
M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 326Appears in: The 5th International Conference on Computer Vision, Cambridge, MA, June 1995.Probabilistic Visual Learning for Object DetectionBaback Moghaddam and Alex PentlandVision and Modeling Group, The Media LaboratoryMassachusetts Institute of Technology20 Ames St., Cambridge, MA 02139AbstractWe present an unsupervised technique for visuallearning which is based on density estimationin high-dimensional spaces using an eigenspacedecomposition. Two types of density estimatesare derived for modeling the training data: amultivariate Gaussian (for a unimodal distribu-tion) and a multivariate Mixture-of-Gaussiansmodel (for multimodal distributions). Theseprobability densities are then used to formulatea maximum-likelihood estimation framework forvisual search and target detection for automaticobject recognition. This learning technique istested in experiments with modeling and sub-sequent detection of human faces and non-rigidobjects such as hands.1 IntroductionThe standard detection paradigm in image processingis that of normalized correlation or template matching.However this approach is only optimal in the simplisticcase of a deterministic signal embedded in additive whiteGaussian noise. When we begin to consider a targetclass detection problem | e.g., �nding a generic humanface in a scene | we must incorporate the underlyingprobability distribution of the object. Subspace methodsand eigenspace decompositions are particularly well-suitedto such a task since they provide a compact and parametricdescription of the object's appearance and also automat-ically identify the degrees-of-freedom of the underlyingstatistical variability.In particular, the eigenspace formulation leads to apowerful alternative to standard detection techniques suchas template matching or normalized correlation. Thereconstruction error (or residual) of the eigenspace de-composition (referred to as the \distance-from-face-space"in the context of the work with \eigenfaces" [14]) is ane�ective indicator of similarity. The residual error iseasily computed using the projection coe�cients and theoriginal signal energy. This detection strategy is equivalentto matching with a linear combination of eigentemplatesand allows for a greater range of distortions in the inputsignal (including lighting, and moderate rotation andscale). In a statistical signal detection framework, theuse of eigentemplates has been shown to yield superiorperformance in comparison with standard matched �ltering[6][10].Pentland et al. [10] used this formulation for a modulareigenspace representation of facial features where the corre-

sponding residual | referred to as \distance-from-feature-space" (DFFS) | was used for localization and detection.Given an input image, a saliency map was constructedby computing the DFFS at each pixel. When using Meigenvectors, this requires M convolutions (which can bee�ciently computed using an FFT) plus an additional localenergy computation. The global minimum of this distancemap was then selected as the best estimate of the targetlocation.We will show that the DFFS can be interpreted as an es-timate of a marginal component of the probability densityof the object in image space and that a complete estimatemust also incorporate a second marginal density based on acomplementary \distance-in-feature-space" (DIFS). Usingthe probability density of the object, we formulate theproblem of target detection in a maximum likelihood (ML)estimation framework.2 Density EstimationOur approach to automatic visual learning is based ondensity estimation. However, instead of applying estima-tion techniques directly to the original high-dimensionalspace of the imagery, we use an eigenspace decompositionto yield a computationally feasible estimate. Speci�cally,given a set of training images fxtgNTt=1, from an objectclass 
, we wish to estimate the class membership orlikelihood function for this data | i.e., P (xj
). In thissection, we examine two density estimation techniques forvisual learning of high-dimensional data. The �rst methodis based on the assumption of a Gaussian distributionwhile the second method generalizes to arbitrarily complexdistributions using a Mixture-of-Gaussians density model.Before introducing these estimators we briey revieweigenvector decomposition as commonly used in principalcomponent analysis (PCA) [5].2.1 Principal Component ImageryGiven a set of m-by-n images fItgNTt=1, we can form atraining set of vectors fxtg, where x 2 RN=mn, bylexicographic ordering of the pixel elements of each imageIt. The basis functions in a Karhunen-Loeve Transform(KLT) [7] are obtained by solving the eigenvalue problem� = �T�� (1)where � is the covariance matrix of the data, � is the eigen-vector matrix of � and � is the corresponding diagonalmatrix of eigenvalues. In PCA, a partial KLT is performedto identify the largest-eigenvalue eigenvectors and obtaina principal component feature vector y = �TM ~x, where1
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DIFSFigure 1: The principal subspace F and its orthogonalcomplement �F for a Gaussian density.~x = x��x is the mean-normalized image vector and �M is asubmatrix of � containing the principal eigenvectors. PCAcan be seen as a linear transformation y = T (x) : RN !RM which extracts a lower-dimensional subspace of theKL basis corresponding to the maximal eigenvalues. Thiscorresponds to an orthogonal decomposition of the vectorspace RN into two mutually exclusive and complemen-tary subspaces: the principal subspace (or feature space)F = f�igMi=1 containing the principal components and itsorthogonal complement �F = f�igNi=M+1, as illustrated inFigure 1.In a partial KL expansion, the residual reconstructionerror is de�ned as�2(x) = NXi=M+1 y2i = jj~xjj2 � MXi=1 y2i (2)and can be easily computed from the �rst M principalcomponents and the L2-norm of the mean-normalized im-age ~x. Consequently the L2 norm of every element x 2 RNcan be decomposed in terms of its projections in these twosubspaces. We refer to the component in the orthogonalsubspace �F as the \distance-from-feature-space" (DFFS)which is a simple Euclidean distance and is equivalent tothe residual error �2(x) in Eq.(2). The component of xwhich lies in the feature space F is referred to as the\distance-in-feature-space" (DIFS) but is generally not adistance-based norm, but can be interpreted in terms ofthe probability distribution of y in F .2.2 Gaussian F -Space DensitiesWe begin by considering an optimal approach for estimat-ing high-dimensional Gaussian densities. We assume thatwe have (robustly) estimated the mean �x and covariance �of the distribution from the given training set fxtg. Underthis assumption, the likelihood of a input pattern x is givenby P (xj
) = exp �� 12 (x� �x)T��1(x� �x)�(2�)N=2 j�j1=2 (3)The su�cient statistic for characterizing this likelihood isthe Mahalanobis distanced(x) = ~xT��1~x (4)

where ~x = x � �x. Using the eigenvectors and eigenvaluesof � we can rewrite ��1 in the diagonalized formd(x) = ~xT��1~x= ~xT ����1�T � ~x= yT��1y (5)where y = �T~x are the new variables obtained by thechange of coordinates in a KLT. Because of the diagonal-ized form, the Mahalanobis distance can also be expressedin terms of the sum d(x) = NXi=1 y2i�i (6)We now seek to estimate d(x) using only the M principalprojections. Therefore, we formulate an estimator for d(x)as follows d̂(x) = MXi=1 y2i�i + 1� " NXi=M+1 y2i#= MXi=1 y2i�i + 1� �2(x) (7)where the term in the brackets is the DFFS �2(x), which aswe have seen can be computed using the �rst M principalcomponents. We can therefore write the form of thelikelihood estimate based on d̂(x) as the product of twomarginal and independent Gaussian densitiesP̂ (xj
) = 24 exp�� 12PMi=1 y2i�i �(2�)M=2 QMi=1�1=2i 35 � 24exp�� �2(x)2� �(2��)(N�M)=2 35= PF (xj
) P̂ �F (xj
) (8)where PF (xj
) is the true marginal density in F -spaceand P̂ �F (xj
) is the estimated marginal density in theorthogonal complement �F -space. The optimal value of� can now be determined by minimizing a suitable costfunction J(�). From an information-theoretic point ofview, this cost function should be the Kullback-Leiblerdivergence [3] between the true density P (xj
) and itsestimate P̂ (xj
)J(�) = E�log P (xj
)P̂ (xj
)� (9)Using the diagonalized forms of the Mahalanobis distanced(x) and its estimate d̂(x) and the fact that E[y2i ] = �i , itcan be easily shown thatJ(�) = 12 NXi=M+1 ��i� � 1 + log ��i � (10)The optimal weight �� can be then found by minimizingthis cost function with respect to �. Solving the equation@J@� = 0 yields �� = 1N �M NXi=M+1 �i (11)2
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DIFSFigure 2: The principal subspace F and its orthogonalcomplement �F for an arbitrary density.which is simply the arithmetic average of the eigenvalues inthe orthogonal subspace �F . In addition to its optimality,�� also results in an unbiased estimate of the Mahalanobisdistance | i.e, E[d̂(x;��)] = E[d(x)]. What this derivationshows is that once we select the M -dimensional principalsubspace F (as indicated, for example, by PCA), theoptimal density estimate P̂ (xj
) has the form of Eq.(8)with � given by Eq.(11).2.3 Multimodal F -space DensitiesWhen the training set represents multiple views or multipleobjects under varying illumination conditions, the distribu-tion of training views in F -space is no longer unimodal.In fact the training data tends to lie on complex andnon-separable low-dimensional manifolds in image space[1]. One way to tackle this multimodality is to build aview-based (or object-based) formulation where separateeigenspaces are used for each view [10]. Another approachis to capture the complexity of these manifolds in auniversal or parametric eigenspace using splines [9], or localbasis functions [2].If we assume that the �F -space components are Gaussianand independent of the principal features in F (this wouldbe true in the case of pure observation noise in �F) we canstill use the separable form of the density estimate P̂ (xj
)in Eq.(8) where PF (xj
) is now an arbitrary density P (y)in the principal component vector y. Figure 2 illustratesthe decomposition, where the DFFS is the residual �2(x)as before. The DIFS, however, is no longer a simpleMahalanobis distance but can nevertheless be interpretedas a \distance" by relating it to P (y) | e.g., as DIFS =� log P (y).The density P (y) can be estimated using a parametricmixture model. Speci�cally, we can model arbitrarilycomplex densities using a Mixture-of-GaussiansP (yj�) = NcXi=1 �i g(y;�i;�i) (12)where g(y; �;�) is an M -dimensional Gaussian densitywith mean vector � and covariance �, and the �i are themixing parameters of the components, satisfyingP�i = 1.The mixture is completely speci�ed by the parameter � =

f�i; �i;�igNci=1. Given a training set fytgNTt=1 the mixtureparameters can be estimated using the ML principle�� = argmax "NTYt=1 P (ytj�)# (13)This estimation problem is best solved using theExpectation-Maximization (EM) algorithm [4]. The EMalgorithm is monotonically convergent in likelihood andis thus guaranteed to �nd a local maximum in the totallikelihood of the training set. Further details of the EMalgorithm for estimation of mixture densities can be foundin [12].Given our operating assumptions | that the trainingdata is truly M -dimensional (at most) and resides solelyin the principal subspace F with the exception of per-turbations due to white Gaussian measurement noise, orequivalently that the �F -space component of the data isitself a separable Gaussian density | the estimate of thecomplete likelihood function P (xj
) is given byP̂(xj
) = P (yj��) P̂ �F (xj
) (14)where P̂ �F (xj
) is a Gaussian component density based onthe DFFS, as before.3 Maximum Likelihood DetectionThe density estimate P̂ (xj
) can be used to compute alocal measure of target saliency at each spatial position(i; j) in an input image based on the vector x obtainedby the lexicographic ordering of the pixel values in a localneighborhood Rij | i.e., S(i; j; 
) = P̂ (xj
) where x isthe vectorized region Rij. The ML estimate of position ofthe target 
 is then given by(i; j)ML = argmax S(i; j; 
) (15)Similarly, we can extend the parameter space to includescale, resulting in multiscale saliency maps. The likelihoodcomputation is performed (in parallel) on linearly scaledversions of the input image I(�) corresponding to a pre-determined set of (linearly spaced) scales f�1; �2; � � ��ngS(i; j; k; 
) = P̂ (xijk j
) (16)where xijk is the vector obtained from a local subimagein the multiscale representation. The ML estimate of thespatial position and scale of the object is then de�ned as(i; j; k)ML = argmax S(i; j; k; 
) (17)4 ApplicationsThe above ML detection technique has been tested inthe detection of complex natural objects including humanfaces, facial features (e.g., eyes), as well as non-rigid andarticulated objects such as human hands. In this sectionwe will present several examples from these applicationdomains.4.1 FacesThe eigentemplate approach to the detection of facial fea-tures in \mugshots" was proposed in [10], where the DFFSmetric was shown to be superior to standard template3



(a) (b)Figure 3: (a) Examples of facial feature training templatesand (b) the resulting typical detections.
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SSDFigure 4: Performance of an SSD, DFFS and a MLdetector.matching for target detection. The detection task was theestimation of the position of facial features (the left andright eyes, the tip of the nose and the center of the mouth)in frontal view photographs of faces at �xed scale. Figure 3shows examples of facial feature training templates andthe resulting detections on the MIT Media Laboratory'sdatabase of 7,562 \mugshots".We have compared the detection performance of threedi�erent detectors on approximately 7,000 test imagesfrom this database: a sum-of-square-di�erences (SSD)detector based on the average facial feature (in this casethe left eye), an eigentemplate or DFFS detector and a MLdetector based on S(i; j; 
) as de�ned in section 3 and usinga unimodal F -space density as in section 2.2. Figure 4(a)shows the receiver operating characteristic (ROC) curvesfor these detectors, obtained by varying the detectionthreshold independently for each detector. The DFFS andML detectors were computed based on a 5-dimensionalprincipal subspace. Since the projection coe�cients wereunimodal a Gaussian distribution was used in modelingthe true distribution for the ML detector as in section2.2. Note that the ML detector exhibits the best detectionvs. false-alarm tradeo� and yields the highest detectionrate (of 95%). Indeed, at the same detection rate the ML

Figure 5: Examples of multiscale face detection.(a) (b)(c) (d)Figure 7: (a) original image, (b) position and scaleestimate, (c) normalized head image, (d) position of facialfeatures.detector has a false-alarm rate which is nearly 2 orders ofmagnitude lower than the SSD.We have also incorporated and tested the multiscaleversion of the ML detection technique in a face detectiontask. This multiscale head �nder was tested on the ARPAFERET database where 97% of 2,000 faces were correctlydetected. Figure 5 shows examples of the ML estimate ofthe position and scale on these images. The multiscalesaliency maps S(i; j; k; 
) were computed based on thelikelihood estimate P̂ (xj
) in a 10-dimensional principalsubspace using a Gaussian model (section 2.2). Note thatthis detector is able to localize the position and scale ofthe head despite variations in hair style and hair color, aswell as presence of sunglasses. Illumination invariance wasobtained by normalizing the input subimage x to a zero-mean unit-norm vector.This multiscale face detector has also been used asthe attentional component of an automatic system forrecognition and model-based coding of faces. The blockdiagram of this system is shown in Figure 6 which consistsof a two-stage object detection and alignment stage, acontrast normalization stage, and a feature extractionstage whose output is used for both recognition and coding.4
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(a) (b) (c)Figure 8: (a) aligned face, (b) eigenspace reconstruction(85 bytes) (c) JPEG reconstruction (530 bytes).Figure 7 illustrates the operation of the detection andalignment stage on a natural test image containing ahuman face.The �rst step in this process is illustrated in Figure 7(b)where the ML estimate of the position and scale of theface are indicated by the cross-hairs and bounding box.Once these regions have been identi�ed, the estimatedscale and position are used to normalize for translationand scale, yielding a standard \head-in-the-box" formatimage (Figure 7(c)). A second feature detection stageoperates at this �xed scale to estimate the position of 4facial features: the left and right eyes, the tip of the noseand the center of the mouth (Figure 7(d)). Once the facialfeatures have been detected, the face image is warped toalign the geometry and shape of the face with that of acanonical model. Then the facial region is extracted (byapplying a �xed mask) and subsequently normalized forcontrast. The geometrically aligned and normalized image(shown in Figure 8(a)) is then projected onto a custom setof eigenfaces to obtain a feature vector which is then usedfor recognition purposes as well as facial image coding.Figure 8 shows the normalized facial image ex-tracted from Figure 7(d), its reconstruction using a 100-dimensional eigenspace representation (requiring only 85bytes to encode) and a comparable non-parametric re-construction obtained using a standard transform-codingapproach for image compression (requiring 530 bytes toencode). This example illustrates that the eigenfacerepresentation used for recognition is also an e�ectivemodel-based representation for data compression. The �rst8 eigenfaces used for this representation are shown inFigure 9.Figure 10 shows the results of a similarity search inan image database tool called Photobook [11]. Each face

Figure 9: The �rst 8 eigenfaces.
Figure 10: Photobook: FERET face database.in the database was automatically detected and alignedby the face processing system in Figure 6. The nor-malized faces were then projected onto a 100-dimensionaleigenspace. The image in the upper left is the one searchedon and the remainder are the ranked nearest neighbors inthe FERET database. The top three matches in this caseare images of the same person taken a month apart and atdi�erent scales. The recognition accuracy (de�ned as thepercent correct rank-one matches) on a database of 155individuals is 99% [8].We have also extended the normalized eigenface repre-sentation into an edge-based domain for facial description.We simply run the normalized facial image through aCanny edge detector to yield an edge-map. Unfortunatelybinary edge maps, are highly uncorrelated with each otherdue to their sparse nature, and therefore result in a veryhigh-dimensional principal subspace. Therefore, to reducethe intrinsic dimensionality, we induced spatial correlationvia a di�usion process on the binary edge map, whiche�ectively broadens and \smears" the edges, yielding acontinuous-valued edge-map as shown in Figure 11(a).5



(a)(b)Figure 11: (a) Examples of combined texture/edge-basedface representations and (b) few of the resulting eigenvec-tors. (a)(b)Figure 12: (a) Examples of hand gestures and (b) theirdi�used edge-based representation.Such an edge-map is simply an alternative representationwhich imparts mostly shape (as opposed to texture) in-formation and has the distinct advantage of being lesssusceptible to illumination changes. The recognition rate ofa pure edge-based normalized eigenface representation (onthe same database of 155 individuals) was found to be 95%which is surprising considering that it utilizes what appearsto be (to humans at least) a rather impoverished represen-tation. The slight drop in recognition rate is most likelydue to the increased dimensionality of this representationspace and its greater sensitivity to expression changes, etc.Interestingly, we can combine both texture and edge-based representations of the object by simply performinga KL expansion on the augmented images shown in Fig-ure 11. The resulting principal eigenvectors convenientlydecorrelate the joint representation and provide a basis setwhich optimally spans both domains simultaneously. Withthis bimodal representation, the recognition rate was foundto be 97%. Though still less than a normalized grayscalerepresentation, we believe a bimodal representation canhave distinct advantages for tasks other than recognition,such as detection and image interpolation.4.2 HandsWe have also applied our eigenspace density estimationtechnique to articulated and non-rigid objects such ashands. In this particular domain, however, the normalized

(a)
(b)Figure 13: (a) A random assortment of hand gestures (b)images ordered by similarity (left-to-right, top-to-bottom)to the image at the upper left.grayscale image is an unsuitable representation since, un-like faces, hands are essentially textureless objects. Theiridentity is characterized by the variety of shapes theycan assume. For this reason we have chosen an edge-based representation of hand shapes which is invariant toillumination, contrast and scene background. A trainingvideo sequence of hand gestures was obtained against ablack background. The 2D contour of the hand was thenextracted using a Canny edge-operator and di�used as inthe case of facial edge maps (see Figure 12). We notethat this spatiotopic representation of shape is biologicallymotivated and is di�erent from shape representationswhich are based on computational considerations (e.g.,Fourier descriptors and \snakes").It is important to verify whether such a representationis valid for modeling hand shapes. Therefore we testedthe di�used contour image representation in a recognitionexperiment which yielded a 100% rank-one accuracy on the375-frame image sequence containing multiple examples of7 hand gestures. The matching technique was a nearest-neighbor classi�cation rule in a 16-dimensional principalsubspace. Figure 13(a) shows some examples of the varioushand gestures used in this experiment. Figure 13(b) showsthe 15 images that are most similar to the \two" gestureappearing in the top left. Note that the hand gesturesjudged most similar are all objectively the same gesture.Naturally, the success of such a recognition system iscritically dependent on the ability to �nd the hand (in anyof its articulated states) in a cluttered scene, to account forits scale and to align it with respect to an object-centeredreference frame prior to recognition. This localization6



(a) (b)Figure 14: (a) Distribution of training hand shapes (shownin the �rst two dimensions of the principal subspace) (b)Mixture-of-Gaussians representation using 10 components.
(a) (b) (c)Figure 15: (a) Original grayscale image, (b) negative log-likelihood map (at most likely scale) and (c) ML estimateof position and scale superimposed on edge-map.can be achieved with the same multiscale ML detectionparadigm used with faces, with the exception that theunderlying image representation of the hands is a di�usededge map rather than the original grayscale image.The probability distribution of hand shapes in this repre-sentation was automatically learned using our eigenspacedensity estimation technique. In this case, however, thedistribution of training data is multimodal due to thedi�erent hand shapes for each gesture. Therefore themultimodal density estimation technique in section 2.3 wasused. Figure 14(a) shows a projection of the trainingdata on the �rst two dimensions of the principal subspaceF (de�ned in this case by M = 16) which exhibit theunderlying multimodality of the data. Figure 14(b) showsa 10-component Mixture-of-Gaussians density estimate forthe training data. The parameters of this estimate wereobtained with 20 iterations of the EM algorithm. Theorthogonal �F -space component of the density was modeledwith a Gaussian distribution as in section 2.3.The resulting complete density estimate P̂ (xj
) wasthen used in a detection experiment on test imagery ofhand gestures against a cluttered background scene. Inaccordance with our representation, the input imagerywas �rst pre-processed to generate a di�used edge mapand then scaled accordingly for a multiscale saliencycomputation. Figure 15 shows two examples from the testsequence, where we have shown the original image, thenegative log-likelihood saliency map, and the ML estimatesof position and scale. Note that these examples represent
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ML(b)Figure 16: (a) Example of test frame containing a handgesture amidst severe background clutter and (b) ROCcurve performance contrasting SSD and ML detectors.two di�erent hand gestures at slightly di�erent scales.To quantify the performance of the ML detector onhands we carried out the following experiment. Theoriginal 375-frame video sequence of training hand gestureswas divided into 2 parts. The �rst (training) half of thissequence was used for learning, including computation ofthe KL basis and the subsequent EM clustering. Forthis experiment we used a 5-component mixture in a 10-dimensional principal subspace. The 2nd (testing) half ofthe sequence was then embedded in the background scene,which contains a variety of shapes. In addition, severe noiseconditions were simulated as shown in Figure 16(a).We then compared the detection performance of an SSDdetector (based on the mean edge-based hand representa-tion) and a probabilistic detector based on the completeestimated density. The resulting negative-log-likelihooddetection maps were passed through a valley-detector toisolate local minimum candidates which were then sub-jected to a ROC analysis. A correct detection was de�nedas a below-threshold local minimum within a 5-pixel radiusof the ground truth target location. Figure 16(b) showsthe performance curves obtained for the two detectors. Wenote, for example, that at an 85% detection probability theML detector yields (on the average) 1 false alarm per frame,where as the SSD detector yields an order of magnitudemore false alarms.7



5 DiscussionWe have described a density estimation technique forunsupervised visual learning which exploits the intrinsiclow-dimensionality of the training imagery to form a com-putationally simple estimator for the complete likelihoodfunction of the object. Our estimator is based on a sub-space decomposition and can be evaluated using only theM -dimensional principal component vector. We have de-rived the form for an optimal estimator and its associatedexpected cost for the case of a Gaussian density. In contrastto previous work on learning and characterization | whichuses PCA primarily for dimensionality reduction and/orfeature extraction | our method uses the eigenspacedecomposition as an integral part of estimating completedensity functions in high-dimensional image spaces. Thesedensity estimates were then used in a maximum likelihoodformulation for target detection. The multiscale version ofthis detection strategy was demonstrated in applications inwhich it functioned as an attentional subsystem for objectrecognition. The performance was found to be superior toexisting detection techniques in experimental results on alarge number of test data (on the order of thousands).We conclude by noting that from a probabilistic per-spective, the class-conditional density P (xj
) is the mostimportant data representation to be learned. This densityis the critical component in detection, recognition, predic-tion, interpolation and general inference. For example,having learned these densities for several object classesf
1;
2; � � � ;
ng, one can invoke a Bayesian framework forclassi�cation and recognition:P (
ijx) = P (xj
i)P (
i)nXj=1 P (xj
j)P (
j) (18)Such a framework is also important in detection. In fact,the ML detection framework can be extended using thenotion of a \not-class" �
, resulting in a posteriori saliencymaps of the formP (
jx) = P (xj
)P (
)P (xj�
)P (�
) + P (xj
)P (
) (19)where now a maximum a posteriori (MAP) rule can beused to estimate the position and scale of the object.One di�culty with such a formulation is that the \not-class" �
 is, in practice, too broad a category and istherefore multimodal and very high-dimensional. Onepossible approach to this problem is to use ML detectionto identify the particular subclass of �
 which has highlikelihoods (e.g., typical false alarms) and then to estimatethis distribution and use it in the MAP framework. Thiscan be viewed as a probabilistic approach to learning usingpositive as well as negative examples. The use of negativeexamples has been shown to be critically important inbuilding robust face detection systems [13].AcknowledgementsThe FERET face database was provided by the US ArmyResearch Laboratory. This research was partially fundedby British Telecom.
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