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ABSTRACTSpe
ulative multithreading (SpMT) promises to be an ef-fe
tive me
hanism for parallelizing non-numeri
 programs,whi
h tend to use irregular data stru
tures with pointersand have 
omplex 
ows of 
ontrol. Proper thread sele
tionis 
ru
ial to obtaining good speedup in an SpMT system.This paper presents a 
ompiler framework for partitioninga sequential program into multiple threads for parallel exe-
ution in an SpMT system. This framework is very general,and support a wide variety of threads, su
h as spe
ulativethreads, non-spe
ulative threads, loop-
entri
 threads, andout-of-order thread spawning. To do eÆ
ient partitioning,the 
ompiler uses pro�ling, intra-pro
edural pointer anal-ysis, data dependen
e information and 
ontrol dependen
einformation. Our 
ompiler framework is implemented on theSUIF-Ma
hSUIF platform, and is able to partition large pro-grams, su
h as the SPEC ben
hmarks. A simulation-basedevaluation of the generated threads shows that an averagespeedup of 3 
an be obtained with 6 pro
essing elements fornon-numeri
 programs. This speedup redu
es to 2 if we useonly loop-based threads.Keywords: data dependen
e, parallelization, spe
ulativemultithreading (SpMT), thread-level parallelism (TLP)
1. INTRODUCTIONRedu
ing the 
ompletion time of a single 
omputationtask has been one of the de�ning 
hallenges of 
omputers
ien
e and engineering for the last several de
ades. Theprimary means of in
reasing pro
essor performan
e, besidesin
reasing the 
lo
k speed and redu
ing the memory laten
y,has always been the exploitation of the inherent parallelismpresent in programs, with the use of a 
ombination of soft-ware and hardware te
hniques. Parallelization has been agood su

ess for s
ienti�
 appli
ations, but not quite so forthe non-numeri
 appli
ation. Non-numeri
 programs use ir-regular data stru
tures and have 
omplex 
ontrol 
ows thatmake them hard to parallelize.
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The emergen
e of the spe
ulative multithreading (SpMT)model in the last de
ade has provided the mu
h awaitedbreakthrough for the important set of non-numeri
 appli
a-tions. Many studies on spe
ulative multithreading (SpMT)
on�rm that there is signi�
ant performan
e potential in ex-e
uting multiple threads from the same program in parallel.Hardware support for spe
ulative thread exe
ution makesit possible for the 
ompiler to parallelize sequential appli
a-tions without worrying about data and 
ontrol dependen
es.However, hardware support for spe
ulation is not suÆ
ientto a
hieve high speedup from the appli
ation programs andwe need good 
ompiler support as well to extra
t parallelismfrom the programs. In 
ompiling programs for the multi-threaded ar
hite
ture the most important task is thread par-titioning, i.e., partitioning a program into separate threadsof exe
ution.The major 
ontribution of this paper is to present andevaluate a general 
ompiler framework for SpMT systems.This 
ompiler partitions sequential programs into multiplethreads for parallel exe
ution in an SpMT pro
essor. Our fo-
us is primarily on non-numeri
 appli
ations, whi
h are gen-erally more diÆ
ult to partition into threads. Traditionalwork in parallelization has targeted s
ienti�
 appli
ations,and has fo
ussed mainly on loops where the loop bounds aregenerally prede�ned and the loops a

ess regular data stru
-tures like arrays. On the other hand, in non-numeri
 appli-
ations, the loops often have large loop bodies with 
omplex
ontrol 
ow, loop-
arried dependen
es and loop bounds that
annot be resolved stati
ally. So these loops 
annot be easilyparallelized with traditional te
hniques. Also, unlike s
ien-ti�
 appli
ations, non-numeri
 appli
ations a

ess irregulardata stru
tures with an abundan
e of pointers. Moreover,sometimes the non-numeri
 programs spend more time out-side the loops. So many of the te
hniques used for s
ienti�
programs 
annot be dire
tly applied to non-numeri
 pro-grams to extra
t parallelism.To obtain good speedup for non-numeri
 programs, our
ompiler 
onsiders both the loop regions and the non-loopregions of programs. It uses 
ontrol dependen
e informationand pro�le information to guide the partitioning. We haveused SUIF and MACHSUIF 
ompiler platforms to developour 
ompiler. Using our 
ompiler framework, we have beenable to 
ompile a wide range of non-numeri
 appli
ations,in
luding programs from the SPEC 2000 and Olden ben
h-mark suites.Our work di�ers from earlier works on SpMT 
ompilation[13℄ [18℄ [19℄ primarily in 4 ways: (i) Most of the earlier



work [13℄ [18℄ primarily targets loop-level parallelism only,whereas our 
ompiler targets other kinds of parallelism also.(ii) Our SpMT model is more general than the one usedin earlier 
ompiler work, and supports spawning of threadsfrom anywhere in a thread; in [19℄ a thread 
an be spawnedonly from the beginning of another thread. (iii) Our 
om-piler framework supports out-of-order spawning of threads,whereas earlier 
ompilers support only sequential spawningof threads. (iv) Our Compiler framework expli
itly exploits
ontrol dependen
e information in forming the threads.Our studies with di�erent types of 
ompiler-generated threadshave led to the following 
on
lusions:� Signi�
ant speedups 
an be obtained with low degreesof multithreading for the non-numeri
 appli
ations.� For non-numeri
 programs, it is not suÆ
ient to exploitloop-level parallelism only, the form of parallelism thatis almost ex
lusively targeted in prior resear
h; it isimportant to look at other types of threads as well.� For non-numeri
 programs, it is important to spawnthreads spe
ulatively.� For non-numeri
 programs, it is important to exploit
ontrol independen
e.The rest of this paper is organized as follows. Se
tion 2provides ba
kground information on SpMT, in
luding thethread exe
ution model and various issues related to threadpartitioning. Se
tion 3 details our SpMT 
ompiler frame-work, and thread partitioning algorithm. Se
tion 4 presentsthe simulation environment and a detailed evaluation of ourthread partitioning algorithm. Se
tion 5 presents a sum-mary and the major 
on
lusions of this paper.
2. SPECULATIVE MULTITHREADING (SPMT)Compilers and programmers have made signi�
ant progressin parallelizing regular numeri
 appli
ations. However, theyhave had little or no su

ess in doing the same for highlyirregular numeri
 or espe
ially non-numeri
 appli
ations [9℄.In su
h appli
ations, 
ontrol 
ow as well as memory ad-dresses often depend on run-time behavior, whi
h makesit very diÆ
ult to partition a program into independentthreads.This exe
ution model is 
loser to sequential 
ontrol 
ow,and envisions a stri
t sequential ordering among the threads.Threads are extra
ted from sequential 
ode and are spe
ula-tively run in parallel, without violating the sequential pro-gram semanti
s. In 
ase of misspe
ulation, the results ofthe spe
ulative thread and of subsequent threads are dis-
arded. The 
ontrol 
ow of the sequential 
ode imposes anorder on the threads, we 
an use the terms prede
essor andsu

essor to qualify the relation between any given pair ofthreads. This means that inter-thread 
ommuni
ation be-tween any two threads (if any) is stri
tly in one dire
tion, asdi
tated by the sequential thread ordering. Thus, no expli
itsyn
hronization operations are ne
essary, as the sequentialsemanti
s of the threads guarantee proper syn
hronization.This relaxation allows us to \parallelize" non-numeri
 ap-pli
ations without expli
it syn
hronization, even if there isa potential inter-thread data dependen
e.Example SpMT models are the multis
alar model [4℄ [16℄,the superthreading model [18℄, and the tra
e pro
essing model

[8℄ [14℄. SpMT is appealing be
ause it provides the power ofparallel pro
essing to speed up ordinary appli
ations, whi
hare typi
ally written as sequential programs.
2.1 SpMT Thread Communication ModelInter-thread 
ommuni
ation refers to passing data valuesbetween two or more threads. Communi
ation 
an takepla
e at the level of register spa
e, memory address spa
e,and I/O spa
e, with the registers being the level 
losest tothe pro
essor. The most general model, whi
h is followedin most of the SpMT proposals, is to let inter-thread 
om-muni
ation take pla
e at all of these levels. Thus, multi-ple threads share the same register name spa
e (and thesame memory address spa
e). Inter-thread 
ommuni
ationhappens impli
itly due to reads and writes to the sharedregisters1 (and to shared memory lo
ations). Our 
om-piler framework also uses this most general 
ommuni
ationmodel.
2.2 Spawning StrategiesIn an SpMT pro
essor, a dynami
 thread's lifetime has3 important events: spawning, a
tivation, and retirement.Spawning refers to 
reating a new instan
e of a stati
 thread,and is analogous to the fork me
hanism used in 
onventionalparallel pro
essing. A
tivation refers to assigning a spawnedthread to a pro
essing element (PE). Retirement refers tothe a
t of a 
ompleted thread relinquishing its PE (after ithas 
ommitted its results).
2.2.0.1 Spawning Point:.An important issue in an SpMT model 
on
erns the pointsin a thread from where other threads are spawned. Twopossibilities exist:� Spawning from only the beginning of a thread� Spawning from anywhere in a threadThe �rst 
ase uses an eager spawning strategy, with a viewto maximize PE utilization by minimizing the time an idlePE waits for a thread to be a
tivated in it. A potentialdrawba
k with this approa
h is that a spe
ulative threadmay be spawned prematurely without 
onsidering enoughrun-time information. Furthermore, often there may not bean idle PE at the time a thread is spawned. In the se
ondapproa
h, a thread 
an be spawned from anywhere within athread. This allows the spawning to be delayed, say, until aparti
ular bran
h or data dependen
e gets resolved.
2.2.0.2 Loop Iterations versus Non-loop Threads:.Loop iterations have been the traditional target of paral-lelization at all levels|programmer, 
ompiler, and hardware|and form an obvious 
andidate for forming threads. Ea
hiteration of a loop 
an be spe
i�ed as a thread that runsin parallel with other iterations of that loop. For example,in Figure 1(b), Thread 1 is a loop-
entri
 thread, i.e everyiteration of the loop is exe
uted as a separate thread. Theonly form of 
ontrol dependen
es shared between multiplethreads of this kind are loop termination bran
hes, whoseout
omes are generally biased towards loop 
ontinuation,even in non-numeri
 programs. The degree of TLP that 
an1A shared register name spa
e 
an be implemented at themi
roar
hite
ture level in a distributed manner.



be extra
ted will be moderated, however, by loop-
arrieddependen
es. In non-numeri
 programs, many of the loopshave at least some amount of loop-
arried data dependen
es.To get good speedup for non-numeri
 programs, it is im-portant to 
onsider threads other than loop iterations, inaddition to loop iteration based threads.
2.2.0.3 Speculative versus Non-speculative Threads:.Spe
ulative spawning is the essen
e of SpMT ar
hite
-tures. A spe
ulative spawning is where the existen
e of thespawned thread is 
ontrol dependent on a 
onditional bran
hthat follows the spawning point (as per sequential programorder). Many non-numeri
 programs, however, tend to havea noti
eable per
entage of 
ontrol mispredi
tions, ne
essi-tating frequent re
overy a
tions. Therefore, it is importantto exploit 
ontrol independen
e [2℄, possibly by identify-ing threads that are non-spe
ulative from the 
ontrol pointof view. When exe
uting a 
ontrol-non-spe
ulative threadin parallel with its initiator, failure to 
orre
tly predi
t abran
h within the initiator thread does not a�e
t the exis-ten
e of the non-spe
ulative thread, although it 
an poten-tially a�e
t its exe
ution through inter-thread data depen-den
es. E�e
tive use of 
ontrol independen
e informationthus helps to rea
h distant 
ode, despite the presen
e ofmispredi
ted bran
hes in between. Noti
e that if a spe
u-lative thread T1 spawns a non-spe
ulative thread T2, thenT2 is non-spe
ulative from T1's point of view, but not fromT1's initiator's point of view.Sti
king to loop-based threads and non-spe
ulative threadsalone may not yield good speedup for some programs. Some-times, it may be desirable to start a thread from a point thatis 
ontrol dependent on the 
ontrol 
ow through the previousthread. This is parti
ularly desirable when alternate 
ontroldependent paths have widely di�ering lengths. For example,in Figure 1(a), Thread 2 is a spe
ulative when spawned frombasi
 blo
k A, be
ause basi
 blo
k C is 
ontrol dependenton blo
k B and A. Spe
ulative threads 
an also exploit moreparallelism than is possible with 
onventional multipro
es-sors that la
k a re
overy me
hanism. In fa
t, as we will see,for many of the non-numeri
 programs, spe
ulative threadsare a must for exploiting thread-level parallelism.
2.2.0.4 Out-of-Order Spawning of Threads:.Lastly, an SpMT may or may not support out-of-orderspawning of threads. If out-of-order spawning is not al-lowed, then all of the dynami
 threads are spawned stri
tlyin program order. If out-of-order spawning is allowed, thenthreads are not ne
essarily spawned in program order, and asingle thread may spawn multiple threads. In order to avoiddeadlo
k in su
h a situation, the SpMT pro
essor may haveto o

asionally pre-empt some of the (sequentially younger)threads. We 
an also 
onsider SpMT models with limitedout-of-order spawning. In 
ase of out-of-order depth of 1,for instan
e, at most one prede
essor thread 
an be spawnedafter a thread has been spawned. Therefore, if the threadhas to be preempted be
ause of a prede
essor thread be-ing spawned later, the PE has to store the state of at mostone other thread. Nested spawning is parti
ularly useful toharness the parallelism present in nested loops.Our 
ompiler framework is very general, and supports allof the spawning strategies, in
luding spawning from any-where in a thread, and nesting. In our experimental se
tion,
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Figure 1: Di�erent Kinds of Threadswe fo
us on three types of threads|loop-
entri
 threads,
ontrol non-spe
ulative threads, and 
ontrol spe
ulative threads.Figure 1 shows these types of threads.
2.3 Performance Issues in SpMT Thread Se-

lectionPerhaps the most 
ru
ial de
ision in any SpMT environ-ment is thread sele
tion. This involves 
onsidering 
omplexfa
tors su
h as inter-thread data dependen
es, probabilityfor bran
h mispredi
tion within a thread, load balan
ing,et
.
2.3.0.5 Thread Granularity:.Thread size is an important parameter to 
onsider in par-titioning a program into threads. Short threads may notexpose adequate parallelism, and may in
ur high overheaddepending on the thread initiation me
hanisms used. Multi-threading begins to make sense when threads are larger thana traditional size instru
tion window. On the other hand, itmay not be possible to have very large size threads be
auseof the huge bu�ering requirements. Moreover, if threads arevery large, then re
overy a
tions due to mispredi
tions willbe very expensive.
2.3.0.6 Load Balancing:.Another fa
tor to 
onsider in de
iding thread partition-ing is to redu
e the varian
e in thread sizes. In an SpMTsystem, even if a parti
ular thread is non-spe
ulative fromthe 
ontrol point of view, some of the data values used bythat thread may be spe
ulative, be
ause of data dependen
espe
ulation [5℄, intra-thread 
ontrol spe
ulation, and possi-bly data value spe
ulation [10℄. Be
ause of this spe
ulativenature, a thread 
annot be 
ommitted until all of its dataoperands are veri�ed to be 
orre
t, even if its exe
ution was
ompleted a long time ba
k. Of 
ourse, it is possible to initi-ate other threads in its hardware sequen
er while the threadis awaiting retirement (as in [16℄); but there is a pra
ti
allimit to how many su
h threads 
an be made to wait forretirement, be
ause of the need to store the state informa-tion of all pending threads. In short, thread size imbalan
e




an be tolerated to some extent, but widely di�ering threadsizes should be avoided as mu
h as possible.
2.3.0.7 Inter-Thread Data Dependences:.An important fa
tor to 
onsider when partitioning a pro-gram into threads is inter-thread data dependen
es. Theya�e
t both inter-thread data 
ommuni
ation and determinehow mu
h thread-level parallelism exists. The e�e
t of adata dependen
e depends on the produ
er's and 
onsumer'srespe
tive positions in their threads. It is not possible to de-te
t all data dependen
es stati
ally at 
ompile time be
auseof aliasing. It is also not possible to determine a

uratelythe relative timing of the dependent instru
tions in di�er-ent threads be
ause of fa
tors like 
onditional bran
hes and
a
he misses. The 
ompiler 
an use some pro�le informa-tion and heuristi
s to estimate the relative distan
e betweenthe dependent instru
tions. The 
ompiler 
an also performintra-thread s
heduling to further redu
e the delay.
2.3.0.8 Thread Prioritization:.Compilers typi
ally do not assume a �xed number of PEswhile performing thread partitioning. On a pro
essor thathas a limited number of PEs, some strategy has to be imple-mented to prioritize the available threads. One simple strat-egy is to prioritize the threads a

ording to their sequentialexe
ution order. The motivation is that a sequentially olderthread perhaps has a higher likelihood of 
ompleting earlier.This strategy is employed in the multis
alar pro
essor [16℄,superthreading pro
essor [18℄, and tra
e pro
essor [14℄. If asequentially younger thread is both 
ontrol independent anddata independent of the previous threads, however, theremay be merit in assigning a higher priority to it. The pro-
essor may also de
ide not to spawn a low-priority thread ifthere are not enough PEs.Besides these major fa
tors, thread sele
tion also involves
onsidering other, more subtle, fa
tors su
h as probabilityfor 
ontrol mispredi
tion within a thread.
2.4 Prior Compiler Work on SpMTMost of the SpMT proposals advo
ate thread sele
tion at
ompile time, be
ause the hardware is quite limited in itsprogram partitioning 
apability. There have been severalproposals and implementations of 
ompiler-based thread gen-eration for SpMT systems [13℄ [18℄ [19℄. Among these, theAgassiz 
ompiler [18℄ and 
hip multipro
essing [13℄ fo
uson loop-level parallelism mainly. They generate threads formultiple iterations of the same loop. The Agassiz 
om-piler also performs 
ode s
heduling within the threads, soas to fa
ilitate pipelined exe
ution of the threads in the su-perthreaded pro
essor.The multis
alar 
ompiler [19℄ was the �rst major e�ort topartition the entire program, in
luding the non-loop threads,for parallel exe
ution in an SpMT pro
essor. It uses a setof 
ompiler heuristi
s to generate the threads; some of theheuristi
s are spe
i�
 to the multis
alar ar
hite
ture. Forexample, the multis
alar pro
essor uses a su

essor threadpredi
tion strategy, and for that ea
h thread is restri
ted tohave at most four su

essor threads. Also, the multis
alarpro
essor does not support nested threads; so threads arespawned and initiated only in the program order. However,our 
ompiler framework supports nested threads. For someprogram stru
tures, this kind of spawning yields better per-forman
e, as will be evident from our simulation results. In

the multis
alar, a su

essor thread is spawned only from thebeginning of a thread. Our 
ompiler supports a more relaxedspawning strategy: a thread 
an be spawned from anywherewithin a thread. Sometimes, the spawning is delayed untila parti
ular bran
h or data dependen
e gets resolved.Apart from these SpMT 
ompiler work, there has beensome notable 
ompiler work for other parallelization models.Some of the notable ones among them are the IMPACT 
om-piler [7℄, the EARTH-M
CAT 
ompiler[17℄, and the XMT[12℄ 
ompiler. The IMPACT 
ompiler takes sequential pro-grams, and performs a variety of optimizations, in
ludingpredi
ated exe
ution, superblo
k formation, and hyperblo
kformation [7℄. These optimizations are geared for wide-issueunipro
essors. The fo
us of our 
ompiler framework, onthe other hand, is to exploit thread-level parallelism (TLP),whi
h 
omplements instru
tion-level parallelism (ILP).The EARTH multi-threaded framework provides simpleextensions to the C language, 
alled EARTH-C [11℄. Thisextension in
ludes simple 
onstru
ts for spe
ifying 
ontrolparallelism and data lo
ality, whi
h enable the programmerto spe
ify 
oarse-grain parallelism. The EARTH-M
CAT
ompiler augments this 
oarse-grain parallelism with �ne-grain parallelism that it dete
ts using dependen
e analysis.The main di�eren
e between our multi-threading frameworkand the EARTH framework is that the input to our 
ompileris a sequential program written in a standard language su
has C. Furthermore, EARTH uses multithreading for hidinglaten
ies; a long laten
y operation and an instru
tion de-pending on it 
annot therefore 
oexist in the same thread.Moreover, EARTH does not support spe
ulative exe
ution;a thread starts exe
ution only when its data are available,and the threads are non-preemptive. On the other hand,our SpMT framework supports preemptive threads, and athread is spe
ulatively exe
uted when its data are not avail-able.XMT [12℄ is a multithreaded programming model wherethe programmer expli
itly spe
i�es the parallel threads. Ithas a simple thread exe
ution model. The main task of theXMT 
ompiler is to perform thread s
heduling and performthe transition between the parallel and sequential environ-ments.One distin
t feature of our 
ompiler framework is thatit starts with sequential programs written in ordinary lan-guages, and does not require the programmer to identifyor express parallelism. To the best of our knowledge, ourthread generation framework is the �rst 
ompiler-based threadpartitioning s
heme that attempts to exploit 
ontrol inde-penden
e and also permits nested threads.
3. COMPILER FRAMEWORK AND ALGO-

RITHMSIn this se
tion we present our 
ompiler framework for par-titioning sequential programs into threads. Given a pro-gram, the 
ompiler spe
i�es a set of thread spawning pointsand 
orresponding thread starting points. The threads sharethe same register name spa
e and the same memory addressspa
e. An instru
tion 
an spawn at most one thread; athread 
an 
olle
tively spawn several threads. A parti
u-lar thread 
an also be spawned from di�erent threads. Thepro
essor supports 
ontrol spe
ulative threads; i.e., a thread
an be spawned by an instru
tion before knowing for sureif 
ontrol 
ow will rea
h that thread. If it is found that the
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ontrol spe
ulation was wrong, then the SpMT pro
essorperforms the required re
overy a
tions.The layout of our 
ompiler framework, along with theSpMT simulator, is shown in Figure 2. While partition-ing the program into threads, the 
ompiler has to 
onsiderthree orthogonal fa
tors|data dependen
e, 
ontrol depen-den
e, and thread size|together, to de
ide a good parti-tioning. It employs some metri
s to help in this endeavor.In the following subse
tions we dis
uss how the 
ompilertakes 
are of data dependen
e, 
ontrol dependen
e and thethread size. Our 
ompiler performs the program analysisand partitioning on a high level intermediate representation.The high level representation retains all of the sour
e levelpointer and type information, and hen
e it is possible totake into a

ount the dependen
es due to pointer aliasing.This permits more a

urate data dependen
e information towork with. Hen
e the 
ompiler is able to extra
t parallelismeven from the pointer-intensive programs. We have usedthe pro�ling information to �nd out the most likely path,that the 
ontrol will take and this information is used bythe 
ompiler to spawn threads spe
ulatively.

3.1 Program ProfilingWe have used a separate 
ompiler pass to instrument thesour
e 
ode and gather the pro�ling information. In thepro�ling pass, we �nd out for every basi
 blo
k, whi
h basi
blo
k is most likely to be visited next. The 
ompiler usesthis to �nd out the most likely path and also to estimatethe number of instru
tions that would be exe
uted betweentwo basi
 blo
ks.
3.2 Data Dependence ModelingIn our framework we have implemented two di�erent met-ri
s to quantify the data dependen
es between adja
ent threads.One metri
 is data dependen
e 
ount and the other is datadependen
e distan
e. Our thread partitioning algorithm worksin multiple passes. In the �rst pass, the 
ompiler buildsthe 
ontrol 
ow graph (CFG) 2 and also �nds out the datadependen
e information. It 
al
ulates the read/write sets[1℄ for every instru
tion. We have implemented a pointeranalysis framework to obtain an improved data dependen
einformation.The pointer analysis helps us in getting more pre
ise read/writesets. After 
al
ulating the read/write sets for every instru
-tion, data 
ow analysis is performed. For every variable inthe read set of an instru
tion, the set of rea
hing de�nitions[1℄ are determined.
3.2.1 Data Dependence Count2In a 
ontrol 
ow graph (CFG), the basi
 blo
ks are repre-sented by th verti
es and the edges show the 
ow of 
ontrolbetween the basi
 blo
ks

y=a+b

y=a−b

p=x+r
q=y+r

arc

arc

B1

B2

B3

Dependence

Dependence

No. of  Dependence  arcs of block B3 = 2Figure 3: Data Dependen
e Ar
s between Basi
Blo
ksThe data dependen
e 
ount (DDC) is the weighted 
ountof the number of data dependen
e ar
s 
oming into a basi
blo
k from other blo
ks. This models the extent of datadependen
e this blo
k has on other blo
ks. If the depen-den
e 
ount is small then this blo
k is more or less dataindependent from other blo
ks and we 
an begin a threadat the beginning of that basi
 blo
k. While 
ounting thedata dependen
e ar
s, the 
ompiler gives more weights tothe ar
s 
oming from blo
ks that belong to threads that are
loser to the blo
k under 
onsideration. The motivation isthat dependen
es from distant threads are likely to be re-solved earlier and hen
e the 
urrent thread is less likely towait for data generated there. Furthermore, the 
ompilergives less weightage to the data dependen
e ar
s 
omingfrom the less likely paths. The rationale behind using thedata dependen
e 
ount are twofold. First of all, it is simpleto 
ompute. Also if the pro
essing elements do out of orderexe
ution then the data dependen
e distant model may notbe very a

urate be
ause it assumes serial exe
ution withinea
h thread. But in pra
ti
e, due to out of order exe
ution,instru
tions that are lower in the program order 
an be ex-e
uted before the earlier instru
tions inside the threads. Sodata dependen
e 
ount tries to model the extent of datadependen
e in the presen
e of out of order exe
ution.
3.2.2 Data Dependence DistanceThe data dependen
e distan
e between two basi
 blo
ksB1 and B2 models the maximum time that the instru
tionsin blo
k B2 will stall for instru
tions in B1 to 
omplete,if B1 and B2 are exe
uted in parallel. For example, 
on-sider the 
ode segment in Figure 2. Instru
tions 2 and 3of B2 are data dependent on instru
tions 1 and 5 of B1,respe
tively. If B1 and B2 are exe
uted in parallel in twodi�erent PEs, then instru
tion 2 of B2 will not stall due tothe dependen
e, be
ause x has already been 
omputed be-fore instru
tion 2 is exe
uted. However, instru
tion 3 of B2has to wait for B1 to exe
ute instru
tion 5. If we assumethat every instru
tion has a laten
y of 1 
lo
k 
y
le, then



B1
1.  x = a + b

.

.

.
5   y =  a- b;
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1.  r = 10
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distance = -1

distance = 5-3 = 2

DEPENDENCE DISTANCE[B1, B2] = 

 

2Figure 4: Data Dependen
e Distan
e between TwoBasi
 Blo
ksinstru
tion 3 in B2 will stall for 2 
y
les. So in this exam-ple, the maximum delay that will be en
ountered if B1 andB2 are exe
uted as parallel threads is 2 
y
les. Note thatwhile 
omputing the data dependen
e distan
e, we modelthat the instru
tions inside a single basi
 blo
k are exe
utedsequentially. Also note that the data dependen
e distan
ewill in
rease, if the basi
 blo
k B1 is exe
uted as a part ofa thread and there are more instru
tions before B1 and westart a new thread at the beginning of B2. Similarly thedata dependent distan
e will de
rease if B1 and B2 are partof the same thread and are exe
uted sequentially. As evidentfrom this example, it is not bene�
ial to exe
ute in paralleltwo basi
 blo
ks with large data dependen
e distan
es. Inorder to de
ide whether to start a new thread at a 
ontrolindependent point, the 
ompiler 
al
ulates the data depen-den
e distan
e that will result if a new thread is started atthat point. If it results in a large data dependen
e distan
e,then the 
ompiler starts a new thread at that point.
3.3 Program PartitioningThis subse
tion des
ribes the partitioning algorithm. Theoverview of the partitioning algorithm is given in Figure5. The 
ompiler partitions the CFG into multiple threads,and also annotates the instru
tion from whi
h a parti
u-lar thread 
an be spawned. In partition a pro
edure(), theloops are examined and partitioned �rst. In our 
ompilerframework, the loops are treated as a spe
ial 
ase of 
ontroldependen
e. For loops the 
ompiler 
he
ks the dependen
ebetween two su

essive iterations of the loops, and if it isfound that spawning another thread for the next iterationis pro�table, then a thread is spawned. It may also happenthat, instead of spawning from the beginning of the loopfor the next iteration, the 
ompiler spawn the next itera-tion from somewhere inside the loop. The large body ofthe loops may be further partitioned into multiple threadsas des
ribed below. While partitioning the loops, the 
om-piler uses pro�le information on the number of iterationsand the number of dynami
 instru
tions in the loop. Typi-
ally the 
ompiler does not want to exe
ute small loop body

in parallel. However, if the number of iterations is largethen the 
ompiler would spawn the iterations as separatethreads. Otherwise the thread will be
ome very large. Forsmall loops, the parallelism 
an be further in
reased by loopunrolling. For partitioning the nested loops, the 
ompiler
onsiders both the inner loop and the outer loop for parallelexe
ution. Depending upon the available parallelism, thestru
ture of the loop bodies and the load balan
ing, eitherthe inner loop, or the outer loop or both 
an be exe
uted inparallel.After partitioning the loops, further partitioning is doneby traversing the CFG from root. At every iteration of thedo loop in the partition a pro
edure() fun
tion, the 
ompilerlooks ahead till the 
ontrol independent basi
 blo
k of the
urrent basi
 blo
k under 
onsideration and partitions theCFG between these to basi
 blo
ks into threads by 
allingthe partition thread() fun
tion.The pseudo
ode for the implementation of partition thread()fun
tion is also shown in Figure 5. partition thread() takestwo basi
 blo
ks and the 
urrent thread as inputs and ifpossible, partitions the program segment between this twobasi
 blo
ks into multiple threads by 
alling itself itera-tively. It �rst �nds out the most likely path between thestart and the end blo
ks of the segment by using the pro-�le data. In �nd min delay() fun
tion the minimum delay is
omputed by using one of the data dependen
e models de-s
ribed in se
tion 3.2. It 
onsiders only the most likely pathbetween the two basi
 blo
ks to 
ompute the delay. The�nd min delay() fun
tion looks ahead and builds a possiblefuture thread starting at pdom blo
k using pro�le informa-tion and a threshold for thread size. After that it 
al
ulatesthe likely delay that this thread will have to su�er whenit is spawned from an instru
tion 
ontained in the 
urrentthread. The 
urrent thread is 
onsidered to be 
onsistingof basi
 blo
ks from previous 
ontrol independent regionsand the basi
 blo
ks from the most likely path in the 
ur-rent region. This fun
tion also identi�es the instru
tion inthe 
urrent thread from where this future thread should bespawned in order to optimize the delay. Estimating the delayis one of the most important tasks in thread partitioning.After 
al
ulating the possible delay, the partition thread()pro
edure goes on 
reating the threads. To maintain loadbalan
ing between the threads, it uses a lower limit and anupper limit for the number of instru
tions that 
an be exe-
uted as one thread. The 
ompiler partitions the program soas to optimize the exe
ution in the most likely path. Howpartition a pro
edure() handles load balan
ing and depen-den
e delay together is explained using Figure 1.Several 
ases that may arise during program partitioningare shown in Figure 1(a). The most likely path from A to Eis shown by thi
k arrows and this likely path is quite long.So the 
ompiler re
ursively looks inside the path to furtherpartition it into smaller threads. However, if it is foundthat spawning a thread at E from an instru
tion in Thread1 results in a likely delay less than DELAY THRESHOLD,then the thread starting at E is spawned from Thread 1.In Figure 1 (a), the path between A and E is further par-titioned into a thread (i.e. Thread 2), and this is spawnedfrom Thread 1. Thread 3 
an be spawned from inside Thread2 or Thread 1, depending on the possible delay. The latter
ase involves out-of-order spawning. This is done in orderto exploit the distant parallelism available in the program.In Figure 1(a), the region between C and D is small. If all



foreach loop L in p 
partition_loop(L);

endfor;

start_block = p.entry_block;
pdom_block = postdom(start_block);
curr_thread = create_new_thread(start_block, null);
do { 
   curr_thread = partition_thread(start_block, 
                                     pdom_block, curr_thread);
   start_block = pdom_block;
   pdom_block = postdom(start_block);
} while (pdom_block != null);

}

   pdom_block = postdom(start_block);

 
min_delay = find_min_delay(start_block, pdom_block,

curr_thread, &spawn_instr);
thread_size = path.size + curr_thread.size;
if ( is_medium(thread_size) && ( min_delay< DELAY_THRESH))

curr_thread.add_blocks(path);
curr_thread = create_new_thread(pdom_block, spawn_instr);
curr_thread = thread_partition(pdom_block, end_block,
                                                   curr_thread);
}

else if (is_big(thread_size)) {

curr_thread.add_block(path.first_block);
curr_thread = thread_partition(path.first_block,

pdom_block, curr_thread);

if ( min_delay < DELAY_THRESH)
curr_thread = create_new_thread(pdom_block,

spawn_instr)’

curr_thread = thread_partition(pdom_block, 
end_block, curr_thread);

}
else {

curr_thread.add_blocks(path);

end_block, curr_thread);
}

curr_thread.add_block(pdom_block);
curr_thread = thread_partition(pdom_block, 

thread_partition_for_other_paths(start_block, end_block);
return curr_thread;
}

path = find_most_likely_path(start_block, pdom_block);

path,

partition_a_procedure(procedure p) {

partition_thread(start_block, end_block, curr_thread) {

Figure 5: The Program Partitioning Algorithmof the instru
tions belonging to the likely path between Cand D are in
luded in Thread 2, the size of the thread isnot going to violate the upper limit. So the 
ompiler doesnot spawn a new thread at D. Rather, it in
ludes all blo
ksbetween C and D in Thread 2 and looks beyond D to �ndthe next potential thread starting point.The fun
tion 
alls are handled automati
ally in the parti-tion thread() pro
edure. The 
ompiler terminates the basi
blo
k after a fun
tion 
all. So the instru
tions following afun
tion 
all appear in the post dominator blo
k of the basi
blo
k 
ontaining the fun
tion 
all. When the 
ompiler en-
ounters a fun
tion 
all, the 
ompiler takes into a

ount thenumber of dynami
 instru
tions to 
omplete this fun
tion
all. The 
ompiler performs some simple inter-pro
eduralanalysis like reads and writes into the global variables andthe referen
e parameters, to determine the possible delay. Ifthe 
alled fun
tion is a small one, then it is 
ompletely in-
luded in the 
urrent thread. However, for a 
all to a biggerfun
tion, a new thread may start exe
uting after the fun
-tion 
all, depending upon the possible delay and the threadsize. In that 
ase, out-of-order spawning may take pla
e, ifthat fun
tion is partitioned further into threads.The 
ompiler also 
he
ks the paths that are not the likelypaths and partitions them as well. If at run-time, 
ontrolgoes into those unlikely paths, then the threads spawnedspe
ulatively are aborted. But the threads that are not 
on-trol dependent on the aborted threads need not be aborted.For example, 
onsider Figure 1 (a). If from A, instead offollowing the most likely path, the 
ontrol goes to basi
blo
k F , when both threads 2 and and 3 have been spawned,thread 2, would be aborted, but not thread 3, as E is 
ontrolindependent of A.

3.4 Implementation OverviewOur 
ompiler framework is implemented on the SUIF-Ma
hSUIF platform [6℄. The layout of the 
omplete frame-work is shown in Figure 2. All of the 
ompiler analysis andthread partitioning are done at the high-level intermediaterepresentation (IR) of SUIF. We have 
hosen the SUIF plat-form to implement our 
ompiler system be
ause it providesa modular and 
exible infrastru
ture to develop 
ompileroptimizations. SUIF �rst translates high-level sour
e 
odeinto an IR, and then performs 
ode optimization throughseveral independent passes on that IR. We �nd it easier towork with the SUIF IR, and to integrate our own 
ompilerpasses in that framework. While transforming high-levelprograms into IR, SUIF retains all of the relevant informa-tion from the high level sour
e program. This is parti
ularlyhelpful for 
arrying out optimization su
h as pointer anal-ysis. Therefore, the 
ompiler 
an perform more a

urateprogram analysis. Moreover, the instru
tions in the SUIFIR are very 
lose to the assembly level instru
tions; thus,the estimation of thread sizes done at IR level remains validin the �nal assembly level as well. In SUIF, it is possibleto annotate the instru
tions with ne
essary information likedata dependen
e, and use them in separate passes after-wards. Also, the SUIF pa
kage 
ontains many optimizationmodules, whi
h improve the quality of the 
ode produ
ed.We used the Ma
hSUIF [15℄ framework to generate Alphaassembly 
ode from the SUIF IR. We have implemented thepro�ling phase also in the SUIF framework.
4. EXPERIMENTAL EVALUATIONTo study the e�e
tiveness of our thread partitioning s
hemes,



we 
ondu
ted a simulation-based evaluation. This se
tiondetails the simulation framework and the simulation resultsobtained.
4.1 Experimental Setup

4.1.1 Experimental MethodologyThe 
entral goal of these experiments is to understand thepotential of di�erent thread partitioning algorithms. Ourobje
tive is not to evaluate the performan
e of a spe
i�
(multithreaded) mi
roar
hite
ture. While using a detailedmi
roar
hite
ture simulator, if the performan
e is poor, wegain little insight on why it does not work, or whether it isthe thread partitioning s
heme or ma
hine model (or both)that should be improved. As a 
onsequen
e, poor resultsmay not re
e
t on any inherent limitations of the threadpartitioning algorithm, but rather the way it was appliedin a mi
roar
hite
ture. To sear
h through a large spa
e ofthread partitioning s
hemes e�e
tively, we use a tra
e-drivensimulator. If a partitioning s
heme does not work well withthis simulation framework, it will not work well on any realpro
essor of a similar design.This experimental analysis serves an important fun
tionin showing the limits of 
ertain thread partitioning algo-rithms, su
h as parallelizing only loops, and re
ognizing is-sues that are worthy of further attention. Our SpMT sim-ulator models a multi-threaded pro
essor on top of a tra
e-driven simulator. The modeled SpMT pro
essor 
onsistsof multiple pro
essing elements (PEs). Ea
h PE has itsown program 
ounter, fet
h unit, de
ode unit, and exe
utionunit, to fet
h and exe
ute instru
tions from a thread. ThePEs are 
onne
ted together by an inter
onne
tion network.The number of PEs, issue size per PE, et
., are parameter-ized. The simulator uses the Alpha ISA. For the sake ofsimpli
ity, we assume that ea
h PE takes one 
y
le to exe-
ute ea
h instru
tion. We model a memory hierar
hy witha shared L1 d-
a
he with 1 
y
le laten
y and a memory a
-
ess laten
y of 10 
y
les. When en
ountering a 
onditionalbran
h instru
tion in a thread, its PE 
onsults a bran
h pre-di
tor for making a predi
tion. We also model a hybrid datavalue predi
tor [20℄ for predi
ting the results of instru
tionswhose operands are unavailable at the time of fet
hing.The 
ode exe
uted in the supervisor mode are unavailableto the simulator, and are therefore not taken into a

ount inthe parallelism studies. The library 
ode is not parallelized,as we use the standard libraries in our experiments. Thelibrary 
ode therefore exe
utes in serial mode, providing a
onservative treatment to our parallelism values.
4.1.2 Hardware Parameters UsedFor our simulation we have used a PE issue width of 4instru
tions per 
y
le and the PEs use out-of-order issue.Ea
h PE has an instru
tion window of 128 instru
tions. TheL1 
a
he size is 256 Kbytes. There is a 2-
y
le overheadin assigning a thread to a PE and thread pre-emption alsoin
urs a 2 
y
le penalty. Furthermore, it assumes a 2-
y
lelaten
y for forwarding register values a
ross multiple PEs.
4.1.3 BenchmarksTable 1 lists the ben
hmark programs used for the evalua-tion of the 
ompiler framework. We have used �ve programsfrom SPEC2000, one from SPECINT95, and six from theOlden ben
hmark suite. All of these programs are written in

C. Our multi-threading 
ompiler framework partitions intothreads all of the sour
e 
ode, ex
ept the library 
ode andthe system 
ode. Ea
h ben
hmark is exe
uted for 300 millioninstru
tions, ex
ept for perimeter, whi
h 
ompleted exe
u-tion after 89 million instru
tions. For SPEC ben
hmarkswe have used the train data sets as inputs. Most ben
hmarkprograms spend some time in the beginning for initializingdata stru
tures and reading inputs, and these parts of theprograms do not re
e
t the a
tual program 
hara
teristi
s.So we have used a \fast forward" mode to skip these initial-ization phases, after whi
h the statisti
s are 
olle
ted. Thenumber of instru
tions that have been fast forwarded areshown in Table 1.
4.1.4 Default Partitioning SetupAs there are many di�erent parameters, it is diÆ
ult toperform a 
ompletely orthogonal set of experiments. In-stead, we de�ne a default setup, and vary one parameterat a time. Thus, when the nature of threads is varied, therest of the parameters are kept at their default values. Forthe default 
on�guration, we allow all kinds of threads (i.e.,spe
ulative threads, 
ontrol independent threads, and loopbased threads), data dependen
e distan
e based modeling ofinter-thread data dependen
es, and data value predi
tion.
4.2 Effectiveness of the Partitioning AlgorithmTo evaluate the e�e
tiveness of our partitioning algorithm,we measure the speedup obtained by in
reasing the numberof PEs from 1 to 6 with our default 
on�guration. Figure 6shows the speedup obtained over a single PE. In the �gure,ea
h bar along the X-axis represents a ben
hmark programand the Y-axis represents the speedup over single PE. Ta-ble 2 presents some thread-related statisti
s for the default
on�guration.The speedup with 6 PEs ranges from 1.62 for health to4.68 for mst. Most of the ben
hmarks show good speedupand s
alability as we in
rease the number of PEs. 
raftyspends most of the time outside loops3 and the fa
t that itshows good speedup and s
alability suggests that the 
om-piler has been able to extra
t parallelism from non-loop partsof the 
ode e�e
tively. This is true for the other ben
h-marks like vpr, perimeter, power, tsp, and treeadd as well.perimeter and treeadd do not have loops; they have re
ur-sive fun
tion 
alls instead. All these ben
hmarks exe
ute alarge per
entage of spe
ulative and non-spe
ulative threads.Ben
hmarks ijpeg, m
f, twolf, and health show modestspeedups. The s
alability is also quite low. In ijpeg, m
f,twolf, and health, most of the time is spent in loops, andthese loops have a large number of loop-
arried dependen
es.So these programs only show moderate speedups with multi-threading. Moreover, we see from Table 2 that the averagenumber of dynami
 instru
tions per thread for health isonly 8.89, whi
h is quite low. Therefore, in health, the PEsare not able to exploit thread-level parallelism well, whi
ha

ounts for its modest speedups and poor s
alability. Onaverage, we get a speedup of 2.89 with 6 PEs.From Table 2 we see that ex
ept for mst and health, theaverage thread sizes are also reasonable. In health there isa small loop body that is getting exe
uted in parallel most3In this 
ontext, by loops, we do not mean those loops whereloop bodies 
ontain fun
tion 
alls su
h that su

essive iter-ations of the loops are thousands to millions of instru
tionsapart, e.g., the pro
essing loop in the main() fun
tion



Ben
hmark Program Lines of No. ofSuite Name Des
ription Sour
e Instrs FastCode ForwardedSPEC 95 ijpeg Compresses and De
ompresses ppm �le 28566 250000000
rafty Chess Program 20294 100000000equake Finite element simulation: earthquake modeling 1513 75000000SPEC2000 m
f Minimum 
ost network 
ow solver 1909 100000000twolf Pla
e and route simulator 19762 500000000vpr Cir
uit pla
ement and routing 16973 150000000health Columbian Health Care Simulator 505 0mst Minimum Spanning Tree 417 27000000perimeter Quad Tree 290 0Olden power Power Pri
ing Problem 616 0treeadd tree traversal Problem 121 0tsp Traveling Salesman Problem 521 0Table 1: Ben
hmark ProgramsProgram Avg. Thread Size Thread TypeName (Dyn. Instrs) Spe
ulative Non-spe
ulative Loop-
entri
ijpeg 75.67 21.01% 0.65% 78.32%
rafty 81.55 56.27% 11.05% 32.68%equake 27.99 0.50% 0.80% 98.70%m
f 33.20 0.15% 0.07% 99.78%twolf 33.46 4.17% 3.21% 92.61%vpr 83.77 28.95% 17.05% 53.99%health 8.89 0.50% 0.00% 99.50%mst 574.07 0.00% 0.00% 100.00%perimeter 105.88 87.72% 12.28% 0.00%power 42.62 6.47% 71.69% 21.84%treeadd 106.48 99.99% 0.01% 0.00%tsp 102.84 11.08% 0.13% 88.78%Table 2: Thread Statisti
sof the time resulting in small threads. On the other hand,in mst, the loop-
entri
 thread that is getting exe
uted mostof the time 
ontains library routine 
alls that our 
ompilerdid not partition, resulting in very large thread size.
4.3 Experimentation with Thread TypeOur next set of experiments fo
us on varying the natureof threads. In parti
ular, we simulate three di�erent 
om-bination of threads: (i) loop-based threads, non-spe
ulativethreads, and spe
ulative threads � i.e our default 
on�gu-ration; (ii) loop-based threads and non-spe
ulative threads;and (iii) loop-only threads. Figure 7 
ompares (i) and (ii)and (iii). In this �gure, the X-axis denotes the ben
hmarks,and the Y-axis denotes the speedup with 6 PEs. For ea
hben
hmark, three bars are shown, 
orresponding to the threedi�erent 
ombinations of threads. We have tried to manu-ally validate that loop-
entri
 thread partitions are indeedthe good ones. It is not feasible to do that manually for theother kinds of threads.On analyzing the results of Figure 7, we 
an see that loops-only threads are quite insuÆ
ient to harness the parallelismpresent in 
rafty, vpr, perimeter, power, and tsp. As men-tioned earlier, perimeter and treeadd do not 
ontain anyloops. Moreover, from Table 2, we �nd that they primarily
onsist of spe
ulative threads. So it is not surprising to seethat their performan
e does not improve even after in
lud-ing 
ontrol independent threads with loop-
entri
 threads.Both these programs have re
ursive fun
tion 
alls and the
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Figure 7: Speedups with Di�erent Types of Threadsfun
tions are 
alled 
onditionally. These fun
tion 
alls 
anbe exe
uted in parallel and by exe
uting them spe
ulativelyit is possible to get large parallelism. In 
rafty, only a lit-tle time is spent in the loops, and also the loops are notquite parallelizable. So we get small speedup with loop-
entri
 threads only. From Table 2 we see that more than50% of the threads are spe
ulative threads and so 
ontrol-independent threads along with loop-
entri
 threads 
ouldnot exploit all the available parallelism in the program. Intsp, although only 11% of the threads are spe
ulative, theyseem to play a key role in exploiting parallelism. It maybe possible that by not spawning the spe
ulative threads,load balan
ing and thread s
heduling get a�e
ted, therebya�e
ting the performan
e. In power, 72% of the threads arenon-spe
ulative and only 6% are spe
ulative. So by exe
utingnon-spe
ulative threads along with loop-
entri
 threads, it ispossible to a
hieve 
omplete speedup. Ben
hmarks equake,m
f, health, and mst spend most of the time in paralleliz-able loops. So these programs are able to harness almostall of the available parallelism by exe
uting the loop-
entri
threads only. Although ijpeg and vpr 
ontain a signi�
antper
entage of spe
ulative threads, the results show that itis possible to exploit all of the available parallelism with-out using them. This is be
ause the load balan
ing remainsuna�e
ted even after ignoring the spe
ulative threads andthe s
heduling also do not get a�e
ted adversely. Moreover,the ILP gets boosted in the bigger threads resulting a goodspeedup.
4.4 Experimentation with Data Dependence

ModelingOur next set of experiments fo
us on the type of datadependen
e modeling used by the 
ompiler while de
idingthread partitioning. In parti
ular, we look at two models:one based on data dependen
e 
ount and the other basedon data dependen
e distan
e. Figure 8 presents these re-sults; these results are a mixed bag. For ijpeg, vpr, mst,and perimeter, data dependen
e distan
e-based modelinggives better parallelism, and for 
rafty, and m
f, twolf,and treeadd it is just the opposite. For other ben
hmarks,

the speedups are almost the same. Ex
ept for perimeterand vpr in all other 
ases the di�eren
es in speedups arenot appre
iable. On looking into the partitioning done forperimeter, we found that the 
ount based modeling was
onservative and failed to identify a partitioning opportu-nity. It honored a data dependen
e and restrained frompartitioning, whereas the distan
e based modeling ignoredthat dependen
e be
ause it estimated that the subsequentthreads did not have to wait for it. At runtime this datadependen
e did get resolved early, and so the performan
eof the latter partitioning be
omes mu
h better than the for-mer one. From the results, we see that both the models arequite e�e
tive in representing the data dependen
e in theprograms.
4.5 Effect of Out-of-Order SpawningOur last set of experiment fo
us on the e�e
t of out-of-order thread spawning. Our 
ompiler framework 
an theo-reti
ally support out-of-order spawning to an in�nite depth,but it is not pra
ti
al for the SpMT hardware to supportin�nite depth of out-of-order spawning, be
ause of limitedbu�er spa
e. Also, in order to support out-of-order threadspawning, the SpMT pro
essor may have to frequently pre-empt some of the (sequentially younger) threads, therebyin
reasing the overhead. So, ideally we would like to ex-tra
t as mu
h parallelism as possible without any out-of-order spawning or at a low out-of-order spawning depth.In this set of experiments, we 
ompare the speedups ob-tained with 4 di�erent depths of out-of-order spawning: (i)sequential spawning only, (ii) out-of-order spawning depthof 2, (iii) out-of-order spawning depth of 4, and (iv) out-of-order spawning depth of in�nity. The default 
on�gurationassumes that the PEs 
an bu�er an in�nite number of su
-
essor threads.The results are shown in Figure 9. Ben
hmarks ijpeg,m
f, twolf, health, and mst show no 
hange in speedup withnesting. This implies that even in the default 
on�guration,the threads are spawned and exe
uted in sequential order.Ben
hmarks 
rafty, vpr, and tsp show a small improve-ment with out-of-order spawning. In the 
ase of equake,
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there is a drop of performan
e for a depth of 2, and then itagain goes up. This is be
ause in equake, with out-of-orderspawning depth of 2, the pre-emption 
ost overrides the ad-vantage of having out-of-order spawning of depth 2, therebylowering the speedup. In power, perimter, and treead thereis signi�
ant in
rease in speedup even at depth 2. The in-
rease in speedup is maximum for power. In power, the pro-gram spends about 17% time in a big loop that 
annot beparallelized be
ause of the size and data dependen
e. How-ever, the loop body 
ontains 
alls to fun
tions that 
an beexe
uted in parallel. The �rst fun
tion 
alled is again parti-tioned into two threads. With sequential spawning, the se
-ond fun
tion starts exe
ution only after the se
ond thread ofthe �rst fun
tion starts exe
uting. However, by allowing anout-of-order spawning depth of 1, the se
ond fun
tion 
anbe exe
uted in parallel with the �rst fun
tion, resulting toa signi�
ant improve in performan
e.
5. CONCLUSIONSSpe
ulative multithreading (SpMT) is emerging as an im-portant parallelization tool for non-numeri
 programs. Ex-amples are the multis
alar pro
essor [4℄ [16℄, the SPSM pro-
essor [3℄, and the de
oupled 
ontrol 
ow pro
essor [8℄. All ofthese use multiple hardware sequen
ers to fet
h and exe
utemultiple threads in parallel. Given the in
reasing interestin mainstream mi
ropro
essor design, we expe
t that futurepro
essors will attempt to exe
ute multiple threads in oneway or another.Judi
ious partitioning of a program into threads involvesa lot of analysis, whi
h makes it diÆ
ult to be done in hard-ware. Previous 
ompiler e�orts have fo
used on identifyingloop-based threads and spe
ulative threads. A limitation ofthis approa
h is that bran
h mispredi
tions may 
ause all ofthe subsequent threads to be dis
arded, without retainingany 
ontrol-independent threads that may be present in thepro
essor. The use of non-spe
ulative threads has the poten-tial to extra
t additional amounts of parallelism, espe
iallyfor non-numeri
 programs.This paper presented a general 
ompiler framework forpartitioning a sequential program into multiple threads forexe
ution in a SpMT pro
essor. Our 
ompiler framework isgeared for identifying loop-based threads, spe
ulative threads,and non-spe
ulative threads. In addition, it also supportsnested threads, and spawning from anywhere in a thread.While performing the program partitioning, the 
ompilernot only 
onsiders 
ontrol independen
e information, butalso 
onsiders data dependen
e information and pro�le-basedinformation on the most likely 
ontrol 
ow paths.We have implemented this 
ompiler framework on theSUIF-Ma
hSUIF platform. Our framework is is able to par-tition into threads large programs, su
h as the SPEC ben
h-mark programs. A simulation-based evaluation of the gen-erated threads indi
ate that an average speed up of up to 3
an be obtained with 6 pro
essing elements for SPEC INTprograms and Olden programs by using spe
ulative multi-threading. This is very promising, given that non-numeri
programs are inherently diÆ
ult to parallelize. Our detailedexperimental analysis has in
reased our understanding ofthe di�erent fa
tors that a�e
t performan
e. These anal-yses show that the 
ombination of loops, spe
ulative, andnon-spe
ulative threads has the potential to extra
t thread-level parallelism in non-numeri
 programs.
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