higher priority to it. The pro-
essor may also de
ide not to spawn a low-priority thread ifthere are not enough PEs.Besides these major fa
tors, thread sele
tion also involves
onsidering other, more subtle, fa
tors su
h as probabilityfor
ontrol mispredi
tion within a thread.
2.4 Prior Compiler Work on SpMTMost of the SpMT proposals advo
ate thread sele
tion at
ompile time, be
ause the hardware is quite limited in itsprogram partitioning
apability. There have been severalproposals and implementations of
ompiler-based thread gen-eration for SpMT systems [13℄ [18℄ [19℄. Among these, theAgassiz
ompiler [18℄ and
hip multipro
essing [13℄ fo
uson loop-level parallelism mainly. They generate threads formultiple iterations of the same loop. The Agassiz
om-piler also performs
ode s
heduling within the threads, soas to fa
ilitate pipelined exe
ution of the threads in the su-perthreaded pro
essor.The multis
alar
ompiler [19℄ was the �rst major e�ort topartition the entire program, in
luding the non-loop threads,for parallel exe
ution in an SpMT pro
essor. It uses a setof
ompiler heuristi
s to generate the threads; some of theheuristi
s are spe
i�
 to the multis
alar ar
hite
ture. Forexample, the multis
alar pro
essor uses a su

essor threadpredi
tion strategy, and for that ea
h thread is restri
ted tohave at most four su

essor threads. Also, the multis
alarpro
essor does not support nested threads; so threads arespawned and initiated only in the program order. However,our
ompiler framework supports nested threads. For someprogram stru
tures, this kind of spawning yields better per-forman
e, as will be evident from our simulation results. In

the multis
alar, a su

essor thread is spawned only from thebeginning of a thread. Our
ompiler supports a more relaxedspawning strategy: a thread
an be spawned from anywherewithin a thread. Sometimes, the spawning is delayed untila parti
ular bran
h or data dependen
e gets resolved.Apart from these SpMT
ompiler work, there has beensome notable
ompiler work for other parallelization models.Some of the notable ones among them are the IMPACT
om-piler [7℄, the EARTH-M
CAT
ompiler[17℄, and the XMT[12℄
ompiler. The IMPACT
ompiler takes sequential pro-grams, and performs a variety of optimizations, in
ludingpredi
ated exe
ution, superblo
k formation, and hyperblo
kformation [7℄. These optimizations are geared for wide-issueunipro
essors. The fo
us of our
ompiler framework, onthe other hand, is to exploit thread-level parallelism (TLP),whi
h
omplements instru
tion-level parallelism (ILP).The EARTH multi-threaded framework provides simpleextensions to the C language,
alled EARTH-C [11℄. Thisextension in
ludes simple
onstru
ts for spe
ifying
ontrolparallelism and data lo
ality, whi
h enable the programmerto spe
ify
oarse-grain parallelism. The EARTH-M
CAT
ompiler augments this
oarse-grain parallelism with �ne-grain parallelism that it dete
ts using dependen
e analysis.The main di�eren
e between our multi-threading frameworkand the EARTH framework is that the input to our
ompileris a sequential program written in a standard language su
has C. Furthermore, EARTH uses multithreading for hidinglaten
ies; a long laten
y operation and an instru
tion de-pending on it
annot therefore
oexist in the same thread.Moreover, EARTH does not support spe
ulative exe
ution;a thread starts exe
ution only when its data are available,and the threads are non-preemptive. On the other hand,our SpMT framework supports preemptive threads, and athread is spe
ulatively exe
uted when its data are not avail-able.XMT [12℄ is a multithreaded programming model wherethe programmer expli
itly spe
i�es the parallel threads. Ithas a simple thread exe
ution model. The main task of theXMT
ompiler is to perform thread s
heduling and performthe transition between the parallel and sequential environ-ments.One distin
t feature of our
ompiler framework is thatit starts with sequential programs written in ordinary lan-guages, and does not require the programmer to identifyor express parallelism. To the best of our knowledge, ourthread generation framework is the �rst
ompiler-based threadpartitioning s
heme that attempts to exploit
ontrol inde-penden
e and also permits nested threads.
3. COMPILER FRAMEWORK AND ALGO-

RITHMSIn this se
tion we present our
ompiler framework for par-titioning sequential programs into threads. Given a pro-gram, the
ompiler spe
i�es a set of thread spawning pointsand
orresponding thread starting points. The threads sharethe same register name spa
e and the same memory addressspa
e. An instru
tion
an spawn at most one thread; athread
an
olle
tively spawn several threads. A parti
u-lar thread
an also be spawned from di�erent threads. Thepro
essor supports
ontrol spe
ulative threads; i.e., a thread
an be spawned by an instru
tion before knowing for sureif
ontrol
ow will rea
h that thread. If it is found that the

SUIF
Front end

+
Optimizer

Code Thread
Generator

SUIF
MACHSUIF
Back end

+
Alpha Linker

Code
Threaded

Program Output

Simulator Output
Simulator
SPMT

 ExecutableAlphaProgram
C

Profiler
Information
ProfileFigure 2: The Layout of the Compiler and SimulatorFramework
ontrol spe
ulation was wrong, then the SpMT pro
essorperforms the required re
overy a
tions.The layout of our
ompiler framework, along with theSpMT simulator, is shown in Figure 2. While partition-ing the program into threads, the
ompiler has to
onsiderthree orthogonal fa
tors|data dependen
e,
ontrol depen-den
e, and thread size|together, to de
ide a good parti-tioning. It employs some metri
s to help in this endeavor.In the following subse
tions we dis
uss how the
ompilertakes
are of data dependen
e,
ontrol dependen
e and thethread size. Our
ompiler performs the program analysisand partitioning on a high level intermediate representation.The high level representation retains all of the sour
e levelpointer and type information, and hen
e it is possible totake into a

ount the dependen
es due to pointer aliasing.This permits more a

urate data dependen
e information towork with. Hen
e the
ompiler is able to extra
t parallelismeven from the pointer-intensive programs. We have usedthe pro�ling information to �nd out the most likely path,that the
ontrol will take and this information is used bythe
ompiler to spawn threads spe
ulatively.

3.1 Program ProfilingWe have used a separate
ompiler pass to instrument thesour
e
ode and gather the pro�ling information. In thepro�ling pass, we �nd out for every basi
 blo
k, whi
h basi
blo
k is most likely to be visited next. The
ompiler usesthis to �nd out the most likely path and also to estimatethe number of instru
tions that would be exe
uted betweentwo basi
 blo
ks.
3.2 Data Dependence ModelingIn our framework we have implemented two di�erent met-ri
s to quantify the data dependen
es between adja
ent threads.One metri
 is data dependen
e
ount and the other is datadependen
e distan
e. Our thread partitioning algorithm worksin multiple passes. In the �rst pass, the
ompiler buildsthe
ontrol
ow graph (CFG) 2 and also �nds out the datadependen
e information. It
al
ulates the read/write sets[1℄ for every instru
tion. We have implemented a pointeranalysis framework to obtain an improved data dependen
einformation.The pointer analysis helps us in getting more pre
ise read/writesets. After
al
ulating the read/write sets for every instru
-tion, data
ow analysis is performed. For every variable inthe read set of an instru
tion, the set of rea
hing de�nitions[1℄ are determined.
3.2.1 Data Dependence Count2In a
ontrol
ow graph (CFG), the basi
 blo
ks are repre-sented by th verti
es and the edges show the
ow of
ontrolbetween the basi
 blo
ks

y=a+b

y=a−b

p=x+r
q=y+r

arc

arc

B1

B2

B3

Dependence

Dependence

No. of Dependence arcs of block B3 = 2Figure 3: Data Dependen
e Ar
s between Basi
Blo
ksThe data dependen
e
ount (DDC) is the weighted
ountof the number of data dependen
e ar
s
oming into a basi
blo
k from other blo
ks. This models the extent of datadependen
e this blo
k has on other blo
ks. If the depen-den
e
ount is small then this blo
k is more or less dataindependent from other blo
ks and we
an begin a threadat the beginning of that basi
 blo
k. While
ounting thedata dependen
e ar
s, the
ompiler gives more weights tothe ar
s
oming from blo
ks that belong to threads that are
loser to the blo
k under
onsideration. The motivation isthat dependen
es from distant threads are likely to be re-solved earlier and hen
e the
urrent thread is less likely towait for data generated there. Furthermore, the
ompilergives less weightage to the data dependen
e ar
s
omingfrom the less likely paths. The rationale behind using thedata dependen
e
ount are twofold. First of all, it is simpleto
ompute. Also if the pro
essing elements do out of orderexe
ution then the data dependen
e distant model may notbe very a

urate be
ause it assumes serial exe
ution withinea
h thread. But in pra
ti
e, due to out of order exe
ution,instru
tions that are lower in the program order
an be ex-e
uted before the earlier instru
tions inside the threads. Sodata dependen
e
ount tries to model the extent of datadependen
e in the presen
e of out of order exe
ution.
3.2.2 Data Dependence DistanceThe data dependen
e distan
e between two basi
 blo
ksB1 and B2 models the maximum time that the instru
tionsin blo
k B2 will stall for instru
tions in B1 to
omplete,if B1 and B2 are exe
uted in parallel. For example,
on-sider the
ode segment in Figure 2. Instru
tions 2 and 3of B2 are data dependent on instru
tions 1 and 5 of B1,respe
tively. If B1 and B2 are exe
uted in parallel in twodi�erent PEs, then instru
tion 2 of B2 will not stall due tothe dependen
e, be
ause x has already been
omputed be-fore instru
tion 2 is exe
uted. However, instru
tion 3 of B2has to wait for B1 to exe
ute instru
tion 5. If we assumethat every instru
tion has a laten
y of 1
lo
k
y
le, then

B1
1. x = a + b

.

.

.
5 y = a- b;

B2

1. r = 10

2. p = x + r

3. q = y + r

distance = -1

distance = 5-3 = 2

DEPENDENCE DISTANCE[B1, B2] =

2Figure 4: Data Dependen
e Distan
e between TwoBasi
 Blo
ksinstru
tion 3 in B2 will stall for 2
y
les. So in this exam-ple, the maximum delay that will be en
ountered if B1 andB2 are exe
uted as parallel threads is 2
y
les. Note thatwhile
omputing the data dependen
e distan
e, we modelthat the instru
tions inside a single basi
 blo
k are exe
utedsequentially. Also note that the data dependen
e distan
ewill in
rease, if the basi
 blo
k B1 is exe
uted as a part ofa thread and there are more instru
tions before B1 and westart a new thread at the beginning of B2. Similarly thedata dependent distan
e will de
rease if B1 and B2 are partof the same thread and are exe
uted sequentially. As evidentfrom this example, it is not bene�
ial to exe
ute in paralleltwo basi
 blo
ks with large data dependen
e distan
es. Inorder to de
ide whether to start a new thread at a
ontrolindependent point, the
ompiler
al
ulates the data depen-den
e distan
e that will result if a new thread is started atthat point. If it results in a large data dependen
e distan
e,then the
ompiler starts a new thread at that point.
3.3 Program PartitioningThis subse
tion des
ribes the partitioning algorithm. Theoverview of the partitioning algorithm is given in Figure5. The
ompiler partitions the CFG into multiple threads,and also annotates the instru
tion from whi
h a parti
u-lar thread
an be spawned. In partition a pro
edure(), theloops are examined and partitioned �rst. In our
ompilerframework, the loops are treated as a spe
ial
ase of
ontroldependen
e. For loops the
ompiler
he
ks the dependen
ebetween two su

essive iterations of the loops, and if it isfound that spawning another thread for the next iterationis pro�table, then a thread is spawned. It may also happenthat, instead of spawning from the beginning of the loopfor the next iteration, the
ompiler spawn the next itera-tion from somewhere inside the loop. The large body ofthe loops may be further partitioned into multiple threadsas des
ribed below. While partitioning the loops, the
om-piler uses pro�le information on the number of iterationsand the number of dynami
 instru
tions in the loop. Typi-
ally the
ompiler does not want to exe
ute small loop body

in parallel. However, if the number of iterations is largethen the
ompiler would spawn the iterations as separatethreads. Otherwise the thread will be
ome very large. Forsmall loops, the parallelism
an be further in
reased by loopunrolling. For partitioning the nested loops, the
ompiler
onsiders both the inner loop and the outer loop for parallelexe
ution. Depending upon the available parallelism, thestru
ture of the loop bodies and the load balan
ing, eitherthe inner loop, or the outer loop or both
an be exe
uted inparallel.After partitioning the loops, further partitioning is doneby traversing the CFG from root. At every iteration of thedo loop in the partition a pro
edure() fun
tion, the
ompilerlooks ahead till the
ontrol independent basi
 blo
k of the
urrent basi
 blo
k under
onsideration and partitions theCFG between these to basi
 blo
ks into threads by
allingthe partition thread() fun
tion.The pseudo
ode for the implementation of partition thread()fun
tion is also shown in Figure 5. partition thread() takestwo basi
 blo
ks and the
urrent thread as inputs and ifpossible, partitions the program segment between this twobasi
 blo
ks into multiple threads by
alling itself itera-tively. It �rst �nds out the most likely path between thestart and the end blo
ks of the segment by using the pro-�le data. In �nd min delay() fun
tion the minimum delay is
omputed by using one of the data dependen
e models de-s
ribed in se
tion 3.2. It
onsiders only the most likely pathbetween the two basi
 blo
ks to
ompute the delay. The�nd min delay() fun
tion looks ahead and builds a possiblefuture thread starting at pdom blo
k using pro�le informa-tion and a threshold for thread size. After that it
al
ulatesthe likely delay that this thread will have to su�er whenit is spawned from an instru
tion
ontained in the
urrentthread. The
urrent thread is
onsidered to be
onsistingof basi
 blo
ks from previous
ontrol independent regionsand the basi
 blo
ks from the most likely path in the
ur-rent region. This fun
tion also identi�es the instru
tion inthe
urrent thread from where this future thread should bespawned in order to optimize the delay. Estimating the delayis one of the most important tasks in thread partitioning.After
al
ulating the possible delay, the partition thread()pro
edure goes on
reating the threads. To maintain loadbalan
ing between the threads, it uses a lower limit and anupper limit for the number of instru
tions that
an be exe-
uted as one thread. The
ompiler partitions the program soas to optimize the exe
ution in the most likely path. Howpartition a pro
edure() handles load balan
ing and depen-den
e delay together is explained using Figure 1.Several
ases that may arise during program partitioningare shown in Figure 1(a). The most likely path from A to Eis shown by thi
k arrows and this likely path is quite long.So the
ompiler re
ursively looks inside the path to furtherpartition it into smaller threads. However, if it is foundthat spawning a thread at E from an instru
tion in Thread1 results in a likely delay less than DELAY THRESHOLD,then the thread starting at E is spawned from Thread 1.In Figure 1 (a), the path between A and E is further par-titioned into a thread (i.e. Thread 2), and this is spawnedfrom Thread 1. Thread 3
an be spawned from inside Thread2 or Thread 1, depending on the possible delay. The latter
ase involves out-of-order spawning. This is done in orderto exploit the distant parallelism available in the program.In Figure 1(a), the region between C and D is small. If all

foreach loop L in p
partition_loop(L);

endfor;

start_block = p.entry_block;
pdom_block = postdom(start_block);
curr_thread = create_new_thread(start_block, null);
do {
 curr_thread = partition_thread(start_block,
 pdom_block, curr_thread);
 start_block = pdom_block;
 pdom_block = postdom(start_block);
} while (pdom_block != null);

}

 pdom_block = postdom(start_block);

min_delay = find_min_delay(start_block, pdom_block,

curr_thread, &spawn_instr);
thread_size = path.size + curr_thread.size;
if (is_medium(thread_size) && (min_delay< DELAY_THRESH))

curr_thread.add_blocks(path);
curr_thread = create_new_thread(pdom_block, spawn_instr);
curr_thread = thread_partition(pdom_block, end_block,
 curr_thread);
}

else if (is_big(thread_size)) {

curr_thread.add_block(path.first_block);
curr_thread = thread_partition(path.first_block,

pdom_block, curr_thread);

if (min_delay < DELAY_THRESH)
curr_thread = create_new_thread(pdom_block,

spawn_instr)’

curr_thread = thread_partition(pdom_block,
end_block, curr_thread);

}
else {

curr_thread.add_blocks(path);

end_block, curr_thread);
}

curr_thread.add_block(pdom_block);
curr_thread = thread_partition(pdom_block,

thread_partition_for_other_paths(start_block, end_block);
return curr_thread;
}

path = find_most_likely_path(start_block, pdom_block);

path,

partition_a_procedure(procedure p) {

partition_thread(start_block, end_block, curr_thread) {

Figure 5: The Program Partitioning Algorithmof the instru
tions belonging to the likely path between Cand D are in
luded in Thread 2, the size of the thread isnot going to violate the upper limit. So the
ompiler doesnot spawn a new thread at D. Rather, it in
ludes all blo
ksbetween C and D in Thread 2 and looks beyond D to �ndthe next potential thread starting point.The fun
tion
alls are handled automati
ally in the parti-tion thread() pro
edure. The
ompiler terminates the basi
blo
k after a fun
tion
all. So the instru
tions following afun
tion
all appear in the post dominator blo
k of the basi
blo
k
ontaining the fun
tion
all. When the
ompiler en-
ounters a fun
tion
all, the
ompiler takes into a

ount thenumber of dynami
 instru
tions to
omplete this fun
tion
all. The
ompiler performs some simple inter-pro
eduralanalysis like reads and writes into the global variables andthe referen
e parameters, to determine the possible delay. Ifthe
alled fun
tion is a small one, then it is
ompletely in-
luded in the
urrent thread. However, for a
all to a biggerfun
tion, a new thread may start exe
uting after the fun
-tion
all, depending upon the possible delay and the threadsize. In that
ase, out-of-order spawning may take pla
e, ifthat fun
tion is partitioned further into threads.The
ompiler also
he
ks the paths that are not the likelypaths and partitions them as well. If at run-time,
ontrolgoes into those unlikely paths, then the threads spawnedspe
ulatively are aborted. But the threads that are not
on-trol dependent on the aborted threads need not be aborted.For example,
onsider Figure 1 (a). If from A, instead offollowing the most likely path, the
ontrol goes to basi
blo
k F , when both threads 2 and and 3 have been spawned,thread 2, would be aborted, but not thread 3, as E is
ontrolindependent of A.

3.4 Implementation OverviewOur
ompiler framework is implemented on the SUIF-Ma
hSUIF platform [6℄. The layout of the
omplete frame-work is shown in Figure 2. All of the
ompiler analysis andthread partitioning are done at the high-level intermediaterepresentation (IR) of SUIF. We have
hosen the SUIF plat-form to implement our
ompiler system be
ause it providesa modular and
exible infrastru
ture to develop
ompileroptimizations. SUIF �rst translates high-level sour
e
odeinto an IR, and then performs
ode optimization throughseveral independent passes on that IR. We �nd it easier towork with the SUIF IR, and to integrate our own
ompilerpasses in that framework. While transforming high-levelprograms into IR, SUIF retains all of the relevant informa-tion from the high level sour
e program. This is parti
ularlyhelpful for
arrying out optimization su
h as pointer anal-ysis. Therefore, the
ompiler
an perform more a

urateprogram analysis. Moreover, the instru
tions in the SUIFIR are very
lose to the assembly level instru
tions; thus,the estimation of thread sizes done at IR level remains validin the �nal assembly level as well. In SUIF, it is possibleto annotate the instru
tions with ne
essary information likedata dependen
e, and use them in separate passes after-wards. Also, the SUIF pa
kage
ontains many optimizationmodules, whi
h improve the quality of the
ode produ
ed.We used the Ma
hSUIF [15℄ framework to generate Alphaassembly
ode from the SUIF IR. We have implemented thepro�ling phase also in the SUIF framework.
4. EXPERIMENTAL EVALUATIONTo study the e�e
tiveness of our thread partitioning s
hemes,

we
ondu
ted a simulation-based evaluation. This se
tiondetails the simulation framework and the simulation resultsobtained.
4.1 Experimental Setup

4.1.1 Experimental MethodologyThe
entral goal of these experiments is to understand thepotential of di�erent thread partitioning algorithms. Ourobje
tive is not to evaluate the performan
e of a spe
i�
(multithreaded) mi
roar
hite
ture. While using a detailedmi
roar
hite
ture simulator, if the performan
e is poor, wegain little insight on why it does not work, or whether it isthe thread partitioning s
heme or ma
hine model (or both)that should be improved. As a
onsequen
e, poor resultsmay not re
e
t on any inherent limitations of the threadpartitioning algorithm, but rather the way it was appliedin a mi
roar
hite
ture. To sear
h through a large spa
e ofthread partitioning s
hemes e�e
tively, we use a tra
e-drivensimulator. If a partitioning s
heme does not work well withthis simulation framework, it will not work well on any realpro
essor of a similar design.This experimental analysis serves an important fun
tionin showing the limits of
ertain thread partitioning algo-rithms, su
h as parallelizing only loops, and re
ognizing is-sues that are worthy of further attention. Our SpMT sim-ulator models a multi-threaded pro
essor on top of a tra
e-driven simulator. The modeled SpMT pro
essor
onsistsof multiple pro
essing elements (PEs). Ea
h PE has itsown program
ounter, fet
h unit, de
ode unit, and exe
utionunit, to fet
h and exe
ute instru
tions from a thread. ThePEs are
onne
ted together by an inter
onne
tion network.The number of PEs, issue size per PE, et
., are parameter-ized. The simulator uses the Alpha ISA. For the sake ofsimpli
ity, we assume that ea
h PE takes one
y
le to exe-
ute ea
h instru
tion. We model a memory hierar
hy witha shared L1 d-
a
he with 1
y
le laten
y and a memory a
-
ess laten
y of 10
y
les. When en
ountering a
onditionalbran
h instru
tion in a thread, its PE
onsults a bran
h pre-di
tor for making a predi
tion. We also model a hybrid datavalue predi
tor [20℄ for predi
ting the results of instru
tionswhose operands are unavailable at the time of fet
hing.The
ode exe
uted in the supervisor mode are unavailableto the simulator, and are therefore not taken into a

ount inthe parallelism studies. The library
ode is not parallelized,as we use the standard libraries in our experiments. Thelibrary
ode therefore exe
utes in serial mode, providing a
onservative treatment to our parallelism values.
4.1.2 Hardware Parameters UsedFor our simulation we have used a PE issue width of 4instru
tions per
y
le and the PEs use out-of-order issue.Ea
h PE has an instru
tion window of 128 instru
tions. TheL1
a
he size is 256 Kbytes. There is a 2-
y
le overheadin assigning a thread to a PE and thread pre-emption alsoin
urs a 2
y
le penalty. Furthermore, it assumes a 2-
y
lelaten
y for forwarding register values a
ross multiple PEs.
4.1.3 BenchmarksTable 1 lists the ben
hmark programs used for the evalua-tion of the
ompiler framework. We have used �ve programsfrom SPEC2000, one from SPECINT95, and six from theOlden ben
hmark suite. All of these programs are written in

C. Our multi-threading
ompiler framework partitions intothreads all of the sour
e
ode, ex
ept the library
ode andthe system
ode. Ea
h ben
hmark is exe
uted for 300 millioninstru
tions, ex
ept for perimeter, whi
h
ompleted exe
u-tion after 89 million instru
tions. For SPEC ben
hmarkswe have used the train data sets as inputs. Most ben
hmarkprograms spend some time in the beginning for initializingdata stru
tures and reading inputs, and these parts of theprograms do not re
e
t the a
tual program
hara
teristi
s.So we have used a \fast forward" mode to skip these initial-ization phases, after whi
h the statisti
s are
olle
ted. Thenumber of instru
tions that have been fast forwarded areshown in Table 1.
4.1.4 Default Partitioning SetupAs there are many di�erent parameters, it is diÆ
ult toperform a
ompletely orthogonal set of experiments. In-stead, we de�ne a default setup, and vary one parameterat a time. Thus, when the nature of threads is varied, therest of the parameters are kept at their default values. Forthe default
on�guration, we allow all kinds of threads (i.e.,spe
ulative threads,
ontrol independent threads, and loopbased threads), data dependen
e distan
e based modeling ofinter-thread data dependen
es, and data value predi
tion.
4.2 Effectiveness of the Partitioning AlgorithmTo evaluate the e�e
tiveness of our partitioning algorithm,we measure the speedup obtained by in
reasing the numberof PEs from 1 to 6 with our default
on�guration. Figure 6shows the speedup obtained over a single PE. In the �gure,ea
h bar along the X-axis represents a ben
hmark programand the Y-axis represents the speedup over single PE. Ta-ble 2 presents some thread-related statisti
s for the default
on�guration.The speedup with 6 PEs ranges from 1.62 for health to4.68 for mst. Most of the ben
hmarks show good speedupand s
alability as we in
rease the number of PEs.
raftyspends most of the time outside loops3 and the fa
t that itshows good speedup and s
alability suggests that the
om-piler has been able to extra
t parallelism from non-loop partsof the
ode e�e
tively. This is true for the other ben
h-marks like vpr, perimeter, power, tsp, and treeadd as well.perimeter and treeadd do not have loops; they have re
ur-sive fun
tion
alls instead. All these ben
hmarks exe
ute alarge per
entage of spe
ulative and non-spe
ulative threads.Ben
hmarks ijpeg, m
f, twolf, and health show modestspeedups. The s
alability is also quite low. In ijpeg, m
f,twolf, and health, most of the time is spent in loops, andthese loops have a large number of loop-
arried dependen
es.So these programs only show moderate speedups with multi-threading. Moreover, we see from Table 2 that the averagenumber of dynami
 instru
tions per thread for health isonly 8.89, whi
h is quite low. Therefore, in health, the PEsare not able to exploit thread-level parallelism well, whi
ha

ounts for its modest speedups and poor s
alability. Onaverage, we get a speedup of 2.89 with 6 PEs.From Table 2 we see that ex
ept for mst and health, theaverage thread sizes are also reasonable. In health there isa small loop body that is getting exe
uted in parallel most3In this
ontext, by loops, we do not mean those loops whereloop bodies
ontain fun
tion
alls su
h that su

essive iter-ations of the loops are thousands to millions of instru
tionsapart, e.g., the pro
essing loop in the main() fun
tion

Ben
hmark Program Lines of No. ofSuite Name Des
ription Sour
e Instrs FastCode ForwardedSPEC 95 ijpeg Compresses and De
ompresses ppm �le 28566 250000000
rafty Chess Program 20294 100000000equake Finite element simulation: earthquake modeling 1513 75000000SPEC2000 m
f Minimum
ost network
ow solver 1909 100000000twolf Pla
e and route simulator 19762 500000000vpr Cir
uit pla
ement and routing 16973 150000000health Columbian Health Care Simulator 505 0mst Minimum Spanning Tree 417 27000000perimeter Quad Tree 290 0Olden power Power Pri
ing Problem 616 0treeadd tree traversal Problem 121 0tsp Traveling Salesman Problem 521 0Table 1: Ben
hmark ProgramsProgram Avg. Thread Size Thread TypeName (Dyn. Instrs) Spe
ulative Non-spe
ulative Loop-
entri
ijpeg 75.67 21.01% 0.65% 78.32%
rafty 81.55 56.27% 11.05% 32.68%equake 27.99 0.50% 0.80% 98.70%m
f 33.20 0.15% 0.07% 99.78%twolf 33.46 4.17% 3.21% 92.61%vpr 83.77 28.95% 17.05% 53.99%health 8.89 0.50% 0.00% 99.50%mst 574.07 0.00% 0.00% 100.00%perimeter 105.88 87.72% 12.28% 0.00%power 42.62 6.47% 71.69% 21.84%treeadd 106.48 99.99% 0.01% 0.00%tsp 102.84 11.08% 0.13% 88.78%Table 2: Thread Statisti
sof the time resulting in small threads. On the other hand,in mst, the loop-
entri
 thread that is getting exe
uted mostof the time
ontains library routine
alls that our
ompilerdid not partition, resulting in very large thread size.
4.3 Experimentation with Thread TypeOur next set of experiments fo
us on varying the natureof threads. In parti
ular, we simulate three di�erent
om-bination of threads: (i) loop-based threads, non-spe
ulativethreads, and spe
ulative threads � i.e our default
on�gu-ration; (ii) loop-based threads and non-spe
ulative threads;and (iii) loop-only threads. Figure 7
ompares (i) and (ii)and (iii). In this �gure, the X-axis denotes the ben
hmarks,and the Y-axis denotes the speedup with 6 PEs. For ea
hben
hmark, three bars are shown,
orresponding to the threedi�erent
ombinations of threads. We have tried to manu-ally validate that loop-
entri
 thread partitions are indeedthe good ones. It is not feasible to do that manually for theother kinds of threads.On analyzing the results of Figure 7, we
an see that loops-only threads are quite insuÆ
ient to harness the parallelismpresent in
rafty, vpr, perimeter, power, and tsp. As men-tioned earlier, perimeter and treeadd do not
ontain anyloops. Moreover, from Table 2, we �nd that they primarily
onsist of spe
ulative threads. So it is not surprising to seethat their performan
e does not improve even after in
lud-ing
ontrol independent threads with loop-
entri
 threads.Both these programs have re
ursive fun
tion
alls and the

ijpeg
crafty

equake
mcf

twolf vpr
health mst

perim
eter

power

tre
eadd tsp

avg
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

S
pe

ed
up

 o
ve

r
on

e
P

E

6
5
4
3
2

PEs

Figure 6: Speedup with Varying Number of PEs

ijpeg crafty equake mcf twolf vpr health mst perimeter power treeadd tsp avg0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

S
pe

ed
up

 w
ith

 6
 P

E
s

Speculative + Non Speculative + Loop Threads
Non Speculative + Loop Threads
 Loop Threads

Thread Types

Figure 7: Speedups with Di�erent Types of Threadsfun
tions are
alled
onditionally. These fun
tion
alls
anbe exe
uted in parallel and by exe
uting them spe
ulativelyit is possible to get large parallelism. In
rafty, only a lit-tle time is spent in the loops, and also the loops are notquite parallelizable. So we get small speedup with loop-
entri
 threads only. From Table 2 we see that more than50% of the threads are spe
ulative threads and so
ontrol-independent threads along with loop-
entri
 threads
ouldnot exploit all the available parallelism in the program. Intsp, although only 11% of the threads are spe
ulative, theyseem to play a key role in exploiting parallelism. It maybe possible that by not spawning the spe
ulative threads,load balan
ing and thread s
heduling get a�e
ted, therebya�e
ting the performan
e. In power, 72% of the threads arenon-spe
ulative and only 6% are spe
ulative. So by exe
utingnon-spe
ulative threads along with loop-
entri
 threads, it ispossible to a
hieve
omplete speedup. Ben
hmarks equake,m
f, health, and mst spend most of the time in paralleliz-able loops. So these programs are able to harness almostall of the available parallelism by exe
uting the loop-
entri
threads only. Although ijpeg and vpr
ontain a signi�
antper
entage of spe
ulative threads, the results show that itis possible to exploit all of the available parallelism with-out using them. This is be
ause the load balan
ing remainsuna�e
ted even after ignoring the spe
ulative threads andthe s
heduling also do not get a�e
ted adversely. Moreover,the ILP gets boosted in the bigger threads resulting a goodspeedup.
4.4 Experimentation with Data Dependence

ModelingOur next set of experiments fo
us on the type of datadependen
e modeling used by the
ompiler while de
idingthread partitioning. In parti
ular, we look at two models:one based on data dependen
e
ount and the other basedon data dependen
e distan
e. Figure 8 presents these re-sults; these results are a mixed bag. For ijpeg, vpr, mst,and perimeter, data dependen
e distan
e-based modelinggives better parallelism, and for
rafty, and m
f, twolf,and treeadd it is just the opposite. For other ben
hmarks,

the speedups are almost the same. Ex
ept for perimeterand vpr in all other
ases the di�eren
es in speedups arenot appre
iable. On looking into the partitioning done forperimeter, we found that the
ount based modeling was
onservative and failed to identify a partitioning opportu-nity. It honored a data dependen
e and restrained frompartitioning, whereas the distan
e based modeling ignoredthat dependen
e be
ause it estimated that the subsequentthreads did not have to wait for it. At runtime this datadependen
e did get resolved early, and so the performan
eof the latter partitioning be
omes mu
h better than the for-mer one. From the results, we see that both the models arequite e�e
tive in representing the data dependen
e in theprograms.
4.5 Effect of Out-of-Order SpawningOur last set of experiment fo
us on the e�e
t of out-of-order thread spawning. Our
ompiler framework
an theo-reti
ally support out-of-order spawning to an in�nite depth,but it is not pra
ti
al for the SpMT hardware to supportin�nite depth of out-of-order spawning, be
ause of limitedbu�er spa
e. Also, in order to support out-of-order threadspawning, the SpMT pro
essor may have to frequently pre-empt some of the (sequentially younger) threads, therebyin
reasing the overhead. So, ideally we would like to ex-tra
t as mu
h parallelism as possible without any out-of-order spawning or at a low out-of-order spawning depth.In this set of experiments, we
ompare the speedups ob-tained with 4 di�erent depths of out-of-order spawning: (i)sequential spawning only, (ii) out-of-order spawning depthof 2, (iii) out-of-order spawning depth of 4, and (iv) out-of-order spawning depth of in�nity. The default
on�gurationassumes that the PEs
an bu�er an in�nite number of su
-
essor threads.The results are shown in Figure 9. Ben
hmarks ijpeg,m
f, twolf, health, and mst show no
hange in speedup withnesting. This implies that even in the default
on�guration,the threads are spawned and exe
uted in sequential order.Ben
hmarks
rafty, vpr, and tsp show a small improve-ment with out-of-order spawning. In the
ase of equake,

ijpeg crafty equake mcf twolf vpr health mst perimeter power treeadd tsp avg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

S
pe

ed
up

 o
ve

r
on

e
P

E
6
5
4
3
2

PEs

a a a a a a a a a a a a ab b b b b b b b b b b b bFigure 8: Speedups with Di�erent Dependen
e Modeling a: Data Dependen
e Distan
e; b: Data Dependen
eCount

ijpeg crafty equake mcf twolf vpr health mst perimeter power treeadd tsp avg0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

S
pe

ed
up

 w
ith

 6
 P

E
s

0
2
4
Infinite

Out-of-order Spawning Depth

Figure 9: Speedups with di�erent Out-of-Order Spawning Depths

there is a drop of performan
e for a depth of 2, and then itagain goes up. This is be
ause in equake, with out-of-orderspawning depth of 2, the pre-emption
ost overrides the ad-vantage of having out-of-order spawning of depth 2, therebylowering the speedup. In power, perimter, and treead thereis signi�
ant in
rease in speedup even at depth 2. The in-
rease in speedup is maximum for power. In power, the pro-gram spends about 17% time in a big loop that
annot beparallelized be
ause of the size and data dependen
e. How-ever, the loop body
ontains
alls to fun
tions that
an beexe
uted in parallel. The �rst fun
tion
alled is again parti-tioned into two threads. With sequential spawning, the se
-ond fun
tion starts exe
ution only after the se
ond thread ofthe �rst fun
tion starts exe
uting. However, by allowing anout-of-order spawning depth of 1, the se
ond fun
tion
anbe exe
uted in parallel with the �rst fun
tion, resulting toa signi�
ant improve in performan
e.
5. CONCLUSIONSSpe
ulative multithreading (SpMT) is emerging as an im-portant parallelization tool for non-numeri
 programs. Ex-amples are the multis
alar pro
essor [4℄ [16℄, the SPSM pro-
essor [3℄, and the de
oupled
ontrol
ow pro
essor [8℄. All ofthese use multiple hardware sequen
ers to fet
h and exe
utemultiple threads in parallel. Given the in
reasing interestin mainstream mi
ropro
essor design, we expe
t that futurepro
essors will attempt to exe
ute multiple threads in oneway or another.Judi
ious partitioning of a program into threads involvesa lot of analysis, whi
h makes it diÆ
ult to be done in hard-ware. Previous
ompiler e�orts have fo
used on identifyingloop-based threads and spe
ulative threads. A limitation ofthis approa
h is that bran
h mispredi
tions may
ause all ofthe subsequent threads to be dis
arded, without retainingany
ontrol-independent threads that may be present in thepro
essor. The use of non-spe
ulative threads has the poten-tial to extra
t additional amounts of parallelism, espe
iallyfor non-numeri
 programs.This paper presented a general
ompiler framework forpartitioning a sequential program into multiple threads forexe
ution in a SpMT pro
essor. Our
ompiler framework isgeared for identifying loop-based threads, spe
ulative threads,and non-spe
ulative threads. In addition, it also supportsnested threads, and spawning from anywhere in a thread.While performing the program partitioning, the
ompilernot only
onsiders
ontrol independen
e information, butalso
onsiders data dependen
e information and pro�le-basedinformation on the most likely
ontrol
ow paths.We have implemented this
ompiler framework on theSUIF-Ma
hSUIF platform. Our framework is is able to par-tition into threads large programs, su
h as the SPEC ben
h-mark programs. A simulation-based evaluation of the gen-erated threads indi
ate that an average speed up of up to 3
an be obtained with 6 pro
essing elements for SPEC INTprograms and Olden programs by using spe
ulative multi-threading. This is very promising, given that non-numeri
programs are inherently diÆ
ult to parallelize. Our detailedexperimental analysis has in
reased our understanding ofthe di�erent fa
tors that a�e
t performan
e. These anal-yses show that the
ombination of loops, spe
ulative, andnon-spe
ulative threads has the potential to extra
t thread-level parallelism in non-numeri
 programs.

6. REFERENCES[1℄ A. Aho, R. Sethi, and J. Ullman, Compilers: Prin
iples,Te
hniques, and Tools. Addison-Wesley, Reading, MA,1986.[2℄ R. Cytron, J. Ferrante, B. Rosen, M. Wegman, andF. Zade
k. EÆ
iently
omputing stati
 singleassignment form and the
ontrol dependen
e graph.ACM Trans. Program. Lang. Syst., 13(4):451{490,O
tober 1991.[3℄ P. Dubey, K. O'Brien, K. M. O'Brien, and C. Barton,Single-Program Spe
ulative Multithreading (SPSM)Ar
hite
ture: Compiler-assisted Fine-GrainedMultithreading, Pro
. International Conferen
e onParallel Ar
hite
ture and Compilation Te
hniques(PACT '95), 1995.[4℄ M. Franklin, The Multis
alar Ar
hite
ture, Ph.D.Thesis, Te
hni
al Report 1196, Computer S
ien
esDepartment, University of Wis
onsin-Madison, 1993.[5℄ M. Franklin and G. S. Sohi, ARB: A HardwareMe
hanism for Dynami
 Reordering of MemoryReferen
es, IEEE Transa
tions on Computers, Vol. 45,No. 5, pp. 552-571, May 1996.[6℄ M. W. Hall, J. M. Anderson, S. P. Amarasinghe,B. R. Murphy, S. W. Liao, E. Bugnion, and M. S. Lam.Maximizing Multipro
essor Performan
e with the SUIFCompiler. IEEE Computer, De
ember 1996.[7℄ W. W. Hwu, R. E. Hank, D. M. Gallagher,S. A. Mahlke, D. M. Lavery, G. E. Haab,J. C. Gyllenhaal, and D. I. August. CompilerTe
hnology for Future Mi
ropro
essors. Pro
. IEEE,83(12):1625{1640, De
ember 1995.[8℄ S. Jayashree and S. Vajapeyam, Exploiting Parallelisma
ross Basi
 Blo
ks via De
oupled Control Flow,Te
hni
al Report TR No. IIS
-CSA-95-01, Departmentof Computer S
ien
e and Automation, Indian Instituteof S
ien
e, Mar
h 21, 1995.[9℄ R. Joy and K. Kennedy. President's InformationTe
hnology Advisory Committee (PITAC) - InterimReport to the President. National Coordination OÆ
efor Computing, Information and Communi
ation, 4201Wilson Blvd, Suite 690, Arlington, VA 22230, August10, 1998.[10℄ M. H. Lipasti and J. P. Shen. Ex
eeding the Data
owLimit via Value Predi
tion. Pro
. 19th AnnualInternational Symposium on Computer Ar
hite
ture,46{57, 1992.[11℄ O. C. Maquelin, H. H. J. Hum, and G. R. Gao. Costsand Bene�ts of Multithreading with O�-the-Shelf RISCPro
essors. Pro
. First International EURO-PARConferen
e, 1995.[12℄ D. Naishlos, J. Nujman, C.-W. Tseng and U. Vishkin,Evaluating Multi-threading in Prototype XMTEnvironment, Pro
. 4th Workshop on Multi-ThreadedExe
ution, Ar
hite
ture and Compilation(MTEAC-2000)[13℄ K. Olukotun, et al. A Chip-Multipro
essorAr
hite
ture with Spe
ulative Multithreading. IEEETransa
tions on Computers, September 1999.[14℄ E. Rotenberg, Q. Ja
obson, Y. Sazeides, and J. E.Smith, Tra
e Pro
essors, Pro
. 30th InternationalSymposium on Mi
roar
hite
ture, pp. 138-148, 1997.[15℄ M. D. Smith and G. Holloway. An Introdu
tion to

Ma
hine SUIF and Its Portable Libraries for Analysisand Optimization.[16℄ G. S. Sohi and S. E. Brea
h, and T. N. Vijaykumar.Multis
alar Pro
essors. Pro
. 22nd InternationalSymposium on Computer Ar
hite
ture (ISCA),414{425, 1995.[17℄ X. Tang. Compiling For Multithreaded Ar
hite
turesPh.D. Thesis, Department of Ele
tri
al Engineering,University of Delaware, 1999.[18℄ J-Y. Tsai and P-C. Yew. The SuperthreadedAr
hite
ture: Thread Pipelining with Run-Time DataDependen
e Che
king and Control Spe
ulation. Pro
.Int'l Conf. on Parallel Ar
hite
tures and CompilationTe
hniques (PACT), 1996.[19℄ T. N. Vijaykumar and G. S. Sohi. Task Sele
tion for aMultis
alar Pro
essor. Pro
. 31st InternationalSymposium on Mi
roar
hite
ture (MICRO-31), 1998.[20℄ K. Wang and M. Franklin, Highly A

urate DataValue Predi
tion using Hybrid Predi
tors, Pro
.International Symposium on Mi
roar
hite
ture(MICRO-30), pp. 281-290, 1997.

