Automated Conversion from Requirements Documentation
to an Object-Oriented Formal Specification Language *

Beum-Seuk Lee
Dept. Computer and Information Sciences
The University of Alabama at Birmingham
Birmingham, Alabama, U.S.A. 35294-1170

leebs@cis.uab.edu

ABSTRACT

In software engineering there have been very few attempts
to automate the translation from a requirements document
written in a natural language (NL) to one of the formal spec-
ification languages. One of the major reasons for this chal-
lenge comes from the ambiguity of the NL requirements doc-
umentation because NL depends heavily on context. We use
Contextual Natural Language Processing (CNLP) to over-
come the ambiguity in NL, and Two-Level Grammar (TLG)
to construct a bridge between a NL requirements specifi-
cation and a formal specification in VDM++, an object-
oriented extension of the Vienna Development Method. The
result is a system for mapping natural language require-
ments documents into an object-oriented formal specifica-
tion language.

Keywords

Contextual Natural Language Processing, Object-Oriented
Software Specification, Two-Level Grammar, Vienna Devel-
opment Method, XML

1. INTRODUCTION

Recently many formal specification languages have been
developed to handle their complex systems with heavy in-
teractions between its components by decomposition and
abstraction of the requirements of the system [1]. However
still the natural language (NL) has remained as the practical
choice for the domain experts to specify the system because
formal specification languages are not easy to master. Even
though NL is inherently object-oriented and descriptive with
representation power, its semantics and syntax are not for-

*This material is based upon work supported by, or in part
by, the U. S. Army Research Laboratory and the U. S. Army
Research Office under contract/grant number DAAD19-00-
1-0350 and by the U. S. Office of Naval Research under
award number N00014-01-1-0746.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002, Madrid, Spain
©2002 ACM 1-58113-445-2/02/03 ...$5.00.

Barrett R. Bryant
Dept. Computer and Information Sciences
The University of Alabama at Birmingham
Birmingham, Alabama, U.S.A. 35294-1170

bryant@cis.uab.edu

mal enough to be used directly as a specification language.
Therefore the requirements documentation usually written
in NL has to be reinterpreted by software engineers into
a formal specification language. When the system is very
complicated, which is mostly the case when one chooses to
use formal specification, this conversion is both non-trivial
and error-prone, if not implausible. This challenge comes
from many factors such as miscommunication between do-
main experts and engineers. However the major bottleneck
of this conversion is from the inborn characteristic of am-
biguity of NL and the different level of the formalism be-
tween the two domains of NL and the formal specification.
This is why there have been very few attempts to automate
the conversion from requirements documentation to a formal
specification language.

To handle this ambiguity problem, some have argued that
the requirements document has to be written in a particular
way to reduce ambiguity in the document [20]. Others have
proposed controlled natural languages [10] which limit the
syntax and semantics of NL to avoid the ambiguity prob-
lem. Even though the former approach provides a better
documentation to work with, it hasn’t accomplished any
automated conversion from a natural language requirements
document to a formal specification language. The latter has
similar goals as ours to realize the automated conversion but
restrictions on the syntax and semantics of the language re-
sult in losing the flexibility of NL. Also the user still has
to remember the restrictions. Moreover the target language
of this controlled language is not a formal specification lan-
guage but PROLOG which is good for prototyping but not
for implementation.

In our research project, Contextual Natural Language Pro-
cessing (CNLP) [17] is used to handle the ambiguity prob-
lem in NL and Two Level Grammar (TLG) [19] is used to
deal with the different formalism level between NL and for-
mal specification languages to achieve the automated con-
version from NL requirements documentation into a formal
specification (in our case the Vienna Development Method
- VDM [3]). First the requirements document is converted
into Extensible Markup Language (XML) [4] format. Then
a knowledge base is built from this XML requirements docu-
mentation using the contextual natural language processing
by parsing the documentation and storing the syntax, se-
mantics, and pragmatics information. In this phase, the
ambiguity is detected and resolved, if possible. Once the
knowledge base is constructed, its content can be displayed
in XML or queried in NL. Next the knowledge base is con-

A Natural Language Requirements Document |

[Cuntextual Natural Language Prucessing]

Knowledge Base |

Decontextualization]

) Two Level Grammar |
[Data and Function mappings]
\?| Vienna Development Method |
[Code Generators H Java, C++ |

| IFAD VDM:++ Tool Kit e T

Figure 1: System Structure.

verted into TLG by removing the contextual dependency
in the knowledge base. Finally the TLG code is translated
into VDM by data and function mappings. This research
is based upon the theories of NL processing, requirements
analysis, formal specification, and programming languages.
The entire system structure is shown in Figure 1.

2. EXAMPLE

In the sections which follow, we will present a simple ex-
ample to illustrate our approach and describe the various
system components. The following specification of an Au-
tomatic Teller Machine (ATM) will be used as the running
example throughout the paper to illustrate the system. The
details of how the bank verifies ID and PIN and how it up-
dates the balance are omitted for the sake of simplicity.

Bank keeps list of accounts. It verifies ID and PIN
giving the balance and updates the balance with ID.
An account has three data fields; ID, PIN, and
balance. ID and PIN are integers and balance is a
real number.

ATM has 3 service types; withdraw, deposit, and
balance check. For each service first it verifies ID
and PIN from the bank giving the balance.

ATM withdraws an amount with ID and PIN giving the
balance in the following sequence. If the amount is
less than or equal to the balance then it decreases
the balance by the amount. And then it updates the
balance in the bank with ID. ATM deposits an amount
with ID and PIN giving the balance in the following
order. It increases the balance by amount and then
updates the balance in the bank with ID. ATM checks
the balance with ID and PIN giving the balance.

3. CONSTRUCTION OF KNOWLEDGE
BASE FROM REQUIREMENTS

The knowledge base is built from a requirements docu-
ment using syntactic, semantic and contextual (discourse)
information. The knowledge base has to be constructed in a
way to store the information without any data redundancy
while facilitating ease in manipulating the data [9]. Also the
knowledge representation has to capture the corresponding
structure of TLG for the later translation.

First the requirements document is converted into Exten-
sible Markup Language (XML) by dividing the document
into sections, each section into subsections, each subsection

into paragraphs, and finally each paragraph into sentences.
The formats of requirements documents can vary in their
formats and styles. Therefore by converting them into XML
the documents can have one standard format. Also by us-
ing XML, we can use the tables and diagrams information
in the document, which are usually ignored for the systems
that read out only the text from the document. The dis-
course level information such as sections, subsections, and
paragraphs are used later when the contextual information
is to be stored in the knowledge base. A part of ATM re-
quirements document in XML is shown as follows.

<p>
<s>ATM has 3 service types; withdraw, deposit,
and balance check.</s>
<s>For each service first it verifies ID and PIN
from the bank giving the balance.</s>
</p>
<p>
<s>ATM withdraws an amount with ID and PIN giving
the balance in the following sequence.</s>
<s>If the amount is less than or equal to the
balance then it decreases the balance by the
amount .</s>
<s>And then it updates the balance in the bank
with ID.</s>
</p>

‘p’ and ‘s’ stand for paragraph and sentence respectively.

Once the document is formatted in XML, each sentence is
read by the system and each sentence is parsed into words.
At the syntactical level, the part of speech (e.g. noun, verb,
adjective) of each word is determined by bottom-up pars-
ing, whereas the part of sentence (e.g. subject, object, com-
plement) of each word is determined by top-down parsing
[2]. Separating the parsing process into these two differ-
ent sub-processes, a unique approach compared with most
other parsing techniques, makes the algorithm simpler be-
cause the latter process is very context-sensitive about the
features like verb form and sub-categorization whereas the
former one is context-sensitive about person and number
features [16]. By using the predetermined part of speech
for each word from the part of speech parsing, the number
of the rules for the context free grammar for the part of
sentence parsing is reduced substantially. The corpora of
statistically ordered part of speeches (frequently used ones
being listed first) of about 85000 words from [11] are used to
resolve the syntactic ambiguity in this phase. Also elliptical
compound phrases, comparative phrases, compound nouns,
and relative phrases are handled in this phase as well. A
part of the result of this process for the ATM example is
shown as follows.

Bank keeps list of accounts

Part of speech : bank(noun) keeps(verb)
accounts_list (noun)

Part of sentence : (subject verb object)

It verifies ID and PIN giving the balance and
updates the balance with ID
Part of speech : it(pronoun) verifies(verb) ID and
PIN(noun) giving(verb) the(article) balance(noun)
Part of sentence : (subject verb object

helping: (verb adjective object))
Part of speech : it(pronoun) updates(verb)

the (article) balance(noun) with(preposition)
ID(noun)

Figure 2: Knowledge base for ATM.

Part of sentence : (subject verb adjective object
adverb preposition_object)

Using semantic information and syntactical information
gathered from the previous phase, anaphoric references (pro-
nouns) are identified. This is done according to the recency
constraints (the recent word has a higher priority than less
recent ones) and the discourse focus (the co-referred one has
a higher priority than ones that aren’t) [5, 12].

Once the references of pronouns are determined, each sen-
tence is stored into the proper context in the knowledge base.
This involves the syntactic, semantic, and most importantly
the contextual information. This part of the project is the
most challenging part because if a sentence is located in a
long context, the meaning of the sentence can totally change
from what is originally meant. A contextual knowledge base
is formalized as a tree-like data structure not only to store
each sentence in its right context but also to make a smooth
conversion from the knowledge base to TLG. Meta-level con-
text (context for context) determines where to put each sen-
tence in the tree according to the discourse level information.

The current context is created or switched dynamically ac-
cording to the discourse level information (sections, subsec-
tions, and paragraphs) in XML and semantics information
in sentences. For instance, in the ATM example the phrase
“in the following sequence” indicates that the following sen-
tences are likely to stay in the same context as the current
context. Alternatively a sub-context to hold the following
sentences has to be created under the current context. The
contextual structure of the knowledge base is shown in the
Figure 2. Only the main verb for each sentence is shown
in a rectangle due to the space limitation. The black ovals
indicate the contexts that hold the data type information
whereas the gray ovals indicate the contexts that contain
the functional information. Note the location of the sen-
tence “For each service first it verifies ID and PIN from the
bank giving the balance”. It is positioned under the same
context with the withdraw, deposit, and balance check ser-
vice operations, to be used for each service later. If it were
located in any other context, the sentence couldn’t operate
as originally intended.

The knowledge base is constructed in XML. This enables
the user to see the structured context information of the
system. Because both the context in the knowledge base

and XML data have the tree-like structure, the knowledge
base in XML visualizes the same structure of the knowledge
base shown in Figure 2. A part of the knowledge base in
XML is shown below.

<c name = "ATM">
<c>
<s>ATM has 3 service types ; withdraw, deposit,
balance check</s>
<c>
<s>first ATM verifies ID and PIN from bank for
each service giving balance</s>
</c>
<c>
<s>ATM withdraws amount with ID and PIN giving
balance in following sequence</s>
<c>
<s>if amount is less than or equal to balance
then ATM decreases balance by amount</s>
<s>then ATM updates balance in bank with ID</s>
</c>

where ‘c’ and ‘s’ stand for context and sentence respectively.

Also the content of the knowledge base can be queried
by the user in natural language. The following dialogue
between the system and a user shows some example queries
about ATM.

User : What does the bank keep?

System : Bank keeps list of accounts.

User : How does the ATM deposit the amount?

System : ATM deposits amount with ID and PIN giving
balance in following order, ATM increases balance
by Amount, then ATM updates balance in bank
with ID

Because the requirements are stored in a structural format
according to the context, the relevant other information is
also retrieved as shown in the answer for the second query.

In summary, the syntactic, semantic, and contextual in-
formation is used to build up the contextual knowledge base
from the requirements documentation.

4. CONVERSION FROM KNOWLEDGE
BASETOTLG

Two-Level Grammar (TLG) may be used to achieve trans-
lation from an informal NL specification into a formal spec-
ification. Even though TLG has NL-like syntax its notation
is formal enough to allow formal specifications to be con-
structed using the notation. It is able not only to capture
the abstraction of the requirements but also to preserve the
detailed information for implementation. The term “two
level” comes from the fact that a set of domains may be de-
fined using context-free grammar, which may then be used
as arguments in predicate functions defined using another
grammar. TLG may be used to model any type of soft-
ware specification. The basic functional/logic programming
model of TLG is extended to include object-oriented pro-
gramming features suitable for modern software specifica-
tion [6]. The syntax of the object-oriented TLG is:

class Class_Name.
Data_Name {, Data_Name}::Data_Type {, Data_Type}.
Rule_Name : Rule_Body {, Rule_Body}.

end class [Class_Name].

where the term that is enclosed in the curly brackets is op-
tional and can be repeated many times, as in Extended
Backus-Naur Form (EBNF). The data types of TLG are
fairly standard, including both scalar and structured types,
as well as types defined by other class definitions. The rules
are expressed in NL with the data types used as variables.

The conversion from the knowledge base to TLG flows
very nicely because the knowledge base is built with the
structure taking this translation into consideration. The
root of each context tree becomes a class. And then the
body of each class is built up with the sentence information
in the sub-contexts of the root. The knowledge base of the
ATM example would be translated into the following TLG
specification.

class Bank.
Accounts_List
ID :: Integer.
PIN :: Integer.
Balance :: Float.

:: AccountList.

verify ID and PIN giving Balance.
update Balance with ID.
end class.

class Account.
ID :: Integer.
PIN :: Integer.
Balance :: Float.
end class.

class ATM.
Balance :: Float.
Amount :: Float.

ID :: Integer.
PIN :: Integer.

withdraw Amount with ID and PIN giving Balance :
verify ID and PIN from Bank giving Balance,
if Amount <= Balance then

Balance := (Balance - Amount),
update Balance in Bank with ID
endif.

deposit Amount with ID and PIN giving Balance
verify ID and PIN from Bank giving Balance,
Balance := (Balance + Amount),
update Balance in Bank with ID.

check balance with ID and PIN giving Balance :
verify ID and PIN from Bank giving Balance.
end class.

When the system proceeds with the ATM knowledge base,
it detects the fact that the data type of the Amount hasn’t
been explicitly specified, although it is likely to be Float
since it is used in arithmetic with Balance. So it asks for
verification from the user. Also observe that the sentence
that increases or decreases the balance is mapped into the
TLG assign statement. NL has a fairly large size of vocab-
ularies whereas TLG uses specific words for the language-
defined operations. Therefore there is a many-to-one map-
ping between a NL expression and a specific TLG operation
just like the assign operation (:=). Therefore the systematic
structure of the knowledge base and the formal yet flexible
syntax of TLG make very smooth translation from the for-
mer to the latter.

5. TRANSLATION FROM TLG TO VDM

The object-oriented extension of the Vienna Development
Method meta-language, VDM++ [8], has been selected as a
target specification language for this project because VDM++
has many similarities in structure to TLG and also has a
good collection of tools for analysis and code generation
[13]. A detailed description of the translation from TLG to
VDM++ is given in [7]. The TLG specification of the ATM
example would be translated into the following VDM++
specfication.

class Bank

instance variables
private Accounts_List : seq of Account := []
operations
public verify : int * int ==> real
verify (ID, PIN) ==
(dcl Balance : real := 0;
return Balance);

public update : real * int ==> ()
update (Balance, ID) ==
return

end Bank
class Account

instance variables
private ID : int ;
private PIN : int ;
private Balance : real

end Account
class ATM

instance variables
private CBank : Bank := new Bank()

operations
public withdraw : real * int * int ==> real
withdraw (Amount, ID, PIN) ==
(dcl Balance : real;
Balance := CBank.verify(ID, PIN);
if Amount <= Balance then
(Balance := (Balance - Amount) ;
CBank .update (Balance, ID));
return Balance);

public deposit : real * int * int ==> real
deposit (Amount, ID, PIN) ==
(dcl Balance : real;
Balance := CBank.verify(ID, PIN);
Balance := (Balance + Amount);
CBank.update(Balance, ID);
return Balance);

public checkBalance : int * int ==> real
checkBalance (ID, PIN) ==
(dcl Balance : real;
Balance := CBank.verify(ID, PIN);
return Balance)

end ATM

Once we have translated the TLG specification into a
VDM++ specification we can convert this into a high level
language such as Java’™ or C++, using the code generator
that the VDM Toolkit™™ provides [14]. Not only is this code

quite efficient, but it may be executed, thereby allowing a
proxy execution of the requirements. This allows for a rapid
prototyping of the original requirements so that these may
be refined further in future iterations. Another advantage
of this approach is that the VDM Toolkit also provides for a
translation into a model in the Unified Modeling Language
(UML) [18] using a link with Rational Rose™ [15].

6. SUMMARY AND CONCLUSION

This research project is developed as an application of for-
mal specification and linguistic techniques to automate the
conversion from a requirements document written in NL to
a formal specification language. The knowledge base is built
up from a NL requirements document in order to capture
the contextual information from the document while han-
dling the ambiguity problem and to optimize the process
of its translation into a TLG specification. Well structured
and formalized data representations especially for the con-
text are used to make smooth translations from NL require-
ments into the knowledge base and then from the knowledge
base into a TLG specification. Due to its NL-like syntax and
flexibility without losing its formalism, TLG is chosen as a
formal specification to fill the gap between the different level
of formalisms of NL and formal specification language.

Using the formalized context in NL processing to han-
dle the ambiguity in NL and TLG with its NL-like syntax
and flexibility without losing its formalism to build a bridge
between two different formalisms of NL and a formal specifi-
cation language, we can achieve fully automated conversion
from an NL requirements document to a formal specification
language for the prototyping and implementation of complex
systems. Also since we use the requirements document itself
as the input for the system generation, the dependency of
on-line comments or extra documents to describe the system
becomes small.

By using XML to format the requirements document, the
input document becomes standardized possibly making uses
of tables and diagrams in the document as well. Also the
knowledge base can be queried using natural language and
displayed in XML format with the contextual information.

The system can currently handle the presented example
completely, as described. We are performing additional eval-
uations of the system for other requirements documents,
including some requirements documents describing actual
U. S. Army systems. It is expected that the technology
we are developing will be applicable to these requirements
documents as well. If successful, this will provide a very
useful tool to assist software engineers in moving from the
requirements document to the formal specification. Our fu-
ture work is to continue developing the system to improve
system usability and robustness with respect to its coverage
of requirements documents. When finalized, it is expected
that by using the formalized context in natural language pro-
cessing and TLG as a bridge between the requirements doc-
ument and a formal specification language, we can achieve
an executable NL specification for a rapid prototyping of
requirements, as well as development of a final implementa-
tion.

Acknowledgements : The authors would like to thank IFAD
for providing an academic license to the IFAD VDM Toolbox
in order to conduct this research.

7. REFERENCES

[1] V. S. Alagar and K. Periyasamy. Specification of
Software Systems. Springer-Verlag, 1998.

[2] J. Allen. Natural Language Understanding.
Benjamin/Cummings, 2nd edition, 1995.

[3] D. Bjgrner and C. B. Jones. The Vienna Development
Method: The Meta-Language. Springer-Verlag, 1985.

[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. Technical
report, W3C Recommendation REC-xml-19980210,
1998.

[5] S. Brennan, L. Friedman, and C. Pollard. A Centering
Approach to Pronouns. Proc. 25th ACL Annual
Meeting, pages 155-162, 1987.

[6] B. R. Bryant. Object-Oriented Natural Language
Requirements Specification. Proc. ACSC 2000, 23rd
Australasian Comp. Sci. Conf., pages 24-30, 2000.

[7] B. R. Bryant and B.-S. Lee. Two-Level Grammar as
an Object-Oriented Requirements Specification
Language. Proc. 85th Hawaii Int. Conf. System
Sciences (to appear), Jan. 2002.

[8] E. H. Diirr and J. van Katwijk. VDM++ - A Formal
Specification Language for Object-Oriented Designs.
Proc. TOOLS USA 92, 1992 Technology of
Object-Oriented Languages and Systems USA Conf.,
pages 63278, 1992.

[9] D. Fensel, R. Groenboom, and G. R. Renardel. Modal
Change Logic (MCL): Specifying the Reasoning of
Knowledge-based Systems. Data and Knowledge
Engineering, 26:243-269, 1998.

[10] N. E. Fuchs and R. Schwitter. Attempto Controlled
English (ACE). Proc. CLAW 96, 1st Int. Workshop
Controlled Language Applications, 1996.

[11] W. Grady. Moby Part-of-Speech II (data file), 1994.

[12] B. J. Grosz, A. K. Joshi, and S. Weinstein. Providing
a Unified Account of Definite Noun Phrases in
Discourse. Proc. 25th ACL Annual Meeting,
155-162:44-50, 1983.

[13] IFAD. The VDM++ Toolbox User Manual. Technical
report, IFAD (http://www.ifad.dk), 2000.

[14] IFAD. VDMTools - Java/C++ Code Generator.
Technical report, IFAD, 2000.

[15] IFAD. VDMTools - The Rose-VDM++ Link.
Technical report, IFAD, 2000.

[16] D. Jurafsky and J. Martin. Speech and Language
Processing. Prentice Hall, 2000.

[17] J. McCarthy. Notes On Formalizing Context.
Technical report, Computer Science Department.
Stanford University. Stanford, CA, 1993.

[18] T. Quatrani. Visual Modeling with Rational Rose 2000
and UML. Addison-Wesley, 2000.

[19] A. van Wijngaarden. Orthogonal Design and
Description of a Formal Language. Mathematisch
Centrum, Amsterdam, 1965.

[20] W. M. Wilson. Writing Effective Natural Language
Requirements Specifications. Technical report, Naval
Research Laboratory, 1999.

