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An Extension of Moore's Result  for  Closed  Queuing 
Networks 

Abstract: In this communication, Moore's result for the normalization constant of a closed queuing network of exponential servers is 
extended to the case of nondistinct traffic intensities. We then show that this result can be applied to various more  general closed and 
semiclosed queuing networks with a product-form solution. 

Introduction 
Substantial progress  has been made recently in extending 
the  scope of Jackson's product-form  solution for queuing 
networks [ 1 - 51. At  the  same time,  a number of very 
efficient computational algorithms [ 3, 6-  81 have been 
developed  for evaluating the normalization constant  and 
marginal queue length statistics  for  such  networks.  These 
algorithms are all based upon some recursive  scheme. 
For  the special case of a  closed network of exponential 
servers with distinct traffic intensities, Moore  has  shown 
an explicit  solution for  the normalization constant using 
the partial fraction method [9]. In this  note, we  extend 
Moore's result  to  the  case of nondistinct traffic intensities 
and  show  that it can  be applied to various  more  general 
closed and semiclosed  queuing networks with the 
product-form  solution.  We note,  however,  that  the 
partial fraction method is  less versatile than  recursive 
techniques. I t  also  requires  the summation of terms with 
alternating  signs, and  thus may be  subject  to round-off 
errors in some  cases [ 31. 

Assumptions 
We  outline here  the  scope of queuing networks  for which 
the  results in this  communication are applicable. Con- 
sider a queuing  network  with M ,  service  stations  and R 
classes of customers.  (See [ 21 .) At  the completion of a 
service  request, a customer may change its  class member- 
ship and  proceed to  another  service  station  (or  leave  the 
network)  according  to fixed transition  probabilities. Four 
types of service  stations may be  considered: 1 )  a single 
server, first-come-first-served  service  discipline (FCFS)  ; 
2 )  a single server, processor-sharing service discipline 
(PS) ;  3)  a single server, last-come-first-served  pre- 
emptive-resume  service discipline (LCFS) ; and 4) no 
queuing,  arbitrarily  many servers (IS).  In  an  FCFS  ser- 
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exponential service time  distribution with a fixed service 
rate.  In  PS,  LCFS,  or IS service stations,  each  class of 
customers may have its  own  general service time  dis- 
tribution which has a  rational Laplace  transform. 

Let ni, 1 5 i 5 M,, denote  the  number of customers  at 
service  station i. We assume  that  the underlying Markov 
chain of customer transitions is irreducible. The arrival 
process of customers  to  the  network is a  Poisson process 
with an arrival rate  dependent  on  the  instantaneous 
number n' of customers in the  network  at time t .  More- 
over, if n' = N,, a departing  customer is immediately 
replaced; if nt = N,, all arrivals are  lost.  Thus, n' is con- 
strained: N, 5 n' 5 N,. In particular, for a closed  queuing 
network N, = N,. Below, we first present  our  results  for 
closed  queuing networks and  then  indicate how to  extend 
these  results  to  the more  general case of semiclosed 
networks (N, < N,) [7]. 

Results for closed queuing networks 
Let  there be M service  stations of types  FCFS, PS, and 
LCFS labeled  by { 1, 2 ,  . . ., M } ,  and M ,  - M service 
stations of type IS labeled by { M  + 1 , .  . ., M s } .  Suppose 
pir, 1 5 i 5 M ,  and 1 5 Y 5 R ,  are  the relative traffic 
intensities [3] of class r customers  at  service  station i .  
Define 

pi 6 2 pi,., 1 5 i 5 Ms.  

The equilibrium joint  queue length distribution is 

R 

I.=, 

" 

where C is a normalization constant  chosen  to  make  the 
equilibrium state probabilities  sum to  one.  To  solve  for 
C, we first define 
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no L2 x ni 
J f S  

i = M + l  

and 

p O =  a 5 pi,  
i=M+ 1 

From  Eq. (1 ) we obtain the  joint probability  distribution 

( p  )'to M 

P (no, n , ,  ' . ., fly) = c I1 
no! 

i = l  

Define 

r l 1  
n = 0; 

where 

n 4 - (no, n l , .  . ., n M ) ,  

and 

Y ( n )  & {n I ni = n, ni 1 0 for all i } .  

For a  closed  network of N customers, P (n) , n E Y (  N )  
must sum  to  one.  Thus  the normalization constant is 

.M 

i =o  

c = [ G ( N ) l "  

Solution for G ( N )  
We first define 

r*  n = 0; 

where 

n' 4 - (nl, n2. .  . ., n"), 

,y'( n)  4 {n' I n, = n, n, 2 0 for all i } .  
M 

- 
i = l  

For a queuing network with no IS service  station,  the 
normalization constant C is equal to [ g ( N ) ] " .  Moore 
has  shown  an explicit  solution for g ( n )  under  the  assump- 
tion that  the traffic intensities p i  are  distinct [ 91. In  the 
Appendix, we extend  Moore's derivation to  the  case of 
nondistinct traffic intensities. The  results  are  as follows. 

Let  there be M' distinct p i  with multiplicity m(i)  such 
that 

M' x m(i )  = M .  
i=1 

We have then 
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where 

Ai, = n { [ 1 - ( p k / p , ) ] m ' " } " ,  i = 1, 2;. ., M',  

and 

'M' 

h=-l,k#r ( 5 )  

i =  1, 2;.., M ' ;  

j =  1 ,  2;.., m ( i )  - 1. (6 )  

Note  that M' 1 2 is assumed  above. If M' = 1, then we 
simply have 

n +  m ( i )  - 1 
d n )  = ( ) P:. 

n 

Example I If all p i  are  distinct,  the  above solution for 
g ( n )  reduces  to  Moore's  result: 

x ( n )  = x A,P:, 
.M 

i = l  

where 

fi [ l -  ( P k / P , ) l  . 
k = l ,  k # i  I' 

Example 2 In a network with M + 1 service  stations, 
p M  = pW+], and  distinct p i  for 1 5 i 5 M - 1 ,  

k = l  

To obtain G ( N ) ,  Eq. (2)  may be rewritten  as 

By substituting Eq. (4) into  the  above  and exchanging 
summations, we  obtain 

m(i)-1 n + m ( i )  - 1 - j  
x j c. =n A v (  

Example 3 All pi  are distinct. 
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Marginal queue  length  statistics for an F C F S ,  PS, or 

The marginal queue length  probability  distribution for an 
FCFS, PS, or  LCFS  service  station is 

LCFS service  station 

The  expected  queue length is 

These last two  equations  correspond  to identical results 
shown by Buzen for a  closed  queuing network with no 
IS service station [ 61. By substituting Eq. ( 7 )  for 
G ( N  - k )  into  Eq. (9) ,  we  obtain 

Example 4 All pi are distinct. 

Example 5 The queuing network  has  no IS service 
station. 

Marginal queue  length  statistics for an IS service 
station 

The marginal queue length probability  distribution for  an 
IS service  station is 

where 

G ( n , x )  2 g ( n  - 1 )  7. 

The first and  second moments are 

E [ n i ]  = k P [ n i  = k ]  

n 1 
X 

f=0 

Y 

k=l  
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N 
E [ ( n i ) ' ]  = x k2 P [ n i  = k ]  

k = l  

= [ G ( N ) ] "  [(pi)' G ( N  - 2) 

+ p i  G ( N -  l ) ] .   ( 1 3 )  

By replacing pi by the  appropriate traffic intensity,  Eqs. 
( 1 1 ) - (13)  can  be applied to  evaluate  the marginal 
statistics  for  the  number of customers belonging to  any 
combination of classes in any  group of IS service 
stations. 

Extension to semiclosed networks 
For a semiclosed network, define 

1' n = N , ;  

n A ( m ) ,  n > N , .  
A ( n )  4 n-1 

m=N1 

The normalization constant  has been shown by Reiser 
and Kobayashi [ 7 ]  to  be 

Formulas  for marginal queue length statistics in Eqs. 
( S ) ,  (9) ,  and ( 1 1 ) - ( 1 3 )  still apply if C ( N -  k )  is re- 
placed  by 

G ' ( k )  4 E A ( n  + k )  G ( n ) ,  (14) 

and G ( N  - k , x )  is replaced by 

G " ( k , x )  x A ( n +  k )  G ( n , x ) ,  

where k = 0, 1; . ., N , .  

Conclusion 
We have  extended  Moore's result for a closed network of 
exponential servers  to  the  case of nondistinct traffic in- 
tensities.  Solutions for  the normalization constant and 
marginal queue length statistics of various  closed and 
semiclosed  queuing networks  have been shown. 

Appendix 
Consider M' distinct pi with multiplicity m ( i )  such  that 

N - k  

n=rnaxla ~ ~ - l c ]  

N2-k  

- (15)  
n=rnaxl& N,+] 

" 
m ( i )  = M .  

i = l  

Define 

T ( t )  JJ [ (  1 - p i t ) m ( i ) ] - l .  
" 

- (A1 1 
i = l  

By expanding T ( t )  into partial fractions, 

M' m ( i ) - 1  A ,  
T ( t )  =x E m(i ) - j  3 (A21 

i = l  j = o  (1  - Pit) 
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where A ,  are  constants to be determined below. From 
Eq. (3)  and following [ 9 ] ,  g (  n )  is  equal to the co- 
efficient of tn in T ( t )  , and is given by 

To solve  for A , ,  we define 
“ 

H ( t )  4 n [ ( 1  - ~ ~ t ) ~ ( ~ ’ ] - l .  

From  Eqs. ( A I )  and (A2),  

k=l,k#i 

” 

A i o = H ( t )  I = { [ I  - ( p k / p ~ ) l m ( k ) } - l >  

i =  1 ,  2;”, M ‘ ,  

f = R=l,k#i 
Pi 

and 

1 5  i 5  M ‘ ;  1 Z j Z  m ( i )  - 1 .  (A3 1 
Now A ,  may be  found in terms of Ail ,  1 = 0, 1; . . , j -  1 ,  
as follows: 

H“’ A 7 H ( t ) ,  and a‘ 
= at 

By substituting Eq. (AS) into  the  above  and rearranging, 
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From  Eq. (A4),  

j - 1  j -  1 H ( j )  ( ) H ( ~ )  F(j-l-’) 

1=0 Received  September 18, 1976 

By substituting Eq. (A3) into  the  above  and evaluating at 
t = l /p i ,  we find 

(-pJjj! A ,  = E ( I ) [(-pi)’ I !  A i l ]  F(””’l . 
j - 1  j -  1 

The  author is located at the IBM Thomas J .  Watson 
1=0 ,=I 

Pi Research  Center,  Yorktown  Heights,  New  York 10598. 
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