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ABSTRACT

Speculative multithreading (SpMT) promises to be an ef-
fective mechanism for parallelizing non-numeric programs,
which tend to use irregular data structures with pointers
and have complex flows of control. Proper thread selection
is crucial to obtaining good speedup in an SpMT system.
This paper presents a compiler framework for partitioning
a sequential program into multiple threads for parallel exe-
cution in an SpMT system. This framework is very general,
and support a wide variety of threads, such as speculative
threads, non-speculative threads, loop-centric threads, and
out-of-order thread spawning. To do efficient partitioning,
the compiler uses profiling, intra-procedural pointer anal-
ysis, data dependence information and control dependence
information. Our compiler framework is implemented on the
SUIF-MachSUTF platform, and is able to partition large pro-
grams, such as the SPEC benchmarks. A simulation-based
evaluation of the generated threads shows that an average
speedup of 3 can be obtained with 6 processing elements for
non-numeric programs. This speedup reduces to 2 if we use
only loop-based threads.

Keywords: data dependence, parallelization, speculative
multithreading (SpMT), thread-level parallelism (TLP)

1. INTRODUCTION

Reducing the completion time of a single computation
task has been one of the defining challenges of computer
science and engineering for the last several decades. The
primary means of increasing processor performance, besides
increasing the clock speed and reducing the memory latency,
has always been the exploitation of the inherent parallelism
present in programs, with the use of a combination of soft-
ware and hardware techniques. Parallelization has been a
good success for scientific applications, but not quite so for
the non-numeric application. Non-numeric programs use ir-
regular data structures and have complex control flows that
make them hard to parallelize.
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The emergence of the speculative multithreading (SpMT)
model in the last decade has provided the much awaited
breakthrough for the important set of non-numeric applica-
tions. Many studies on speculative multithreading (SpMT)
confirm that there is significant performance potential in ex-
ecuting multiple threads from the same program in parallel.

Hardware support for speculative thread execution makes
it possible for the compiler to parallelize sequential applica-
tions without worrying about data and control dependences.
However, hardware support for speculation is not sufficient
to achieve high speedup from the application programs and
we need good compiler support as well to extract parallelism
from the programs. In compiling programs for the multi-
threaded architecture the most important task is thread par-
titioning, i.e., partitioning a program into separate threads
of execution.

The major contribution of this paper is to present and
evaluate a general compiler framework for SpMT systems.
This compiler partitions sequential programs into multiple
threads for parallel execution in an SpMT processor. Our fo-
cus is primarily on non-numeric applications, which are gen-
erally more difficult to partition into threads. Traditional
work in parallelization has targeted scientific applications,
and has focussed mainly on loops where the loop bounds are
generally predefined and the loops access regular data struc-
tures like arrays. On the other hand, in non-numeric appli-
cations, the loops often have large loop bodies with complex
control flow, loop-carried dependences and loop bounds that
cannot be resolved statically. So these loops cannot be easily
parallelized with traditional techniques. Also, unlike scien-
tific applications, non-numeric applications access irregular
data structures with an abundance of pointers. Moreover,
sometimes the non-numeric programs spend more time out-
side the loops. So many of the techniques used for scientific
programs cannot be directly applied to non-numeric pro-
grams to extract parallelism.

To obtain good speedup for non-numeric programs, our
compiler considers both the loop regions and the non-loop
regions of programs. It uses control dependence information
and profile information to guide the partitioning. We have
used SUIF and MACHSUIF compiler platforms to develop
our compiler. Using our compiler framework, we have been
able to compile a wide range of non-numeric applications,
including programs from the SPEC 2000 and Olden bench-
mark suites.

Our work differs from earlier works on SpMT compilation
[13] [18] [19] primarily in 4 ways: (i) Most of the earlier



work [13] [18] primarily targets loop-level parallelism only,
whereas our compiler targets other kinds of parallelism also.
(i) Our SpMT model is more general than the one used
in earlier compiler work, and supports spawning of threads
from anywhere in a thread; in [19] a thread can be spawned
only from the beginning of another thread. (iii) Our com-
piler framework supports out-of-order spawning of threads,
whereas earlier compilers support only sequential spawning
of threads. (iv) Our Compiler framework explicitly exploits
control dependence information in forming the threads.

Our studies with different types of compiler-generated threads

have led to the following conclusions:

e Significant speedups can be obtained with low degrees
of multithreading for the non-numeric applications.

e For non-numeric programs, it is not sufficient to exploit
loop-level parallelism only, the form of parallelism that
is almost exclusively targeted in prior research; it is
important to look at other types of threads as well.

e For non-numeric programs, it is important to spawn
threads speculatively.

e For non-numeric programs, it is important to exploit
control independence.

The rest of this paper is organized as follows. Section 2
provides background information on SpMT, including the
thread execution model and various issues related to thread
partitioning. Section 3 details our SpMT compiler frame-
work, and thread partitioning algorithm. Section 4 presents
the simulation environment and a detailed evaluation of our
thread partitioning algorithm. Section 5 presents a sum-
mary and the major conclusions of this paper.

2. SPECULATIVE MULTITHREADING (SPMT)

Compilers and programmers have made significant progress
in parallelizing regular numeric applications. However, they
have had little or no success in doing the same for highly
irregular numeric or especially non-numeric applications [9].
In such applications, control flow as well as memory ad-
dresses often depend on run-time behavior, which makes
it very difficult to partition a program into independent
threads.

This execution model is closer to sequential control flow,
and envisions a strict sequential ordering among the threads.
Threads are extracted from sequential code and are specula-
tively run in parallel, without violating the sequential pro-
gram semantics. In case of misspeculation, the results of
the speculative thread and of subsequent threads are dis-
carded. The control flow of the sequential code imposes an
order on the threads, we can use the terms predecessor and
successor to qualify the relation between any given pair of
threads. This means that inter-thread communication be-
tween any two threads (if any) is strictly in one direction, as
dictated by the sequential thread ordering. Thus, no explicit
synchronization operations are necessary, as the sequential
semantics of the threads guarantee proper synchronization.
This relaxation allows us to “parallelize” non-numeric ap-
plications without explicit synchronization, even if there is
a potential inter-thread data dependence.

Example SpMT models are the multiscalar model [4] [16],
the superthreading model [18], and the trace processing model

[8] [14]. SpMT is appealing because it provides the power of
parallel processing to speed up ordinary applications, which
are typically written as sequential programs.

2.1 SpMT Thread Communication Model

Inter-thread communication refers to passing data values
between two or more threads. Communication can take
place at the level of register space, memory address space,
and I/0 space, with the registers being the level closest to
the processor. The most general model, which is followed
in most of the SpMT proposals, is to let inter-thread com-
munication take place at all of these levels. Thus, multi-
ple threads share the same register name space (and the
same memory address space). Inter-thread communication
happens implicitly due to reads and writes to the shared
registers’ (and to shared memory locations). Qur com-
piler framework also uses this most general communication
model.

2.2 Spawning Strategies

In an SpMT processor, a dynamic thread’s lifetime has
3 important events: spawning, activation, and retirement.
Spawning refers to creating a new instance of a static thread,
and is analogous to the fork mechanism used in conventional
parallel processing. Activation refers to assigning a spawned
thread to a processing element (PE). Retirement refers to
the act of a completed thread relinquishing its PE (after it
has committed its results).

2.2.0.1 Spawning Point:.

An important issue in an SpMT model concerns the points
in a thread from where other threads are spawned. Two
possibilities exist:

e Spawning from only the beginning of a thread
e Spawning from anywhere in a thread

The first case uses an eager spawning strategy, with a view
to maximize PE utilization by minimizing the time an idle
PE waits for a thread to be activated in it. A potential
drawback with this approach is that a speculative thread
may be spawned prematurely without considering enough
run-time information. Furthermore, often there may not be
an idle PE at the time a thread is spawned. In the second
approach, a thread can be spawned from anywhere within a
thread. This allows the spawning to be delayed, say, until a
particular branch or data dependence gets resolved.

2.2.0.2 Loop lterations versus Non-loop Threads:.

Loop iterations have been the traditional target of paral-
lelization at all levels programmer, compiler, and hardware
and form an obvious candidate for forming threads. Each
iteration of a loop can be specified as a thread that runs
in parallel with other iterations of that loop. For example,
in Figure 1(b), Thread 1 is a loop-centric thread, i.e every
iteration of the loop is executed as a separate thread. The
only form of control dependences shared between multiple
threads of this kind are loop termination branches, whose
outcomes are generally biased towards loop continuation,
even in non-numeric programs. The degree of TLP that can

'A shared register name space can be implemented at the
microarchitecture level in a distributed manner.



be extracted will be moderated, however, by loop-carried
dependences. In non-numeric programs, many of the loops
have at least some amount of loop-carried data dependences.
To get good speedup for non-numeric programs, it is im-
portant to consider threads other than loop iterations, in
addition to loop iteration based threads.

Speculative spawning is the essence of SpMT architec-
tures. A speculative spawning is where the existence of the
spawned thread is control dependent on a conditional branch
that follows the spawning point (as per sequential program
order). Many non-numeric programs, however, tend to have
a noticeable percentage of control mispredictions, necessi-
tating frequent recovery actions. Therefore, it is important
to exploit control independence [2], possibly by identify-
ing threads that are non-speculative from the control point
of view. When executing a control-non-speculative thread
in parallel with its initiator, failure to correctly predict a
branch within the initiator thread does not affect the exis-
tence of the non-speculative thread, although it can poten-
tially affect its execution through inter-thread data depen-
dences. Effective use of control independence information
thus helps to reach distant code, despite the presence of
mispredicted branches in between. Notice that if a specu-
lative thread T'1 spawns a non-speculative thread T2, then
T2 is non-speculative from T1’s point of view, but not from
TI’s initiator’s point of view.

Sticking to loop-based threads and non-speculative threads
alone may not yield good speedup for some programs. Some-
times, it may be desirable to start a thread from a point that
is control dependent on the control flow through the previous
thread. This is particularly desirable when alternate control
dependent paths have widely differing lengths. For example,
in Figure 1(a), Thread 2 is a speculative when spawned from
basic block A, because basic block C is control dependent
on block B and A. Speculative threads can also exploit more
parallelism than is possible with conventional multiproces-
sors that lack a recovery mechanism. In fact, as we will see,
for many of the non-numeric programs, speculative threads
are a must for exploiting thread-level parallelism.

2.2.0.4 Out-of-Order Spawning of Threads:.

Lastly, an SpMT may or may not support out-of-order
spawning of threads. If out-of-order spawning is not al-
lowed, then all of the dynamic threads are spawned strictly
in program order. If out-of-order spawning is allowed, then
threads are not necessarily spawned in program order, and a
single thread may spawn multiple threads. In order to avoid
deadlock in such a situation, the SpMT processor may have
to occasionally pre-empt some of the (sequentially younger)
threads. We can also consider SpMT models with limited
out-of-order spawning. In case of out-of-order depth of 1,
for instance, at most one predecessor thread can be spawned
after a thread has been spawned. Therefore, if the thread
has to be preempted because of a predecessor thread be-
ing spawned later, the PE has to store the state of at most
one other thread. Nested spawning is particularly useful to
harness the parallelism present in nested loops.

Our compiler framework is very general, and supports all
of the spawning strategies, including spawning from any-
where in a thread, and nesting. In our experimental section,

Thread 1

Thread 2

b) CFG with Loop

a) CFG with complex control flow

Figure 1: Different Kinds of Threads

we focus on three types of threads—Iloop-centric threads,
control non-speculative threads, and control speculative threads.
Figure 1 shows these types of threads.

2.3 Performance Issues in SpMT Thread Se-
lection

Perhaps the most crucial decision in any SpMT environ-
ment is thread selection. This involves considering complex
factors such as inter-thread data dependences, probability
for branch misprediction within a thread, load balancing,
etc.

2.3.0.5 Thread Granularity:.

Thread size is an important parameter to consider in par-
titioning a program into threads. Short threads may not
expose adequate parallelism, and may incur high overhead
depending on the thread initiation mechanisms used. Multi-
threading begins to make sense when threads are larger than
a traditional size instruction window. On the other hand, it
may not be possible to have very large size threads because
of the huge buffering requirements. Moreover, if threads are
very large, then recovery actions due to mispredictions will
be very expensive.

2.3.0.6 Load Balancing:.

Another factor to consider in deciding thread partition-
ing is to reduce the variance in thread sizes. In an SpMT
system, even if a particular thread is non-speculative from
the control point of view, some of the data values used by
that thread may be speculative, because of data dependence
speculation [5], intra-thread control speculation, and possi-
bly data value speculation [10]. Because of this speculative
nature, a thread cannot be committed until all of its data
operands are verified to be correct, even if its execution was
completed a long time back. Of course, it is possible to initi-
ate other threads in its hardware sequencer while the thread
is awaiting retirement (as in [16]); but there is a practical
limit to how many such threads can be made to wait for
retirement, because of the need to store the state informa-
tion of all pending threads. In short, thread size imbalance



can be tolerated to some extent, but widely differing thread
sizes should be avoided as much as possible.

2.3.0.7 Inter-Thread Data Dependences:..

An important factor to consider when partitioning a pro-
gram into threads is inter-thread data dependences. They
affect both inter-thread data communication and determine
how much thread-level parallelism exists. The effect of a
data dependence depends on the producer’s and consumer’s
respective positions in their threads. It is not possible to de-
tect all data dependences statically at compile time because
of aliasing. It is also not possible to determine accurately
the relative timing of the dependent instructions in differ-
ent threads because of factors like conditional branches and
cache misses. The compiler can use some profile informa-
tion and heuristics to estimate the relative distance between
the dependent instructions. The compiler can also perform
intra-thread scheduling to further reduce the delay.

2.3.0.8 Thread Prioritization:.

Compilers typically do not assume a fixed number of PEs
while performing thread partitioning. On a processor that
has a limited number of PEs, some strategy has to be imple-
mented to prioritize the available threads. One simple strat-
egy is to prioritize the threads according to their sequential
execution order. The motivation is that a sequentially older
thread perhaps has a higher likelihood of completing earlier.
This strategy is employed in the multiscalar processor [16],
superthreading processor [18], and trace processor [14]. If a
sequentially younger thread is both control independent and
data independent of the previous threads, however, there
may be merit in assigning a higher priority to it. The pro-
cessor may also decide not to spawn a low-priority thread if
there are not enough PEs.

Besides these major factors, thread selection also involves
considering other, more subtle, factors such as probability
for control misprediction within a thread.

2.4 Prior Compiler Work on SpMT

Most of the SpMT proposals advocate thread selection at
compile time, because the hardware is quite limited in its
program partitioning capability. There have been several
proposals and implementations of compiler-based thread gen-
eration for SpMT systems [13] [18] [19]. Among these, the
Agassiz compiler [18] and chip multiprocessing [13] focus
on loop-level parallelism mainly. They generate threads for
multiple iterations of the same loop. The Agassiz com-
piler also performs code scheduling within the threads, so
as to facilitate pipelined execution of the threads in the su-
perthreaded processor.

The multiscalar compiler [19] was the first major effort to
partition the entire program, including the non-loop threads,
for parallel execution in an SpMT processor. It uses a set
of compiler heuristics to generate the threads; some of the
heuristics are specific to the multiscalar architecture. For
example, the multiscalar processor uses a successor thread
prediction strategy, and for that each thread is restricted to
have at most four successor threads. Also, the multiscalar
processor does not support nested threads; so threads are
spawned and initiated only in the program order. However,
our compiler framework supports nested threads. For some
program structures, this kind of spawning yields better per-
formance, as will be evident from our simulation results. In

the multiscalar, a successor thread is spawned only from the
beginning of a thread. Our compiler supports a more relaxed
spawning strategy: a thread can be spawned from anywhere
within a thread. Sometimes, the spawning is delayed until
a particular branch or data dependence gets resolved.

Apart from these SpMT compiler work, there has been
some notable compiler work for other parallelization models.
Some of the notable ones among them are the IMPACT com-
piler [7], the EARTH-McCAT compiler[17], and the XMT
[12] compiler. The IMPACT compiler takes sequential pro-
grams, and performs a variety of optimizations, including
predicated execution, superblock formation, and hyperblock
formation [7]. These optimizations are geared for wide-issue
uniprocessors. The focus of our compiler framework, on
the other hand, is to exploit thread-level parallelism (TLP),
which complements instruction-level parallelism (ILP).

The EARTH multi-threaded framework provides simple
extensions to the C language, called EARTH-C [11]. This
extension includes simple constructs for specifying control
parallelism and data locality, which enable the programmer
to specify coarse-grain parallelism. The EARTH-McCAT
compiler augments this coarse-grain parallelism with fine-
grain parallelism that it detects using dependence analysis.
The main difference between our multi-threading framework
and the EARTH framework is that the input to our compiler
is a sequential program written in a standard language such
as C. Furthermore, EARTH uses multithreading for hiding
latencies; a long latency operation and an instruction de-
pending on it cannot therefore coexist in the same thread.
Moreover, EARTH does not support speculative execution;
a thread starts execution only when its data are available,
and the threads are non-preemptive. On the other hand,
our SpMT framework supports preemptive threads, and a
thread is speculatively executed when its data are not avail-
able.

XMT [12] is a multithreaded programming model where
the programmer explicitly specifies the parallel threads. It
has a simple thread execution model. The main task of the
XMT compiler is to perform thread scheduling and perform
the transition between the parallel and sequential environ-
ments.

One distinct feature of our compiler framework is that
it starts with sequential programs written in ordinary lan-
guages, and does not require the programmer to identify
or express parallelism. To the best of our knowledge, our
thread generation framework is the first compiler-based thread
partitioning scheme that attempts to exploit control inde-
pendence and also permits nested threads.

3. COMPILER FRAMEWORKAND ALGO-
RITHMS

In this section we present our compiler framework for par-
titioning sequential programs into threads. Given a pro-
gram, the compiler specifies a set of thread spawning points
and corresponding thread starting points. The threads share
the same register name space and the same memory address
space. An instruction can spawn at most one thread; a
thread can collectively spawn several threads. A particu-
lar thread can also be spawned from different threads. The
processor supports control speculative threads; i.e., a thread
can be spawned by an instruction before knowing for sure
if control flow will reach that thread. If it is found that the
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Figure 2: The Layout of the Compiler and Simulator
Framework

control speculation was wrong, then the SpMT processor
performs the required recovery actions.

The layout of our compiler framework, along with the
SpMT simulator, is shown in Figure 2. While partition-
ing the program into threads, the compiler has to consider
three orthogonal factors—data dependence, control depen-
dence, and thread size—together, to decide a good parti-
tioning. It employs some metrics to help in this endeavor.
In the following subsections we discuss how the compiler
takes care of data dependence, control dependence and the
thread size. Our compiler performs the program analysis
and partitioning on a high level intermediate representation.
The high level representation retains all of the source level
pointer and type information, and hence it is possible to
take into account the dependences due to pointer aliasing.
This permits more accurate data dependence information to
work with. Hence the compiler is able to extract parallelism
even from the pointer-intensive programs. We have used
the profiling information to find out the most likely path,
that the control will take and this information is used by
the compiler to spawn threads speculatively.

3.1 Program Profiling

We have used a separate compiler pass to instrument the
source code and gather the profiling information. In the
profiling pass, we find out for every basic block, which basic
block is most likely to be visited next. The compiler uses
this to find out the most likely path and also to estimate
the number of instructions that would be executed between
two basic blocks.

3.2 Data Dependence Modeling

In our framework we have implemented two different met-

rics to quantify the data dependences between adjacent threads.

One metric is data dependence count and the other is data

dependence distance. Our thread partitioning algorithm works

in multiple passes. In the first pass, the compiler builds
the control flow graph (CFG) ? and also finds out the data
dependence information. It calculates the read/write sets
[1] for every instruction. We have implemented a pointer
analysis framework to obtain an improved data dependence
information.

The pointer analysis helps us in getting more precise read/write

sets. After calculating the read/write sets for every instruc-
tion, data flow analysis is performed. For every variable in
the read set of an instruction, the set of reaching definitions
[1] are determined.

3.2.1 Data Dependence Count

’In a control flow graph (CFG), the basic blocks are repre-
sented by th vertices and the edges show the flow of control
between the basic blocks
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Figure 3: Data Dependence Arcs between Basic
Blocks

The data dependence count (DDC) is the weighted count
of the number of data dependence arcs coming into a basic
block from other blocks. This models the extent of data
dependence this block has on other blocks. If the depen-
dence count is small then this block is more or less data
independent from other blocks and we can begin a thread
at the beginning of that basic block. While counting the
data dependence arcs, the compiler gives more weights to
the arcs coming from blocks that belong to threads that are
closer to the block under consideration. The motivation is
that dependences from distant threads are likely to be re-
solved earlier and hence the current thread is less likely to
wait for data generated there. Furthermore, the compiler
gives less weightage to the data dependence arcs coming
from the less likely paths. The rationale behind using the
data dependence count are twofold. First of all, it is simple
to compute. Also if the processing elements do out of order
execution then the data dependence distant model may not
be very accurate because it assumes serial execution within
each thread. But in practice, due to out of order execution,
instructions that are lower in the program order can be ex-
ecuted before the earlier instructions inside the threads. So
data dependence count tries to model the extent of data
dependence in the presence of out of order execution.

3.2.2 Data Dependence Distance

The data dependence distance between two basic blocks
B1 and B2 models the maximum time that the instructions
in block B2 will stall for instructions in Bl to complete,
if Bl and B2 are executed in parallel. For example, con-
sider the code segment in Figure 2. Instructions 2 and 3
of B2 are data dependent on instructions 1 and 5 of Bl,
respectively. If Bl and B2 are executed in parallel in two
different PEs; then instruction 2 of B2 will not stall due to
the dependence, because x has already been computed be-
fore instruction 2 is executed. However, instruction 3 of B2
has to wait for Bl to execute instruction 5. If we assume
that every instruction has a latency of 1 clock cycle, then
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instruction 3 in B2 will stall for 2 cycles. So in this exam-
ple, the maximum delay that will be encountered if B1 and
B2 are executed as parallel threads is 2 cycles. Note that
while computing the data dependence distance, we model
that the instructions inside a single basic block are executed
sequentially. Also note that the data dependence distance
will increase, if the basic block B1 is executed as a part of
a thread and there are more instructions before B1 and we
start a new thread at the beginning of B2. Similarly the
data dependent distance will decrease if B1 and B2 are part
of the same thread and are executed sequentially. As evident
from this example, it is not beneficial to execute in parallel
two basic blocks with large data dependence distances. In
order to decide whether to start a new thread at a control
independent point, the compiler calculates the data depen-
dence distance that will result if a new thread is started at
that point. If it results in a large data dependence distance,
then the compiler starts a new thread at that point.

3.3 Program Partitioning

This subsection describes the partitioning algorithm. The
overview of the partitioning algorithm is given in Figure
5. The compiler partitions the CFG into multiple threads,
and also annotates the instruction from which a particu-
lar thread can be spawned. In partition_a_procedure(), the
loops are examined and partitioned first. In our compiler
framework, the loops are treated as a special case of control
dependence. For loops the compiler checks the dependence
between two successive iterations of the loops, and if it is
found that spawning another thread for the next iteration
is profitable, then a thread is spawned. It may also happen
that, instead of spawning from the beginning of the loop
for the next iteration, the compiler spawn the next itera-
tion from somewhere inside the loop. The large body of
the loops may be further partitioned into multiple threads
as described below. While partitioning the loops, the com-
piler uses profile information on the number of iterations
and the number of dynamic instructions in the loop. Typi-
cally the compiler does not want to execute small loop body

in parallel. However, if the number of iterations is large
then the compiler would spawn the iterations as separate
threads. Otherwise the thread will become very large. For
small loops, the parallelism can be further increased by loop
unrolling. For partitioning the nested loops, the compiler
considers both the inner loop and the outer loop for parallel
execution. Depending upon the available parallelism, the
structure of the loop bodies and the load balancing, either
the inner loop, or the outer loop or both can be executed in
parallel.

After partitioning the loops, further partitioning is done
by traversing the CFG from root. At every iteration of the
do loop in the partition_a_procedure() function, the compiler
looks ahead till the control independent basic block of the
current basic block under consideration and partitions the
CFG between these to basic blocks into threads by calling
the partition_thread() function.

The pseudocode for the implementation of partition_thread()
function is also shown in Figure 5. partition_thread() takes
two basic blocks and the current thread as inputs and if
possible, partitions the program segment between this two
basic blocks into multiple threads by calling itself itera-
tively. It first finds out the most likely path between the
start and the end blocks of the segment by using the pro-
file data. In find_min_delay() function the minimum delay is
computed by using one of the data dependence models de-
scribed in section 3.2. It considers only the most likely path
between the two basic blocks to compute the delay. The
find_min_delay() function looks ahead and builds a possible
future thread starting at pdom_block using profile informa-
tion and a threshold for thread size. After that it calculates
the likely delay that this thread will have to suffer when
it is spawned from an instruction contained in the current
thread. The current thread is considered to be consisting
of basic blocks from previous control independent regions
and the basic blocks from the most likely path in the cur-
rent region. This function also identifies the instruction in
the current thread from where this future thread should be
spawned in order to optimize the delay. Estimating the delay
is one of the most important tasks in thread partitioning.
After calculating the possible delay, the partition_thread()
procedure goes on creating the threads. To maintain load
balancing between the threads, it uses a lower limit and an
upper limit for the number of instructions that can be exe-
cuted as one thread. The compiler partitions the program so
as to optimize the execution in the most likely path. How
partition_a_procedure() handles load balancing and depen-
dence delay together is explained using Figure 1.

Several cases that may arise during program partitioning
are shown in Figure 1(a). The most likely path from A to F
is shown by thick arrows and this likely path is quite long.
So the compiler recursively looks inside the path to further
partition it into smaller threads. However, if it is found
that spawning a thread at E from an instruction in Thread
1 results in a likely delay less than DELAY_THRESHOLD,
then the thread starting at E is spawned from Thread 1.
In Figure 1 (a), the path between A and E is further par-
titioned into a thread (i.e. Thread 2), and this is spawned
from Thread 1. Thread 3 can be spawned from inside Thread
2 or Thread 1, depending on the possible delay. The latter
case involves out-of-order spawning. This is done in order
to exploit the distant parallelism available in the program.
In Figure 1(a), the region between C and D is small. If all



partition_a_procedure(procedure p) {
foreachloop L inp
partition_loop(L);
endfor;
start_block = p.entry_block;
pdom_block = postdom(start_block);
curr_thread = create_new_thread(start_block, null);
do{
curr_thread = partition_thread(start_block,
pdom_block, curr_thread);
start_block = pdom_block;
pdom_block = postdom(start_block);
} while (pdom_block != null);

}

partition_thread(start_block, end_block, curr_thread) {
pdom_block = postdom(start_block);
path = find_most_likely_path(start_block, pdom_block);
min_delay = find_min_delay(start_block, pdom_block,
path, curr_thread, & spawn_instr);
thread_size = path.size + curr_thread.size;
if (is_medium(thread_size) && ( min_delay< DELAY_THRESH))
curr_thread.add_blocks(path);
curr_thread = create_new_thread(pdom_block, spawn_instr);
curr_thread = thread_partition(pdom_block, end_block,
curr_thread);

}

elseif (is_big(thread_size)) {

curr_thread.add_block(path.first_block);
curr_thread = thread_partition(path.first_block,
pdom_block, curr_thread);

if (min_delay < DELAY_THRESH)
curr_thread = create_new_thread(pdom_block,
spawn_instr)’

curr_thread = thread_partition(pdom_block,
end_block, curr_thread);

}

else{
curr_thread.add_blocks(path);
curr_thread.add_block(pdom_block);

curr_thread = thread_partition(pdom_block,
end_block, curr_thread);
}

thread_partition for_other_paths(start_block, end_block);
return curr_thread;

}

Figure 5: The Program Partitioning Algorithm

of the instructions belonging to the likely path between C
and D are included in Thread 2, the size of the thread is
not going to violate the upper limit. So the compiler does
not spawn a new thread at D. Rather, it includes all blocks
between C and D in Thread 2 and looks beyond D to find
the next potential thread starting point.

The function calls are handled automatically in the parti-
tion_thread() procedure. The compiler terminates the basic
block after a function call. So the instructions following a
function call appear in the post dominator block of the basic
block containing the function call. When the compiler en-
counters a function call, the compiler takes into account the
number of dynamic instructions to complete this function
call. The compiler performs some simple inter-procedural
analysis like reads and writes into the global variables and
the reference parameters, to determine the possible delay. If
the called function is a small one, then it is completely in-
cluded in the current thread. However, for a call to a bigger
function, a new thread may start executing after the func-
tion call, depending upon the possible delay and the thread
size. In that case, out-of-order spawning may take place, if
that function is partitioned further into threads.

The compiler also checks the paths that are not the likely
paths and partitions them as well. If at run-time, control
goes into those unlikely paths, then the threads spawned
speculatively are aborted. But the threads that are not con-
trol dependent on the aborted threads need not be aborted.
For example, consider Figure 1 (a). If from A, instead of
following the most likely path, the control goes to basic
block F', when both threads 2 and and 3 have been spawned,
thread 2, would be aborted, but not thread 3, as E is control
independent of A.

3.4 Implementation Overview

Our compiler framework is implemented on the SUIF-
MachSUIF platform [6]. The layout of the complete frame-
work is shown in Figure 2. All of the compiler analysis and
thread partitioning are done at the high-level intermediate
representation (IR) of SUIF. We have chosen the SUIF plat-
form to implement our compiler system because it provides
a modular and flexible infrastructure to develop compiler
optimizations. SUIF first translates high-level source code
into an IR, and then performs code optimization through
several independent passes on that IR. We find it easier to
work with the SUIF IR, and to integrate our own compiler
passes in that framework. While transforming high-level
programs into IR, SUIF retains all of the relevant informa-
tion from the high level source program. This is particularly
helpful for carrying out optimization such as pointer anal-
ysis. Therefore, the compiler can perform more accurate
program analysis. Moreover, the instructions in the SUIF
IR are very close to the assembly level instructions; thus,
the estimation of thread sizes done at IR level remains valid
in the final assembly level as well. In SUIF, it is possible
to annotate the instructions with necessary information like
data dependence, and use them in separate passes after-
wards. Also, the SUIF package contains many optimization
modules, which improve the quality of the code produced.

We used the MachSUIF [15] framework to generate Alpha
assembly code from the SUIF IR. We have implemented the
profiling phase also in the SUIF framework.

4. EXPERIMENTAL EVALUATION

To study the effectiveness of our thread partitioning schemes,



we conducted a simulation-based evaluation. This section
details the simulation framework and the simulation results
obtained.

4.1 Experimental Setup
4.1.1 Experimental Methodology

The central goal of these experiments is to understand the
potential of different thread partitioning algorithms. Our
objective is not to evaluate the performance of a specific
(multithreaded) microarchitecture. While using a detailed
microarchitecture simulator, if the performance is poor, we
gain little insight on why it does not work, or whether it is
the thread partitioning scheme or machine model (or both)
that should be improved. As a consequence, poor results
may not reflect on any inherent limitations of the thread
partitioning algorithm, but rather the way it was applied
in a microarchitecture. To search through a large space of
thread partitioning schemes effectively, we use a trace-driven
simulator. If a partitioning scheme does not work well with
this simulation framework, it will not work well on any real
processor of a similar design.

This experimental analysis serves an important function
in showing the limits of certain thread partitioning algo-
rithms, such as parallelizing only loops, and recognizing is-
sues that are worthy of further attention. Our SpMT sim-
ulator models a multi-threaded processor on top of a trace-
driven simulator. The modeled SpMT processor consists
of multiple processing elements (PEs). Each PE has its
own program counter, fetch unit, decode unit, and execution
unit, to fetch and execute instructions from a thread. The
PEs are connected together by an interconnection network.
The number of PEs, issue size per PE, etc., are parameter-
ized. The simulator uses the Alpha ISA. For the sake of
simplicity, we assume that each PE takes one cycle to exe-
cute each instruction. We model a memory hierarchy with
a shared L1 d-cache with 1 cycle latency and a memory ac-
cess latency of 10 cycles. When encountering a conditional
branch instruction in a thread, its PE consults a branch pre-
dictor for making a prediction. We also model a hybrid data
value predictor [20] for predicting the results of instructions
whose operands are unavailable at the time of fetching.

The code executed in the supervisor mode are unavailable
to the simulator, and are therefore not taken into account in
the parallelism studies. The library code is not parallelized,
as we use the standard libraries in our experiments. The
library code therefore executes in serial mode, providing a
conservative treatment to our parallelism values.

4.1.2 Hardware Parameters Used

For our simulation we have used a PE issue width of 4
instructions per cycle and the PEs use out-of-order issue.
Each PE has an instruction window of 128 instructions. The
L1 cache size is 256 Kbytes. There is a 2-cycle overhead
in assigning a thread to a PE and thread pre-emption also
incurs a 2 cycle penalty. Furthermore, it assumes a 2-cycle
latency for forwarding register values across multiple PEs.

4.1.3 Benchmarks

Table 1 lists the benchmark programs used for the evalua-
tion of the compiler framework. We have used five programs
from SPEC2000, one from SPECINT95, and six from the
Olden benchmark suite. All of these programs are written in

C. Our multi-threading compiler framework partitions into
threads all of the source code, except the library code and
the system code. Each benchmark is executed for 300 million
instructions, except for perimeter, which completed execu-
tion after 89 million instructions. For SPEC benchmarks
we have used the train data sets as inputs. Most benchmark
programs spend some time in the beginning for initializing
data structures and reading inputs, and these parts of the
programs do not reflect the actual program characteristics.
So we have used a “fast forward” mode to skip these initial-
ization phases, after which the statistics are collected. The
number of instructions that have been fast forwarded are
shown in Table 1.

4.1.4 Default Partitioning Setup

As there are many different parameters, it is difficult to
perform a completely orthogonal set of experiments. In-
stead, we define a default setup, and vary one parameter
at a time. Thus, when the nature of threads is varied, the
rest of the parameters are kept at their default values. For
the default configuration, we allow all kinds of threads (i.e.,
speculative threads, control independent threads, and loop
based threads), data dependence distance based modeling of
inter-thread data dependences, and data value prediction.

4.2 Effectiveness ofthe Partitioning Algorithm

To evaluate the effectiveness of our partitioning algorithm,
we measure the speedup obtained by increasing the number
of PEs from 1 to 6 with our default configuration. Figure 6
shows the speedup obtained over a single PE. In the figure,
each bar along the X-axis represents a benchmark program
and the Y-axis represents the speedup over single PE. Ta-
ble 2 presents some thread-related statistics for the default
configuration.

The speedup with 6 PEs ranges from 1.62 for health to
4.68 for mst. Most of the benchmarks show good speedup
and scalability as we increase the number of PEs. crafty
spends most of the time outside loops® and the fact that it
shows good speedup and scalability suggests that the com-
piler has been able to extract parallelism from non-loop parts
of the code effectively. This is true for the other bench-
marks like vpr, perimeter, power, tsp, and treeadd as well.
perimeter and treeadd do not have loops; they have recur-
sive function calls instead. All these benchmarks execute a
large percentage of speculative and non-speculative threads.

Benchmarks ijpeg, mcf, twolf, and health show modest
speedups. The scalability is also quite low. In ijpeg, mcf,
twolf, and health, most of the time is spent in loops, and
these loops have a large number of loop-carried dependences.
So these programs only show moderate speedups with multi-
threading. Moreover, we see from Table 2 that the average
number of dynamic instructions per thread for health is
only 8.89, which is quite low. Therefore, in health, the PEs
are not able to exploit thread-level parallelism well, which
accounts for its modest speedups and poor scalability. On
average, we get a speedup of 2.89 with 6 PEs.

From Table 2 we see that except for mst and health, the
average thread sizes are also reasonable. In health there is
a small loop body that is getting executed in parallel most

3In this context, by loops, we do not mean those loops where
loop bodies contain function calls such that successive iter-
ations of the loops are thousands to millions of instructions
apart, e.g., the processing loop in the main() function



Benchmark | Program Lines of No. of
Suite Name Description Source | Instrs Fast
Code | Forwarded
[ SPEC 95 [ ijpeg | Compresses and Decompresses ppm file 28566 | 250000000 )
crafty Chess Program 20294 | 100000000
equake Finite element simulation: earthquake modeling 1513 75000000
SPEC2000 [ mcf Minimum cost network flow solver 1909 | 100000000
twolf Place and route simulator 19762 | 500000000
vpr Circuit placement and routing 16973 | 150000000
health Columbian Health Care Simulator 505 0
mst Minimum Spanning Tree 417 27000000
perimeter | Quad Tree 290 0
Olden power Power Pricing Problem 616 0
treeadd tree traversal Problem 121 0
tsp Traveling Salesman Problem 521 0
Table 1: Benchmark Programs
Program | Avg. Thread Size Thread Type
Name (Dyn. Instrs) | Speculative | Non-speculative | Loop-centric
ijpeg 75.67 21.01% 0.65% 78.32%
crafty 81.55 56.27% 11.05% 32.68%
equake 27.99 0.50% 0.80% 98.70%
mcf 33.20 0.15% 0.07% 99.78%
twolf 33.46 4.17% 3.21% 92.61%
vpr 83.77 28.95% 17.05% 53.99%
health 8.89 0.50% 0.00% 99.50%
mst 574.07 0.00% 0.00% 100.00%
perimeter 105.88 87.72% 12.28% 0.00%
power 42.62 6.47% 71.69% 21.84%
treeadd 106.48 99.99% 0.01% 0.00%
tsp 102.84 11.08% 0.13% 88.78%
Table 2: Thread Statistics
of the time resulting in small threads. On the other hand,
in mst, the loop-centric thread that is getting executed most
of the time contains library routine calls that our compiler
did not partition, resulting in very large thread size. 60
. . . S
4.3 Experimentation with Thread Type 55 e

Our next set of experiments focus on varying the nature
of threads. In particular, we simulate three different com-
bination of threads: (i) loop-based threads, non-speculative
threads, and speculative threads — i.e our default configu-
ration; (ii) loop-based threads and non-speculative threads;
and (iii) loop-only threads. Figure 7 compares (i) and (ii)
and (iii). In this figure, the X-axis denotes the benchmarks,
and the Y-axis denotes the speedup with 6 PEs. For each
benchmark, three bars are shown, corresponding to the three
different combinations of threads. We have tried to manu-
ally validate that loop-centric thread partitions are indeed
the good ones. It is not feasible to do that manually for the
other kinds of threads.

On analyzing the results of Figure 7, we can see that loops-
only threads are quite insufficient to harness the parallelism
present in crafty, vpr, perimeter, power, and tsp. As men-
tioned earlier, perimeter and treeadd do not contain any
loops. Moreover, from Table 2, we find that they primarily
consist of speculative threads. So it is not surprising to see
that their performance does not improve even after includ-
ing control independent threads with loop-centric threads.
Both these programs have recursive function calls and the
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Figure 6: Speedup with Varying Number of PEs
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functions are called conditionally. These function calls can
be executed in parallel and by executing them speculatively
it is possible to get large parallelism. In crafty, only a lit-
tle time is spent in the loops, and also the loops are not
quite parallelizable. So we get small speedup with loop-
centric threads only. From Table 2 we see that more than
50% of the threads are speculative threads and so control-
independent threads along with loop-centric threads could
not exploit all the available parallelism in the program. In
tsp, although only 11% of the threads are speculative, they
seem to play a key role in exploiting parallelism. It may
be possible that by not spawning the speculative threads,
load balancing and thread scheduling get affected, thereby
affecting the performance. In power, 72% of the threads are
non-speculative and only 6% are speculative. So by executing
non-speculative threads along with loop-centric threads, it is
possible to achieve complete speedup. Benchmarks equake,
mcf, health, and mst spend most of the time in paralleliz-
able loops. So these programs are able to harness almost
all of the available parallelism by executing the loop-centric
threads only. Although ijpeg and vpr contain a significant
percentage of speculative threads, the results show that it
is possible to exploit all of the available parallelism with-
out using them. This is because the load balancing remains
unaffected even after ignoring the speculative threads and
the scheduling also do not get affected adversely. Moreover,
the ILP gets boosted in the bigger threads resulting a good
speedup.

4.4 Experimentation with Data Dependence

Modeling

Our next set of experiments focus on the type of data
dependence modeling used by the compiler while deciding
thread partitioning. In particular, we look at two models:
one based on data dependence count and the other based
on data dependence distance. Figure 8 presents these re-
sults; these results are a mixed bag. For ijpeg, vpr, mst,
and perimeter, data dependence distance-based modeling
gives better parallelism, and for crafty, and mcf, twolf,
and treeadd it is just the opposite. For other benchmarks,

the speedups are almost the same. Except for perimeter
and vpr in all other cases the differences in speedups are
not appreciable. On looking into the partitioning done for
perimeter, we found that the count based modeling was
conservative and failed to identify a partitioning opportu-
nity. It honored a data dependence and restrained from
partitioning, whereas the distance based modeling ignored
that dependence because it estimated that the subsequent
threads did not have to wait for it. At runtime this data
dependence did get resolved early, and so the performance
of the latter partitioning becomes much better than the for-
mer one. From the results, we see that both the models are
quite effective in representing the data dependence in the
programs.

4.5 Effect of Out-of-Order Spawning

Our last set of experiment focus on the effect of out-of-
order thread spawning. Our compiler framework can theo-
retically support out-of-order spawning to an infinite depth,
but it is not practical for the SpMT hardware to support
infinite depth of out-of-order spawning, because of limited
buffer space. Also, in order to support out-of-order thread
spawning, the SpMT processor may have to frequently pre-
empt some of the (sequentially younger) threads, thereby
increasing the overhead. So, ideally we would like to ex-
tract as much parallelism as possible without any out-of-
order spawning or at a low out-of-order spawning depth.
In this set of experiments, we compare the speedups ob-
tained with 4 different depths of out-of-order spawning: (i)
sequential spawning only, (ii) out-of-order spawning depth
of 2, (iii) out-of-order spawning depth of 4, and (iv) out-of-
order spawning depth of infinity. The default configuration
assumes that the PEs can buffer an infinite number of suc-
cessor threads.

The results are shown in Figure 9. Benchmarks ijpeg,
mcf, twolf health, and mst show no change in speedup with
nesting. This implies that even in the default configuration,
the threads are spawned and executed in sequential order.
Benchmarks crafty, vpr, and tsp show a small improve-
ment with out-of-order spawning. In the case of equake,
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Figure 9: Speedups with different Out-of-Order Spawning Depths



there is a drop of performance for a depth of 2, and then it
again goes up. This is because in equake, with out-of-order
spawning depth of 2, the pre-emption cost overrides the ad-
vantage of having out-of-order spawning of depth 2, thereby
lowering the speedup. In power, perimter, and treead there
is significant increase in speedup even at depth 2. The in-
crease in speedup is maximum for power. In power, the pro-
gram spends about 17% time in a big loop that cannot be
parallelized because of the size and data dependence. How-
ever, the loop body contains calls to functions that can be
executed in parallel. The first function called is again parti-
tioned into two threads. With sequential spawning, the sec-
ond function starts execution only after the second thread of
the first function starts executing. However, by allowing an
out-of-order spawning depth of 1, the second function can
be executed in parallel with the first function, resulting to
a significant improve in performance.

5. CONCLUSIONS

Speculative multithreading (SpMT) is emerging as an im-
portant parallelization tool for non-numeric programs. Ex-
amples are the multiscalar processor [4] [16], the SPSM pro-
cessor [3], and the decoupled control flow processor [8]. All of
these use multiple hardware sequencers to fetch and execute
multiple threads in parallel. Given the increasing interest
in mainstream microprocessor design, we expect that future
processors will attempt to execute multiple threads in one
way or another.

Judicious partitioning of a program into threads involves
a lot of analysis, which makes it difficult to be done in hard-
ware. Previous compiler efforts have focused on identifying
loop-based threads and speculative threads. A limitation of
this approach is that branch mispredictions may cause all of
the subsequent threads to be discarded, without retaining
any control-independent threads that may be present in the
processor. The use of non-speculative threads has the poten-
tial to extract additional amounts of parallelism, especially
for non-numeric programs.

This paper presented a general compiler framework for
partitioning a sequential program into multiple threads for
execution in a SpMT processor. Qur compiler framework is
geared for identifying loop-based threads, speculative threads,
and non-speculative threads. In addition, it also supports
nested threads, and spawning from anywhere in a thread.
While performing the program partitioning, the compiler
not only considers control independence information, but
also considers data dependence information and profile-based
information on the most likely control flow paths.

We have implemented this compiler framework on the
SUIF-MachSUIF platform. Our framework is is able to par-
tition into threads large programs, such as the SPEC bench-
mark programs. A simulation-based evaluation of the gen-
erated threads indicate that an average speed up of up to 3
can be obtained with 6 processing elements for SPEC INT
programs and Olden programs by using speculative multi-
threading. This is very promising, given that non-numeric
programs are inherently difficult to parallelize. Our detailed
experimental analysis has increased our understanding of
the different factors that affect performance. These anal-
yses show that the combination of loops, speculative, and
non-speculative threads has the potential to extract thread-
level parallelism in non-numeric programs.
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