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ABSTRACTSpeulative multithreading (SpMT) promises to be an ef-fetive mehanism for parallelizing non-numeri programs,whih tend to use irregular data strutures with pointersand have omplex ows of ontrol. Proper thread seletionis ruial to obtaining good speedup in an SpMT system.This paper presents a ompiler framework for partitioninga sequential program into multiple threads for parallel exe-ution in an SpMT system. This framework is very general,and support a wide variety of threads, suh as speulativethreads, non-speulative threads, loop-entri threads, andout-of-order thread spawning. To do eÆient partitioning,the ompiler uses pro�ling, intra-proedural pointer anal-ysis, data dependene information and ontrol dependeneinformation. Our ompiler framework is implemented on theSUIF-MahSUIF platform, and is able to partition large pro-grams, suh as the SPEC benhmarks. A simulation-basedevaluation of the generated threads shows that an averagespeedup of 3 an be obtained with 6 proessing elements fornon-numeri programs. This speedup redues to 2 if we useonly loop-based threads.Keywords: data dependene, parallelization, speulativemultithreading (SpMT), thread-level parallelism (TLP)
1. INTRODUCTIONReduing the ompletion time of a single omputationtask has been one of the de�ning hallenges of omputersiene and engineering for the last several deades. Theprimary means of inreasing proessor performane, besidesinreasing the lok speed and reduing the memory lateny,has always been the exploitation of the inherent parallelismpresent in programs, with the use of a ombination of soft-ware and hardware tehniques. Parallelization has been agood suess for sienti� appliations, but not quite so forthe non-numeri appliation. Non-numeri programs use ir-regular data strutures and have omplex ontrol ows thatmake them hard to parallelize.
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The emergene of the speulative multithreading (SpMT)model in the last deade has provided the muh awaitedbreakthrough for the important set of non-numeri applia-tions. Many studies on speulative multithreading (SpMT)on�rm that there is signi�ant performane potential in ex-euting multiple threads from the same program in parallel.Hardware support for speulative thread exeution makesit possible for the ompiler to parallelize sequential applia-tions without worrying about data and ontrol dependenes.However, hardware support for speulation is not suÆientto ahieve high speedup from the appliation programs andwe need good ompiler support as well to extrat parallelismfrom the programs. In ompiling programs for the multi-threaded arhiteture the most important task is thread par-titioning, i.e., partitioning a program into separate threadsof exeution.The major ontribution of this paper is to present andevaluate a general ompiler framework for SpMT systems.This ompiler partitions sequential programs into multiplethreads for parallel exeution in an SpMT proessor. Our fo-us is primarily on non-numeri appliations, whih are gen-erally more diÆult to partition into threads. Traditionalwork in parallelization has targeted sienti� appliations,and has foussed mainly on loops where the loop bounds aregenerally prede�ned and the loops aess regular data stru-tures like arrays. On the other hand, in non-numeri appli-ations, the loops often have large loop bodies with omplexontrol ow, loop-arried dependenes and loop bounds thatannot be resolved statially. So these loops annot be easilyparallelized with traditional tehniques. Also, unlike sien-ti� appliations, non-numeri appliations aess irregulardata strutures with an abundane of pointers. Moreover,sometimes the non-numeri programs spend more time out-side the loops. So many of the tehniques used for sienti�programs annot be diretly applied to non-numeri pro-grams to extrat parallelism.To obtain good speedup for non-numeri programs, ourompiler onsiders both the loop regions and the non-loopregions of programs. It uses ontrol dependene informationand pro�le information to guide the partitioning. We haveused SUIF and MACHSUIF ompiler platforms to developour ompiler. Using our ompiler framework, we have beenable to ompile a wide range of non-numeri appliations,inluding programs from the SPEC 2000 and Olden benh-mark suites.Our work di�ers from earlier works on SpMT ompilation[13℄ [18℄ [19℄ primarily in 4 ways: (i) Most of the earlier



work [13℄ [18℄ primarily targets loop-level parallelism only,whereas our ompiler targets other kinds of parallelism also.(ii) Our SpMT model is more general than the one usedin earlier ompiler work, and supports spawning of threadsfrom anywhere in a thread; in [19℄ a thread an be spawnedonly from the beginning of another thread. (iii) Our om-piler framework supports out-of-order spawning of threads,whereas earlier ompilers support only sequential spawningof threads. (iv) Our Compiler framework expliitly exploitsontrol dependene information in forming the threads.Our studies with di�erent types of ompiler-generated threadshave led to the following onlusions:� Signi�ant speedups an be obtained with low degreesof multithreading for the non-numeri appliations.� For non-numeri programs, it is not suÆient to exploitloop-level parallelism only, the form of parallelism thatis almost exlusively targeted in prior researh; it isimportant to look at other types of threads as well.� For non-numeri programs, it is important to spawnthreads speulatively.� For non-numeri programs, it is important to exploitontrol independene.The rest of this paper is organized as follows. Setion 2provides bakground information on SpMT, inluding thethread exeution model and various issues related to threadpartitioning. Setion 3 details our SpMT ompiler frame-work, and thread partitioning algorithm. Setion 4 presentsthe simulation environment and a detailed evaluation of ourthread partitioning algorithm. Setion 5 presents a sum-mary and the major onlusions of this paper.
2. SPECULATIVE MULTITHREADING (SPMT)Compilers and programmers have made signi�ant progressin parallelizing regular numeri appliations. However, theyhave had little or no suess in doing the same for highlyirregular numeri or espeially non-numeri appliations [9℄.In suh appliations, ontrol ow as well as memory ad-dresses often depend on run-time behavior, whih makesit very diÆult to partition a program into independentthreads.This exeution model is loser to sequential ontrol ow,and envisions a strit sequential ordering among the threads.Threads are extrated from sequential ode and are speula-tively run in parallel, without violating the sequential pro-gram semantis. In ase of misspeulation, the results ofthe speulative thread and of subsequent threads are dis-arded. The ontrol ow of the sequential ode imposes anorder on the threads, we an use the terms predeessor andsuessor to qualify the relation between any given pair ofthreads. This means that inter-thread ommuniation be-tween any two threads (if any) is stritly in one diretion, asditated by the sequential thread ordering. Thus, no expliitsynhronization operations are neessary, as the sequentialsemantis of the threads guarantee proper synhronization.This relaxation allows us to \parallelize" non-numeri ap-pliations without expliit synhronization, even if there isa potential inter-thread data dependene.Example SpMT models are the multisalar model [4℄ [16℄,the superthreading model [18℄, and the trae proessing model

[8℄ [14℄. SpMT is appealing beause it provides the power ofparallel proessing to speed up ordinary appliations, whihare typially written as sequential programs.
2.1 SpMT Thread Communication ModelInter-thread ommuniation refers to passing data valuesbetween two or more threads. Communiation an takeplae at the level of register spae, memory address spae,and I/O spae, with the registers being the level losest tothe proessor. The most general model, whih is followedin most of the SpMT proposals, is to let inter-thread om-muniation take plae at all of these levels. Thus, multi-ple threads share the same register name spae (and thesame memory address spae). Inter-thread ommuniationhappens impliitly due to reads and writes to the sharedregisters1 (and to shared memory loations). Our om-piler framework also uses this most general ommuniationmodel.
2.2 Spawning StrategiesIn an SpMT proessor, a dynami thread's lifetime has3 important events: spawning, ativation, and retirement.Spawning refers to reating a new instane of a stati thread,and is analogous to the fork mehanism used in onventionalparallel proessing. Ativation refers to assigning a spawnedthread to a proessing element (PE). Retirement refers tothe at of a ompleted thread relinquishing its PE (after ithas ommitted its results).
2.2.0.1 Spawning Point:.An important issue in an SpMT model onerns the pointsin a thread from where other threads are spawned. Twopossibilities exist:� Spawning from only the beginning of a thread� Spawning from anywhere in a threadThe �rst ase uses an eager spawning strategy, with a viewto maximize PE utilization by minimizing the time an idlePE waits for a thread to be ativated in it. A potentialdrawbak with this approah is that a speulative threadmay be spawned prematurely without onsidering enoughrun-time information. Furthermore, often there may not bean idle PE at the time a thread is spawned. In the seondapproah, a thread an be spawned from anywhere within athread. This allows the spawning to be delayed, say, until apartiular branh or data dependene gets resolved.
2.2.0.2 Loop Iterations versus Non-loop Threads:.Loop iterations have been the traditional target of paral-lelization at all levels|programmer, ompiler, and hardware|and form an obvious andidate for forming threads. Eahiteration of a loop an be spei�ed as a thread that runsin parallel with other iterations of that loop. For example,in Figure 1(b), Thread 1 is a loop-entri thread, i.e everyiteration of the loop is exeuted as a separate thread. Theonly form of ontrol dependenes shared between multiplethreads of this kind are loop termination branhes, whoseoutomes are generally biased towards loop ontinuation,even in non-numeri programs. The degree of TLP that an1A shared register name spae an be implemented at themiroarhiteture level in a distributed manner.



be extrated will be moderated, however, by loop-arrieddependenes. In non-numeri programs, many of the loopshave at least some amount of loop-arried data dependenes.To get good speedup for non-numeri programs, it is im-portant to onsider threads other than loop iterations, inaddition to loop iteration based threads.
2.2.0.3 Speculative versus Non-speculative Threads:.Speulative spawning is the essene of SpMT arhite-tures. A speulative spawning is where the existene of thespawned thread is ontrol dependent on a onditional branhthat follows the spawning point (as per sequential programorder). Many non-numeri programs, however, tend to havea notieable perentage of ontrol mispreditions, neessi-tating frequent reovery ations. Therefore, it is importantto exploit ontrol independene [2℄, possibly by identify-ing threads that are non-speulative from the ontrol pointof view. When exeuting a ontrol-non-speulative threadin parallel with its initiator, failure to orretly predit abranh within the initiator thread does not a�et the exis-tene of the non-speulative thread, although it an poten-tially a�et its exeution through inter-thread data depen-denes. E�etive use of ontrol independene informationthus helps to reah distant ode, despite the presene ofmispredited branhes in between. Notie that if a speu-lative thread T1 spawns a non-speulative thread T2, thenT2 is non-speulative from T1's point of view, but not fromT1's initiator's point of view.Stiking to loop-based threads and non-speulative threadsalone may not yield good speedup for some programs. Some-times, it may be desirable to start a thread from a point thatis ontrol dependent on the ontrol ow through the previousthread. This is partiularly desirable when alternate ontroldependent paths have widely di�ering lengths. For example,in Figure 1(a), Thread 2 is a speulative when spawned frombasi blok A, beause basi blok C is ontrol dependenton blok B and A. Speulative threads an also exploit moreparallelism than is possible with onventional multiproes-sors that lak a reovery mehanism. In fat, as we will see,for many of the non-numeri programs, speulative threadsare a must for exploiting thread-level parallelism.
2.2.0.4 Out-of-Order Spawning of Threads:.Lastly, an SpMT may or may not support out-of-orderspawning of threads. If out-of-order spawning is not al-lowed, then all of the dynami threads are spawned stritlyin program order. If out-of-order spawning is allowed, thenthreads are not neessarily spawned in program order, and asingle thread may spawn multiple threads. In order to avoiddeadlok in suh a situation, the SpMT proessor may haveto oasionally pre-empt some of the (sequentially younger)threads. We an also onsider SpMT models with limitedout-of-order spawning. In ase of out-of-order depth of 1,for instane, at most one predeessor thread an be spawnedafter a thread has been spawned. Therefore, if the threadhas to be preempted beause of a predeessor thread be-ing spawned later, the PE has to store the state of at mostone other thread. Nested spawning is partiularly useful toharness the parallelism present in nested loops.Our ompiler framework is very general, and supports allof the spawning strategies, inluding spawning from any-where in a thread, and nesting. In our experimental setion,
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Figure 1: Di�erent Kinds of Threadswe fous on three types of threads|loop-entri threads,ontrol non-speulative threads, and ontrol speulative threads.Figure 1 shows these types of threads.
2.3 Performance Issues in SpMT Thread Se-

lectionPerhaps the most ruial deision in any SpMT environ-ment is thread seletion. This involves onsidering omplexfators suh as inter-thread data dependenes, probabilityfor branh mispredition within a thread, load balaning,et.
2.3.0.5 Thread Granularity:.Thread size is an important parameter to onsider in par-titioning a program into threads. Short threads may notexpose adequate parallelism, and may inur high overheaddepending on the thread initiation mehanisms used. Multi-threading begins to make sense when threads are larger thana traditional size instrution window. On the other hand, itmay not be possible to have very large size threads beauseof the huge bu�ering requirements. Moreover, if threads arevery large, then reovery ations due to mispreditions willbe very expensive.
2.3.0.6 Load Balancing:.Another fator to onsider in deiding thread partition-ing is to redue the variane in thread sizes. In an SpMTsystem, even if a partiular thread is non-speulative fromthe ontrol point of view, some of the data values used bythat thread may be speulative, beause of data dependenespeulation [5℄, intra-thread ontrol speulation, and possi-bly data value speulation [10℄. Beause of this speulativenature, a thread annot be ommitted until all of its dataoperands are veri�ed to be orret, even if its exeution wasompleted a long time bak. Of ourse, it is possible to initi-ate other threads in its hardware sequener while the threadis awaiting retirement (as in [16℄); but there is a pratiallimit to how many suh threads an be made to wait forretirement, beause of the need to store the state informa-tion of all pending threads. In short, thread size imbalane



an be tolerated to some extent, but widely di�ering threadsizes should be avoided as muh as possible.
2.3.0.7 Inter-Thread Data Dependences:.An important fator to onsider when partitioning a pro-gram into threads is inter-thread data dependenes. Theya�et both inter-thread data ommuniation and determinehow muh thread-level parallelism exists. The e�et of adata dependene depends on the produer's and onsumer'srespetive positions in their threads. It is not possible to de-tet all data dependenes statially at ompile time beauseof aliasing. It is also not possible to determine auratelythe relative timing of the dependent instrutions in di�er-ent threads beause of fators like onditional branhes andahe misses. The ompiler an use some pro�le informa-tion and heuristis to estimate the relative distane betweenthe dependent instrutions. The ompiler an also performintra-thread sheduling to further redue the delay.
2.3.0.8 Thread Prioritization:.Compilers typially do not assume a �xed number of PEswhile performing thread partitioning. On a proessor thathas a limited number of PEs, some strategy has to be imple-mented to prioritize the available threads. One simple strat-egy is to prioritize the threads aording to their sequentialexeution order. The motivation is that a sequentially olderthread perhaps has a higher likelihood of ompleting earlier.This strategy is employed in the multisalar proessor [16℄,superthreading proessor [18℄, and trae proessor [14℄. If asequentially younger thread is both ontrol independent anddata independent of the previous threads, however, theremay be merit in assigning a higher priority to it. The pro-essor may also deide not to spawn a low-priority thread ifthere are not enough PEs.Besides these major fators, thread seletion also involvesonsidering other, more subtle, fators suh as probabilityfor ontrol mispredition within a thread.
2.4 Prior Compiler Work on SpMTMost of the SpMT proposals advoate thread seletion atompile time, beause the hardware is quite limited in itsprogram partitioning apability. There have been severalproposals and implementations of ompiler-based thread gen-eration for SpMT systems [13℄ [18℄ [19℄. Among these, theAgassiz ompiler [18℄ and hip multiproessing [13℄ fouson loop-level parallelism mainly. They generate threads formultiple iterations of the same loop. The Agassiz om-piler also performs ode sheduling within the threads, soas to failitate pipelined exeution of the threads in the su-perthreaded proessor.The multisalar ompiler [19℄ was the �rst major e�ort topartition the entire program, inluding the non-loop threads,for parallel exeution in an SpMT proessor. It uses a setof ompiler heuristis to generate the threads; some of theheuristis are spei� to the multisalar arhiteture. Forexample, the multisalar proessor uses a suessor threadpredition strategy, and for that eah thread is restrited tohave at most four suessor threads. Also, the multisalarproessor does not support nested threads; so threads arespawned and initiated only in the program order. However,our ompiler framework supports nested threads. For someprogram strutures, this kind of spawning yields better per-formane, as will be evident from our simulation results. In

the multisalar, a suessor thread is spawned only from thebeginning of a thread. Our ompiler supports a more relaxedspawning strategy: a thread an be spawned from anywherewithin a thread. Sometimes, the spawning is delayed untila partiular branh or data dependene gets resolved.Apart from these SpMT ompiler work, there has beensome notable ompiler work for other parallelization models.Some of the notable ones among them are the IMPACT om-piler [7℄, the EARTH-MCAT ompiler[17℄, and the XMT[12℄ ompiler. The IMPACT ompiler takes sequential pro-grams, and performs a variety of optimizations, inludingprediated exeution, superblok formation, and hyperblokformation [7℄. These optimizations are geared for wide-issueuniproessors. The fous of our ompiler framework, onthe other hand, is to exploit thread-level parallelism (TLP),whih omplements instrution-level parallelism (ILP).The EARTH multi-threaded framework provides simpleextensions to the C language, alled EARTH-C [11℄. Thisextension inludes simple onstruts for speifying ontrolparallelism and data loality, whih enable the programmerto speify oarse-grain parallelism. The EARTH-MCATompiler augments this oarse-grain parallelism with �ne-grain parallelism that it detets using dependene analysis.The main di�erene between our multi-threading frameworkand the EARTH framework is that the input to our ompileris a sequential program written in a standard language suhas C. Furthermore, EARTH uses multithreading for hidinglatenies; a long lateny operation and an instrution de-pending on it annot therefore oexist in the same thread.Moreover, EARTH does not support speulative exeution;a thread starts exeution only when its data are available,and the threads are non-preemptive. On the other hand,our SpMT framework supports preemptive threads, and athread is speulatively exeuted when its data are not avail-able.XMT [12℄ is a multithreaded programming model wherethe programmer expliitly spei�es the parallel threads. Ithas a simple thread exeution model. The main task of theXMT ompiler is to perform thread sheduling and performthe transition between the parallel and sequential environ-ments.One distint feature of our ompiler framework is thatit starts with sequential programs written in ordinary lan-guages, and does not require the programmer to identifyor express parallelism. To the best of our knowledge, ourthread generation framework is the �rst ompiler-based threadpartitioning sheme that attempts to exploit ontrol inde-pendene and also permits nested threads.
3. COMPILER FRAMEWORK AND ALGO-

RITHMSIn this setion we present our ompiler framework for par-titioning sequential programs into threads. Given a pro-gram, the ompiler spei�es a set of thread spawning pointsand orresponding thread starting points. The threads sharethe same register name spae and the same memory addressspae. An instrution an spawn at most one thread; athread an olletively spawn several threads. A partiu-lar thread an also be spawned from di�erent threads. Theproessor supports ontrol speulative threads; i.e., a threadan be spawned by an instrution before knowing for sureif ontrol ow will reah that thread. If it is found that the
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3.1 Program ProfilingWe have used a separate ompiler pass to instrument thesoure ode and gather the pro�ling information. In thepro�ling pass, we �nd out for every basi blok, whih basiblok is most likely to be visited next. The ompiler usesthis to �nd out the most likely path and also to estimatethe number of instrutions that would be exeuted betweentwo basi bloks.
3.2 Data Dependence ModelingIn our framework we have implemented two di�erent met-ris to quantify the data dependenes between adjaent threads.One metri is data dependene ount and the other is datadependene distane. Our thread partitioning algorithm worksin multiple passes. In the �rst pass, the ompiler buildsthe ontrol ow graph (CFG) 2 and also �nds out the datadependene information. It alulates the read/write sets[1℄ for every instrution. We have implemented a pointeranalysis framework to obtain an improved data dependeneinformation.The pointer analysis helps us in getting more preise read/writesets. After alulating the read/write sets for every instru-tion, data ow analysis is performed. For every variable inthe read set of an instrution, the set of reahing de�nitions[1℄ are determined.
3.2.1 Data Dependence Count2In a ontrol ow graph (CFG), the basi bloks are repre-sented by th verties and the edges show the ow of ontrolbetween the basi bloks
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3.2.2 Data Dependence DistanceThe data dependene distane between two basi bloksB1 and B2 models the maximum time that the instrutionsin blok B2 will stall for instrutions in B1 to omplete,if B1 and B2 are exeuted in parallel. For example, on-sider the ode segment in Figure 2. Instrutions 2 and 3of B2 are data dependent on instrutions 1 and 5 of B1,respetively. If B1 and B2 are exeuted in parallel in twodi�erent PEs, then instrution 2 of B2 will not stall due tothe dependene, beause x has already been omputed be-fore instrution 2 is exeuted. However, instrution 3 of B2has to wait for B1 to exeute instrution 5. If we assumethat every instrution has a lateny of 1 lok yle, then
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2Figure 4: Data Dependene Distane between TwoBasi Bloksinstrution 3 in B2 will stall for 2 yles. So in this exam-ple, the maximum delay that will be enountered if B1 andB2 are exeuted as parallel threads is 2 yles. Note thatwhile omputing the data dependene distane, we modelthat the instrutions inside a single basi blok are exeutedsequentially. Also note that the data dependene distanewill inrease, if the basi blok B1 is exeuted as a part ofa thread and there are more instrutions before B1 and westart a new thread at the beginning of B2. Similarly thedata dependent distane will derease if B1 and B2 are partof the same thread and are exeuted sequentially. As evidentfrom this example, it is not bene�ial to exeute in paralleltwo basi bloks with large data dependene distanes. Inorder to deide whether to start a new thread at a ontrolindependent point, the ompiler alulates the data depen-dene distane that will result if a new thread is started atthat point. If it results in a large data dependene distane,then the ompiler starts a new thread at that point.
3.3 Program PartitioningThis subsetion desribes the partitioning algorithm. Theoverview of the partitioning algorithm is given in Figure5. The ompiler partitions the CFG into multiple threads,and also annotates the instrution from whih a partiu-lar thread an be spawned. In partition a proedure(), theloops are examined and partitioned �rst. In our ompilerframework, the loops are treated as a speial ase of ontroldependene. For loops the ompiler heks the dependenebetween two suessive iterations of the loops, and if it isfound that spawning another thread for the next iterationis pro�table, then a thread is spawned. It may also happenthat, instead of spawning from the beginning of the loopfor the next iteration, the ompiler spawn the next itera-tion from somewhere inside the loop. The large body ofthe loops may be further partitioned into multiple threadsas desribed below. While partitioning the loops, the om-piler uses pro�le information on the number of iterationsand the number of dynami instrutions in the loop. Typi-ally the ompiler does not want to exeute small loop body

in parallel. However, if the number of iterations is largethen the ompiler would spawn the iterations as separatethreads. Otherwise the thread will beome very large. Forsmall loops, the parallelism an be further inreased by loopunrolling. For partitioning the nested loops, the ompileronsiders both the inner loop and the outer loop for parallelexeution. Depending upon the available parallelism, thestruture of the loop bodies and the load balaning, eitherthe inner loop, or the outer loop or both an be exeuted inparallel.After partitioning the loops, further partitioning is doneby traversing the CFG from root. At every iteration of thedo loop in the partition a proedure() funtion, the ompilerlooks ahead till the ontrol independent basi blok of theurrent basi blok under onsideration and partitions theCFG between these to basi bloks into threads by allingthe partition thread() funtion.The pseudoode for the implementation of partition thread()funtion is also shown in Figure 5. partition thread() takestwo basi bloks and the urrent thread as inputs and ifpossible, partitions the program segment between this twobasi bloks into multiple threads by alling itself itera-tively. It �rst �nds out the most likely path between thestart and the end bloks of the segment by using the pro-�le data. In �nd min delay() funtion the minimum delay isomputed by using one of the data dependene models de-sribed in setion 3.2. It onsiders only the most likely pathbetween the two basi bloks to ompute the delay. The�nd min delay() funtion looks ahead and builds a possiblefuture thread starting at pdom blok using pro�le informa-tion and a threshold for thread size. After that it alulatesthe likely delay that this thread will have to su�er whenit is spawned from an instrution ontained in the urrentthread. The urrent thread is onsidered to be onsistingof basi bloks from previous ontrol independent regionsand the basi bloks from the most likely path in the ur-rent region. This funtion also identi�es the instrution inthe urrent thread from where this future thread should bespawned in order to optimize the delay. Estimating the delayis one of the most important tasks in thread partitioning.After alulating the possible delay, the partition thread()proedure goes on reating the threads. To maintain loadbalaning between the threads, it uses a lower limit and anupper limit for the number of instrutions that an be exe-uted as one thread. The ompiler partitions the program soas to optimize the exeution in the most likely path. Howpartition a proedure() handles load balaning and depen-dene delay together is explained using Figure 1.Several ases that may arise during program partitioningare shown in Figure 1(a). The most likely path from A to Eis shown by thik arrows and this likely path is quite long.So the ompiler reursively looks inside the path to furtherpartition it into smaller threads. However, if it is foundthat spawning a thread at E from an instrution in Thread1 results in a likely delay less than DELAY THRESHOLD,then the thread starting at E is spawned from Thread 1.In Figure 1 (a), the path between A and E is further par-titioned into a thread (i.e. Thread 2), and this is spawnedfrom Thread 1. Thread 3 an be spawned from inside Thread2 or Thread 1, depending on the possible delay. The latterase involves out-of-order spawning. This is done in orderto exploit the distant parallelism available in the program.In Figure 1(a), the region between C and D is small. If all



foreach loop L in p 
partition_loop(L);

endfor;

start_block = p.entry_block;
pdom_block = postdom(start_block);
curr_thread = create_new_thread(start_block, null);
do { 
   curr_thread = partition_thread(start_block, 
                                     pdom_block, curr_thread);
   start_block = pdom_block;
   pdom_block = postdom(start_block);
} while (pdom_block != null);

}

   pdom_block = postdom(start_block);

 
min_delay = find_min_delay(start_block, pdom_block,

curr_thread, &spawn_instr);
thread_size = path.size + curr_thread.size;
if ( is_medium(thread_size) && ( min_delay< DELAY_THRESH))

curr_thread.add_blocks(path);
curr_thread = create_new_thread(pdom_block, spawn_instr);
curr_thread = thread_partition(pdom_block, end_block,
                                                   curr_thread);
}

else if (is_big(thread_size)) {

curr_thread.add_block(path.first_block);
curr_thread = thread_partition(path.first_block,

pdom_block, curr_thread);

if ( min_delay < DELAY_THRESH)
curr_thread = create_new_thread(pdom_block,

spawn_instr)’

curr_thread = thread_partition(pdom_block, 
end_block, curr_thread);

}
else {

curr_thread.add_blocks(path);

end_block, curr_thread);
}

curr_thread.add_block(pdom_block);
curr_thread = thread_partition(pdom_block, 

thread_partition_for_other_paths(start_block, end_block);
return curr_thread;
}

path = find_most_likely_path(start_block, pdom_block);

path,

partition_a_procedure(procedure p) {

partition_thread(start_block, end_block, curr_thread) {

Figure 5: The Program Partitioning Algorithmof the instrutions belonging to the likely path between Cand D are inluded in Thread 2, the size of the thread isnot going to violate the upper limit. So the ompiler doesnot spawn a new thread at D. Rather, it inludes all bloksbetween C and D in Thread 2 and looks beyond D to �ndthe next potential thread starting point.The funtion alls are handled automatially in the parti-tion thread() proedure. The ompiler terminates the basiblok after a funtion all. So the instrutions following afuntion all appear in the post dominator blok of the basiblok ontaining the funtion all. When the ompiler en-ounters a funtion all, the ompiler takes into aount thenumber of dynami instrutions to omplete this funtionall. The ompiler performs some simple inter-proeduralanalysis like reads and writes into the global variables andthe referene parameters, to determine the possible delay. Ifthe alled funtion is a small one, then it is ompletely in-luded in the urrent thread. However, for a all to a biggerfuntion, a new thread may start exeuting after the fun-tion all, depending upon the possible delay and the threadsize. In that ase, out-of-order spawning may take plae, ifthat funtion is partitioned further into threads.The ompiler also heks the paths that are not the likelypaths and partitions them as well. If at run-time, ontrolgoes into those unlikely paths, then the threads spawnedspeulatively are aborted. But the threads that are not on-trol dependent on the aborted threads need not be aborted.For example, onsider Figure 1 (a). If from A, instead offollowing the most likely path, the ontrol goes to basiblok F , when both threads 2 and and 3 have been spawned,thread 2, would be aborted, but not thread 3, as E is ontrolindependent of A.

3.4 Implementation OverviewOur ompiler framework is implemented on the SUIF-MahSUIF platform [6℄. The layout of the omplete frame-work is shown in Figure 2. All of the ompiler analysis andthread partitioning are done at the high-level intermediaterepresentation (IR) of SUIF. We have hosen the SUIF plat-form to implement our ompiler system beause it providesa modular and exible infrastruture to develop ompileroptimizations. SUIF �rst translates high-level soure odeinto an IR, and then performs ode optimization throughseveral independent passes on that IR. We �nd it easier towork with the SUIF IR, and to integrate our own ompilerpasses in that framework. While transforming high-levelprograms into IR, SUIF retains all of the relevant informa-tion from the high level soure program. This is partiularlyhelpful for arrying out optimization suh as pointer anal-ysis. Therefore, the ompiler an perform more aurateprogram analysis. Moreover, the instrutions in the SUIFIR are very lose to the assembly level instrutions; thus,the estimation of thread sizes done at IR level remains validin the �nal assembly level as well. In SUIF, it is possibleto annotate the instrutions with neessary information likedata dependene, and use them in separate passes after-wards. Also, the SUIF pakage ontains many optimizationmodules, whih improve the quality of the ode produed.We used the MahSUIF [15℄ framework to generate Alphaassembly ode from the SUIF IR. We have implemented thepro�ling phase also in the SUIF framework.
4. EXPERIMENTAL EVALUATIONTo study the e�etiveness of our thread partitioning shemes,



we onduted a simulation-based evaluation. This setiondetails the simulation framework and the simulation resultsobtained.
4.1 Experimental Setup

4.1.1 Experimental MethodologyThe entral goal of these experiments is to understand thepotential of di�erent thread partitioning algorithms. Ourobjetive is not to evaluate the performane of a spei�(multithreaded) miroarhiteture. While using a detailedmiroarhiteture simulator, if the performane is poor, wegain little insight on why it does not work, or whether it isthe thread partitioning sheme or mahine model (or both)that should be improved. As a onsequene, poor resultsmay not reet on any inherent limitations of the threadpartitioning algorithm, but rather the way it was appliedin a miroarhiteture. To searh through a large spae ofthread partitioning shemes e�etively, we use a trae-drivensimulator. If a partitioning sheme does not work well withthis simulation framework, it will not work well on any realproessor of a similar design.This experimental analysis serves an important funtionin showing the limits of ertain thread partitioning algo-rithms, suh as parallelizing only loops, and reognizing is-sues that are worthy of further attention. Our SpMT sim-ulator models a multi-threaded proessor on top of a trae-driven simulator. The modeled SpMT proessor onsistsof multiple proessing elements (PEs). Eah PE has itsown program ounter, feth unit, deode unit, and exeutionunit, to feth and exeute instrutions from a thread. ThePEs are onneted together by an interonnetion network.The number of PEs, issue size per PE, et., are parameter-ized. The simulator uses the Alpha ISA. For the sake ofsimpliity, we assume that eah PE takes one yle to exe-ute eah instrution. We model a memory hierarhy witha shared L1 d-ahe with 1 yle lateny and a memory a-ess lateny of 10 yles. When enountering a onditionalbranh instrution in a thread, its PE onsults a branh pre-ditor for making a predition. We also model a hybrid datavalue preditor [20℄ for prediting the results of instrutionswhose operands are unavailable at the time of fething.The ode exeuted in the supervisor mode are unavailableto the simulator, and are therefore not taken into aount inthe parallelism studies. The library ode is not parallelized,as we use the standard libraries in our experiments. Thelibrary ode therefore exeutes in serial mode, providing aonservative treatment to our parallelism values.
4.1.2 Hardware Parameters UsedFor our simulation we have used a PE issue width of 4instrutions per yle and the PEs use out-of-order issue.Eah PE has an instrution window of 128 instrutions. TheL1 ahe size is 256 Kbytes. There is a 2-yle overheadin assigning a thread to a PE and thread pre-emption alsoinurs a 2 yle penalty. Furthermore, it assumes a 2-ylelateny for forwarding register values aross multiple PEs.
4.1.3 BenchmarksTable 1 lists the benhmark programs used for the evalua-tion of the ompiler framework. We have used �ve programsfrom SPEC2000, one from SPECINT95, and six from theOlden benhmark suite. All of these programs are written in

C. Our multi-threading ompiler framework partitions intothreads all of the soure ode, exept the library ode andthe system ode. Eah benhmark is exeuted for 300 millioninstrutions, exept for perimeter, whih ompleted exeu-tion after 89 million instrutions. For SPEC benhmarkswe have used the train data sets as inputs. Most benhmarkprograms spend some time in the beginning for initializingdata strutures and reading inputs, and these parts of theprograms do not reet the atual program harateristis.So we have used a \fast forward" mode to skip these initial-ization phases, after whih the statistis are olleted. Thenumber of instrutions that have been fast forwarded areshown in Table 1.
4.1.4 Default Partitioning SetupAs there are many di�erent parameters, it is diÆult toperform a ompletely orthogonal set of experiments. In-stead, we de�ne a default setup, and vary one parameterat a time. Thus, when the nature of threads is varied, therest of the parameters are kept at their default values. Forthe default on�guration, we allow all kinds of threads (i.e.,speulative threads, ontrol independent threads, and loopbased threads), data dependene distane based modeling ofinter-thread data dependenes, and data value predition.
4.2 Effectiveness of the Partitioning AlgorithmTo evaluate the e�etiveness of our partitioning algorithm,we measure the speedup obtained by inreasing the numberof PEs from 1 to 6 with our default on�guration. Figure 6shows the speedup obtained over a single PE. In the �gure,eah bar along the X-axis represents a benhmark programand the Y-axis represents the speedup over single PE. Ta-ble 2 presents some thread-related statistis for the defaulton�guration.The speedup with 6 PEs ranges from 1.62 for health to4.68 for mst. Most of the benhmarks show good speedupand salability as we inrease the number of PEs. raftyspends most of the time outside loops3 and the fat that itshows good speedup and salability suggests that the om-piler has been able to extrat parallelism from non-loop partsof the ode e�etively. This is true for the other benh-marks like vpr, perimeter, power, tsp, and treeadd as well.perimeter and treeadd do not have loops; they have reur-sive funtion alls instead. All these benhmarks exeute alarge perentage of speulative and non-speulative threads.Benhmarks ijpeg, mf, twolf, and health show modestspeedups. The salability is also quite low. In ijpeg, mf,twolf, and health, most of the time is spent in loops, andthese loops have a large number of loop-arried dependenes.So these programs only show moderate speedups with multi-threading. Moreover, we see from Table 2 that the averagenumber of dynami instrutions per thread for health isonly 8.89, whih is quite low. Therefore, in health, the PEsare not able to exploit thread-level parallelism well, whihaounts for its modest speedups and poor salability. Onaverage, we get a speedup of 2.89 with 6 PEs.From Table 2 we see that exept for mst and health, theaverage thread sizes are also reasonable. In health there isa small loop body that is getting exeuted in parallel most3In this ontext, by loops, we do not mean those loops whereloop bodies ontain funtion alls suh that suessive iter-ations of the loops are thousands to millions of instrutionsapart, e.g., the proessing loop in the main() funtion



Benhmark Program Lines of No. ofSuite Name Desription Soure Instrs FastCode ForwardedSPEC 95 ijpeg Compresses and Deompresses ppm �le 28566 250000000rafty Chess Program 20294 100000000equake Finite element simulation: earthquake modeling 1513 75000000SPEC2000 mf Minimum ost network ow solver 1909 100000000twolf Plae and route simulator 19762 500000000vpr Ciruit plaement and routing 16973 150000000health Columbian Health Care Simulator 505 0mst Minimum Spanning Tree 417 27000000perimeter Quad Tree 290 0Olden power Power Priing Problem 616 0treeadd tree traversal Problem 121 0tsp Traveling Salesman Problem 521 0Table 1: Benhmark ProgramsProgram Avg. Thread Size Thread TypeName (Dyn. Instrs) Speulative Non-speulative Loop-entriijpeg 75.67 21.01% 0.65% 78.32%rafty 81.55 56.27% 11.05% 32.68%equake 27.99 0.50% 0.80% 98.70%mf 33.20 0.15% 0.07% 99.78%twolf 33.46 4.17% 3.21% 92.61%vpr 83.77 28.95% 17.05% 53.99%health 8.89 0.50% 0.00% 99.50%mst 574.07 0.00% 0.00% 100.00%perimeter 105.88 87.72% 12.28% 0.00%power 42.62 6.47% 71.69% 21.84%treeadd 106.48 99.99% 0.01% 0.00%tsp 102.84 11.08% 0.13% 88.78%Table 2: Thread Statistisof the time resulting in small threads. On the other hand,in mst, the loop-entri thread that is getting exeuted mostof the time ontains library routine alls that our ompilerdid not partition, resulting in very large thread size.
4.3 Experimentation with Thread TypeOur next set of experiments fous on varying the natureof threads. In partiular, we simulate three di�erent om-bination of threads: (i) loop-based threads, non-speulativethreads, and speulative threads � i.e our default on�gu-ration; (ii) loop-based threads and non-speulative threads;and (iii) loop-only threads. Figure 7 ompares (i) and (ii)and (iii). In this �gure, the X-axis denotes the benhmarks,and the Y-axis denotes the speedup with 6 PEs. For eahbenhmark, three bars are shown, orresponding to the threedi�erent ombinations of threads. We have tried to manu-ally validate that loop-entri thread partitions are indeedthe good ones. It is not feasible to do that manually for theother kinds of threads.On analyzing the results of Figure 7, we an see that loops-only threads are quite insuÆient to harness the parallelismpresent in rafty, vpr, perimeter, power, and tsp. As men-tioned earlier, perimeter and treeadd do not ontain anyloops. Moreover, from Table 2, we �nd that they primarilyonsist of speulative threads. So it is not surprising to seethat their performane does not improve even after inlud-ing ontrol independent threads with loop-entri threads.Both these programs have reursive funtion alls and the
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Figure 6: Speedup with Varying Number of PEs
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Figure 7: Speedups with Di�erent Types of Threadsfuntions are alled onditionally. These funtion alls anbe exeuted in parallel and by exeuting them speulativelyit is possible to get large parallelism. In rafty, only a lit-tle time is spent in the loops, and also the loops are notquite parallelizable. So we get small speedup with loop-entri threads only. From Table 2 we see that more than50% of the threads are speulative threads and so ontrol-independent threads along with loop-entri threads ouldnot exploit all the available parallelism in the program. Intsp, although only 11% of the threads are speulative, theyseem to play a key role in exploiting parallelism. It maybe possible that by not spawning the speulative threads,load balaning and thread sheduling get a�eted, therebya�eting the performane. In power, 72% of the threads arenon-speulative and only 6% are speulative. So by exeutingnon-speulative threads along with loop-entri threads, it ispossible to ahieve omplete speedup. Benhmarks equake,mf, health, and mst spend most of the time in paralleliz-able loops. So these programs are able to harness almostall of the available parallelism by exeuting the loop-entrithreads only. Although ijpeg and vpr ontain a signi�antperentage of speulative threads, the results show that itis possible to exploit all of the available parallelism with-out using them. This is beause the load balaning remainsuna�eted even after ignoring the speulative threads andthe sheduling also do not get a�eted adversely. Moreover,the ILP gets boosted in the bigger threads resulting a goodspeedup.
4.4 Experimentation with Data Dependence

ModelingOur next set of experiments fous on the type of datadependene modeling used by the ompiler while deidingthread partitioning. In partiular, we look at two models:one based on data dependene ount and the other basedon data dependene distane. Figure 8 presents these re-sults; these results are a mixed bag. For ijpeg, vpr, mst,and perimeter, data dependene distane-based modelinggives better parallelism, and for rafty, and mf, twolf,and treeadd it is just the opposite. For other benhmarks,

the speedups are almost the same. Exept for perimeterand vpr in all other ases the di�erenes in speedups arenot appreiable. On looking into the partitioning done forperimeter, we found that the ount based modeling wasonservative and failed to identify a partitioning opportu-nity. It honored a data dependene and restrained frompartitioning, whereas the distane based modeling ignoredthat dependene beause it estimated that the subsequentthreads did not have to wait for it. At runtime this datadependene did get resolved early, and so the performaneof the latter partitioning beomes muh better than the for-mer one. From the results, we see that both the models arequite e�etive in representing the data dependene in theprograms.
4.5 Effect of Out-of-Order SpawningOur last set of experiment fous on the e�et of out-of-order thread spawning. Our ompiler framework an theo-retially support out-of-order spawning to an in�nite depth,but it is not pratial for the SpMT hardware to supportin�nite depth of out-of-order spawning, beause of limitedbu�er spae. Also, in order to support out-of-order threadspawning, the SpMT proessor may have to frequently pre-empt some of the (sequentially younger) threads, therebyinreasing the overhead. So, ideally we would like to ex-trat as muh parallelism as possible without any out-of-order spawning or at a low out-of-order spawning depth.In this set of experiments, we ompare the speedups ob-tained with 4 di�erent depths of out-of-order spawning: (i)sequential spawning only, (ii) out-of-order spawning depthof 2, (iii) out-of-order spawning depth of 4, and (iv) out-of-order spawning depth of in�nity. The default on�gurationassumes that the PEs an bu�er an in�nite number of su-essor threads.The results are shown in Figure 9. Benhmarks ijpeg,mf, twolf, health, and mst show no hange in speedup withnesting. This implies that even in the default on�guration,the threads are spawned and exeuted in sequential order.Benhmarks rafty, vpr, and tsp show a small improve-ment with out-of-order spawning. In the ase of equake,
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there is a drop of performane for a depth of 2, and then itagain goes up. This is beause in equake, with out-of-orderspawning depth of 2, the pre-emption ost overrides the ad-vantage of having out-of-order spawning of depth 2, therebylowering the speedup. In power, perimter, and treead thereis signi�ant inrease in speedup even at depth 2. The in-rease in speedup is maximum for power. In power, the pro-gram spends about 17% time in a big loop that annot beparallelized beause of the size and data dependene. How-ever, the loop body ontains alls to funtions that an beexeuted in parallel. The �rst funtion alled is again parti-tioned into two threads. With sequential spawning, the se-ond funtion starts exeution only after the seond thread ofthe �rst funtion starts exeuting. However, by allowing anout-of-order spawning depth of 1, the seond funtion anbe exeuted in parallel with the �rst funtion, resulting toa signi�ant improve in performane.
5. CONCLUSIONSSpeulative multithreading (SpMT) is emerging as an im-portant parallelization tool for non-numeri programs. Ex-amples are the multisalar proessor [4℄ [16℄, the SPSM pro-essor [3℄, and the deoupled ontrol ow proessor [8℄. All ofthese use multiple hardware sequeners to feth and exeutemultiple threads in parallel. Given the inreasing interestin mainstream miroproessor design, we expet that futureproessors will attempt to exeute multiple threads in oneway or another.Judiious partitioning of a program into threads involvesa lot of analysis, whih makes it diÆult to be done in hard-ware. Previous ompiler e�orts have foused on identifyingloop-based threads and speulative threads. A limitation ofthis approah is that branh mispreditions may ause all ofthe subsequent threads to be disarded, without retainingany ontrol-independent threads that may be present in theproessor. The use of non-speulative threads has the poten-tial to extrat additional amounts of parallelism, espeiallyfor non-numeri programs.This paper presented a general ompiler framework forpartitioning a sequential program into multiple threads forexeution in a SpMT proessor. Our ompiler framework isgeared for identifying loop-based threads, speulative threads,and non-speulative threads. In addition, it also supportsnested threads, and spawning from anywhere in a thread.While performing the program partitioning, the ompilernot only onsiders ontrol independene information, butalso onsiders data dependene information and pro�le-basedinformation on the most likely ontrol ow paths.We have implemented this ompiler framework on theSUIF-MahSUIF platform. Our framework is is able to par-tition into threads large programs, suh as the SPEC benh-mark programs. A simulation-based evaluation of the gen-erated threads indiate that an average speed up of up to 3an be obtained with 6 proessing elements for SPEC INTprograms and Olden programs by using speulative multi-threading. This is very promising, given that non-numeriprograms are inherently diÆult to parallelize. Our detailedexperimental analysis has inreased our understanding ofthe di�erent fators that a�et performane. These anal-yses show that the ombination of loops, speulative, andnon-speulative threads has the potential to extrat thread-level parallelism in non-numeri programs.
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