
Odd Gossiping in the Linear Cost ModelGuillaume Fertin1 and Joseph G. Peters21 LaBRI - U.M.R. CNRS 5800, Universit�e Bordeaux I,351 Cours de la Lib�eration, F33405 Talence Cedex, Francefertin@labri.u-bordeaux.fr2 School of Computing Science, Simon Fraser University,Burnaby, British Columbia, Canada V5A 1S6peters@cs.sfu.caAbstract. In the gossiping problem, each node in a network starts witha unique piece of information and must acquire the information of allother nodes using two-way communications between pairs of nodes. Inthis paper we investigate gossiping in n-node networks with n odd. Weuse a linear cost model in which the cost of communication is proportionalto the amount of information transmitted. In synchronous gossiping, thepairwise communications are organized into rounds, and all communica-tions in a round start at the same time. We present synchronous algo-rithms that match the lower bounds in [1] for a majority of odd values ofn. In asynchronous gossiping, a pair of nodes can start communicatingwhile communications between other pairs are in progress. We provide anew short intuitive proof of the asynchronous lower bound in [1].1 IntroductionGossiping is an information dissemination problem in which each node of acommunication network has a piece of information that must be acquired byall the other nodes. Information is communicated between pairs of nodes usingtwo-way communications or calls along the communication links of the network.Gossiping is a well-studied problem. There are many papers describing algo-rithms that minimize the gossip time on various interconnection networks suchas hypercubes and meshes. See [2, 3] for surveys of these results.There has been less study of the minimum time needed to gossip when thetopology of the interconnection network does not restrict the communicationpatterns. Kn�odel [4] proved that the number of rounds of communication nec-essary to gossip is dlog2(n)e when n is even, and dlog2(n)e + 1 when n is odd.He also proved su�ciency by describing gossip algorithms that meet the lowerbounds on numbers of rounds. The half-duplex version of this problem, in whichcommunication links can only be used in one direction at any given time, hasalso been studied [5, 6]. All of these papers assume a unit cost model in whicha communication takes one time unit independent of the amount of informationbeing transmitted. When messages are long, a linear cost model is more realisticsince the length of the messages in most gossip algorithms grows exponentially.



In this paper, we assume a store-and-forward, 1-port, full-duplex model inwhich each communication involves two nodes and a single communication link,each node communicates with at most one other node at any given time, andinformation can 
ow simultaneously in both directions along a link. Each nodestarts with a message of length 1. Messages can be concatenated and sent as asingle communication. We assume a linear cost model in which the time to senda message of length k is � + k� where � is the start-up time to initiate a callbetween a pair of nodes and � is the propagation time of a message of length 1along a link. If the two nodes involved in a call send messages of di�erent lengths,then the time for both nodes to complete the call is determined by the length ofthe longer message. A call involving messages of length k can be thought of asa sequence of k steps each of which takes time � .The constant cost model is synchronous; each call takes one time unit, so agossip algorithm consists of a sequence of rounds of simultaneous pairwise calls.Fraigniaud and Peters [7] investigated the structure of minimum-time gossip al-gorithms using a linear cost model. They established lower and upper boundson the time to gossip when the number of nodes n is even and showed thatminimum-time gossip algorithms for n even are synchronous. They also gaveexamples to show that the time to gossip can sometimes be reduced when n isodd by allowing pairs of nodes to begin calls at di�erent times.Peters, Raabe, and Xu [1] studied gossiping with n odd and a linear costmodel. They proved a general lower bound of (dlog2(n)e+1)�+n� which holdsfor all odd n for both the synchronous and asynchronous cases. The bound isachievable in the asynchronous case for some odd values of n, but for n = 2k�1,they proved that every gossip algorithm with start-up time (dlog2(n)e+1)� musthave total propagation time strictly greater than n� . For the synchronous case,they proved stronger lower bounds and conjectured that their lower bounds areachievable for all odd n. They gave an ad hoc algorithm that achieves the lowerbound for n = 2k � 1.In Sect. 2, we consider synchronous gossiping. Our main result is a methodto construct gossip algorithms that achieve the lower bounds in [1]. We showthat such algorithms exist for all odd n in the top half of any range between twoconsecutive powers of 2 (i.e., for 3� 2k�2 + 1 � n � 2k � 1 for any k � 3), andalso for some values in the bottom half of each range. Collectively, our resultsaccount for 60% of the odd values of n and give support to the conjecture in [1].In Sect. 3, we will deal with asynchronous gossiping. The proof in [1] that thegeneral lower bound cannot be achieved when n = 2k�1 is long and complicated.We give a much shorter and more intuitive proof of this result.2 Synchronous GossipingKn�odel [4] showed that gossiping in the unit cost model requires dlog2(n)e+1rounds when n is odd. This lower bound on number of rounds is also valid forthe linear cost model in both the synchronous and asynchronous cases. It is alsoimmediate that at least n steps are required because each node needs to acquire



n � 1 pieces of information, and at least one node is idle at any given time.This gives a lower bound of maxfdlog2(n)e+1)�; n�g. Peters, Raabe, and Xu [1]proved a lower bound of (dlog2(n)e+1)�+n� for odd n for both the synchronousand asynchronous cases. They proved stronger lower bounds for the synchronouscase by �xing the number of rounds to be dlog2(n)e + 1 and then focussing onthe required number of steps. We take the same approach to upper bounds.The required number of rounds, dlog2(n)e + 1, is the same for every odd nbetween 2k�1 + 1 and 2k � 1, where k = dlog2(n)e. The required total numberof steps and also the required numbers of steps in each of the rounds dependson whether n is in the bottom half of the range, 2k�1 +1 � n � 3� 2k�2 � 1, orthe top half of the range, 3� 2k�2 + 1 � n � 2k � 1.Theorem 2.1 ([1]). A synchronous gossip algorithm for odd n in the top halfwhich has dlog2(n)e + 1 rounds requires at least 2n � 2k�1 � 1 steps wherek = dlog2(n)e. The numbers of steps in the rounds are 1 2 4 8 : : : 2k�2 x xrespectively where x = n� 2k�1.Theorem 2.2 ([1]). A synchronous gossip algorithm for odd n in the bottomhalf which has dlog2(n)e + 1 rounds requires at least 2k�2 � 1 + 2dn�2k�22 e +bn�2k�22 c steps where k = dlog2(n)e. The numbers of steps in the �rst k � 2rounds are 1 2 4 8 : : : 2k�3 respectively. Two of the last three rounds havey = dn�2k�22 e steps and the other round has x = bn�2k�22 c steps.Conjecture 2.1 ([1]). There are synchronous gossip algorithms that achieve thelower bounds of Theorems 2.1 and 2.2 for every odd n.We note that there can be a trade-o� between the number of rounds and thenumber of steps in a gossip algorithm. If more than dlog2(n)e + 1 rounds arepermitted, then the number of steps can often be reduced. Depending on therelative values of � and � , the fastest algorithm could have more than dlog2(n)e+1 rounds. We do not investigate this trade-o� in this paper.Our algorithms in this section and the next section are based on a propertyof partial gossip algorithms and the notion of experts. We say that a node is anexpert of a set S if it knows the information of every node in S.2.1 The Top HalfThe main result in this section is an algorithm that achieves the lower boundin Theorem 2.1. This proves Conjecture 2.1 for every odd n in the top half ofany range between two consecutive powers of 2. Our result is the following.Theorem 2.3. For any odd n in the top half, there is a synchronous gossipalgorithm with dlog2(n)e+1 rounds and 2n�2k�1�1 steps, where k = dlog2(n)e.As dictated by Theorem 2.1, our algorithm has k + 1 rounds, where k =dlog2(n)e, and the numbers of steps in the rounds are 1 2 4 8 : : : 2k�2 x xrespectively where x = n� 2k�1. Our algorithm and its proof of correctness arebased on the following property which we will prove to be true for every oddn � 3.



Property 2.1. Let An be the following property:For any odd n such that dlog2(n)e = k, there exists a partial gossip algorithmwith k rounds and 2i�1 steps in each round i such that after k rounds:1. 2k�1 nodes are experts, and2. the remaining n� 2k�1 nodes know at least 2k�1 pieces of information.In order to prove the above Property, let us prove Propositions 2.1 and 2.2,which, together, will prove recursively the correctness of Property 2.1.Proposition 2.1. Let n = 2k � p be an odd number such that dlog2(n)e = kand n � 3. If An is true, then An0 is true for any n0 = 2k0 � p with k0 � k.Proof. Let n = 2k � p for any �xed k and odd p. Note that 1 � p � 2k�1 � 1,since dlog2(n)e = k. Also note that a gossip algorithm for n nodes has k + 1rounds [4]. We will prove the proposition by induction on k.Suppose that An is true and let n1 = 2k+1�p = 2k+n. Partition the set S ofn1 nodes into two subsets S1 and S2, such that jS1j = 2k and jS2j = 2k � p = n.Gossiping among n1 nodes requires k + 2 rounds. During the �rst k rounds ofa partial gossip algorithm, the nodes of S1 and the nodes of S2 communicateindependently. The 2k nodes of S1 can all be experts of S1 after k rounds. Then = 2k � p nodes of S2 can satisfy property An after k rounds by assumption.Round k + 1 of the partial gossip algorithm is illustrated in Fig. 1. The 2k�1experts of S2 exchange all of their information with 2k�1 of the experts of S1 tocreate 2k experts of S. The remaining 2k�1�p nodes of S2 exchange informationwith 2k�1�p nodes of S1. After round k+1, these 2k�2p nodes and the remainingp nodes of S1 each know at least 2k pieces of information. Since round k+1 takes2k steps, all conditions of Property An1 are satis�ed. We complete the inductionproof by observing that A3 is true. utProposition 2.2. Let n = 2k � p be an odd number such that dlog2(n)e = kand n � 3. If An is true, then:(a) A2n�1 is true, and(b) if p 6= 1, then A2n+1 is true.Proof. (a) Suppose that An is true and consider a set S of 2n�1 nodes. PartitionS into three subsets S1, S2, and S3 such that jS1j = n, jS2j = 2k�1, and jS3j =2k�1�(p+1). Note that k+2 rounds are required to gossip among 2n�1 nodes.During the �rst k � 1 rounds of a partial gossip algorithm, the nodes of S1, S2,and S3 communicate within their own subsets. Since jS1j = n, the nodes of S1can satisfy An by assumption. After k� 1 rounds, all nodes of S2 and S3 can beexperts of their respective subsets because the number of nodes in each set is atmost 2k�1 and is even. The communications during rounds k and k + 1 of thepartial gossip algorithm are shown in Fig. 2. It is not di�cult to verify that Ssatis�es all conditions of Property A2n�1 after round k + 1.(b) The proof that An implies A2n+1 when p 6= 1 is similar to the proof ofpart (a). Partition the set S of 2n + 1 nodes into three subsets S1, S2, and S3
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such that jS1j = n, jS2j = 2k�1, and jS3j = 2k�1 � (p � 1). Gossiping among2n + 1 nodes requires k + 2 rounds. As in part (a), the nodes of S1, S2, andS3 communicate within their own subsets during the �rst k � 1 rounds of apartial gossip algorithm. After k � 1 rounds, the nodes of S1 can satisfy An byassumption, while all nodes of S2 and S3 can be experts of their respective sets.The communications during rounds k and k + 1 of the partial gossip algorithmare shown in Fig. 3 and prove that S satis�es all conditions of Property A2n+1after round k+1. The reason for the condition p 6= 1 can be seen in the diagram:one node of S2 must communicate with a node of S1, so we need jS3j < jS2j. ut
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2k�1 � (p � 1)nodes Fig. 3. A2n+1 is true if An is true (with p 6= 1)Proof of Theorem 2.3. First we establish that Property An is true for everyodd n � 3. The case A3 is true by inspection. Suppose that An is true for everyodd n with dlog2(n)e = k for some k. That is, An is true for 2k�1 < n < 2k.Then An is true for n = 2k+1 � 1 by Proposition 2.1, and for every other odd nwith dlog2(n)e = k+1 by Proposition 2.2. Hence An holds for every odd n � 3.Now, to prove Theorem 2.3 we use a gossip algorithm that partitions the set Sof n nodes into two subsets S1 and S2 with jS1j = 2k�1 and jS2j = n�2k�1 = x.Since n is in the top half, 2k�2 + 1 � jS2j � 2k�1 � 1. During the �rst k � 1rounds, the nodes of the two subsets S1 and S2 communicate within their ownsubsets. After k � 1 rounds, all nodes of S1 can be experts of S1 and the nodesof S2 can satisfy Property Ax. The communications during rounds k and k + 1are shown in Fig. 4. It is not di�cult to verify that all nodes of S will be experts



of S after round k + 1. Rounds k and k + 1 each use x = n� 2k�1 steps, so thetotal number of steps for the algorithm is 2k�1 � 1+ 2� x = 2n� 2k�1 � 1. utFirst k � 1 roundsexperts of S1 k-th Round k + 1-st Round2k�1 nodes
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2.2 The Bottom HalfWe did not manage to show the correctness of Conjecture 2.1 for all odd nin the bottom half, that is 2k�1+1 � n � 3�2k�2�1. However, we have shownthat the conjecture is true in several cases, which asymptotically account forapproximately 16 of the values of odd n in the bottom half. The proofs are ratherlong but the general ideas are similar to the proofs for the top half; we partitionthe set of nodes into several subsets, gossip in the subsets independently, and thenexchange information among the subsets during the last few rounds using ad hocmethods. We provide here only a summary of our results for the bottom half andrefer the reader to a technical report [8] for the details. Table 1 shows the valuesof odd n for which we know that synchronous gossiping is possible in dlog2(n)e+1rounds and 2k�2 � 1 + 2dn�2k�22 e + bn�2k�22 c steps where k = dlog2(n)e. Therightmost column indicates the percentage of values of odd n in each range. Wenote that these results, together with the results for the top half, con�rm theconjecture for all odd n � 39 and for 60% of the values of odd n asymptotically.



Table 1. Summary of the results for odd n in the bottom halfValues of n Gossip algorithm that Percentage ofachieves the lower bound? bottom halfn = 2k�1 + 1 YES 02k�1 + 3 � n < d 3�2k+1+111 e ? 18.18d 3�2k+1+111 e � n � d 11�2k�25 e YES 1.82d 11�2k�25 e < n < d 7�2k�2�13 e ? 13.33d 7�2k�2�13 e � n � 5� 2k�3 � 1 YES 16.665� 2k�3 + 1 � n � 3� 2k�2 � 5 ? 50n = 3� 2k�2 � 3 YES 0n = 3� 2k�2 � 1 YES 03 Asynchronous Gossiping3.1 The Equal Exchange PrincipleAny asynchronous gossip algorithm for n nodes with n odd takes time at least(dlog2(n)e+ 1)� + n� [1]. We can derive several properties of gossip algorithmsthat take time exactly (dlog2(n)e+ 1)� + n� .Property 3.1. No node can be idle during more than one step.Proof. Suppose some node u is idle during two or more distinct steps. Since uneeds n�1 steps to acquire the information of the other nodes, the total numberof steps will be greater than n. utProperty 3.2. Each node must be idle during at least one step.Proof. Suppose that some node u is never idle. Since n is odd, there must be atleast one idle node during each of the n steps. This means that some other nodev must be idle during at least two distinct steps, which contradicts Property 3.1.utProperty 3.3. Two nodes cannot be idle during the same step.Proof. Each node must be idle during at least one step by Property 3.2 and eachnode needs n� 1 steps to acquire the information of the other nodes. Summingover all nodes gives a total requirement of n2 communication units. Since n isodd, there is at least one idle node during each step. If two nodes are idle duringthe same step, then the total number of units is at least n2 + 1 and this is notpossible in an algorithm with n steps. utProperty 3.4. Each node is idle during exactly one step, and all the idle stepsare distinct.Proof. This follows directly from the other three properties. ut



Based on these properties, we get a short proof of the Equal Exchange Prin-ciple �rst proved in [1].Theorem 3.1 (Equal Exchange Principle [1]). Two nodes exchange thesame amount of information when they communicate.Proof. Suppose two nodes u and v send di�erent amounts of information toeach other during a communication. Then one of these nodes, say u is idle (i.e.,not receiving information) during at least one step s while v is busy receivinginformation from u. Since the number of nodes is odd, and since communicationsoccur between pairs of nodes, there must be another node w which is idle duringthe same step s. This contradicts Property 3.3. ut3.2 The Case n = 2k � 1The following theorem shows that the lower bound (dlog2(n)e + 1)� + n�cannot be achieved by any gossip algorithm when n = 2k � 1. A di�erent proofof this result is given in [1]. The proof that we present here is much shorter andmore intuitive.Theorem 3.2. Any gossip algorithm for n = 2k � 1 nodes, k � 3, takes timestrictly greater than (dlog2(n)e+ 1)� + n� , for all � > 0, � > 0.Proof. A gossip algorithm can be represented as an n� n grid. Each row repre-sents a node and each column represents a step of the algorithm. By Property 3.4,each node must be idle during exactly one step, and these idle steps must bedistinct. Without loss of generality, we can arrange the idle steps along a diag-onal. Figure 5 shows the case n = 15 with the idle steps shown in dark gray.Consider the last two nodes, u = 2k � 2 and v = 2k � 1 (nodes 14 and 15 inFig. 5). Node v is idle during the �rst step while all other nodes are busy. Whenit starts its communication in step 2, it will inherit a delay of � + � from thenode with which it is communicating. So, v can only have k active rounds andthe numbers of steps in its rounds must be 1; 2; 4; :::; 2k�2; 2k�1 � 1 as shownin Fig. 5. Any increase in the number of steps in one of the �rst k � 1 roundswould violate the equal exchange principle and any decrease would prevent vfrom acquiring enough information for its last round. The pattern for node u isthe same as for node v by a similar argument.Next, consider the 2k�1 � 2 nodes labelled 2 to 2k�1 � 1 (nodes 2 to 7 inFig. 5). None of these nodes is idle before step 2k�1 + 1. Since the amount ofinformation exchanged during each round i cannot be greater than 2i�1, noneof these nodes can start round k later than step 2k�1. Thus, these nodes haveat most one round after their idle steps and each node i, 2 � i � 2k�1 mustexchange exactly i � 1 pieces of information with another node during its lastround. These communications are indicated by light gray rectangles in Fig. 5.The only available nodes for these exchanges are the 2k�1 � 2 nodes labelled2k�1 to 2k � 3 (nodes 8 to 13). Therefore, exactly two of the nodes that areactive during the last step must exchange i pieces of information during their



last rounds for each i = 1; 2; :::; 2k�1 � 1. We can show that this is impossibleby examining node w = 2k�1 (node 8). If node w has k rounds before its idlestep, then it must exchange 2k�1�1 pieces of information during a single roundafter its idle step and this gives three nodes (u, v, and w) exchanging 2k�1 � 1pieces of information. If node w has k � 1 rounds before its idle step, then itcan have rounds k and k + 1 after its idle step. During round k, node w cannotcommunicate with any of the nodes 1 through 2k�1 � 1 (nodes 1 to 7) becausethey must all start round k no later than step 2k�1. Node w cannot communicatewith any of nodes 2k�1 + 1 to 2k � 3 (nodes 9 to 13) because this would leavethree nodes with the same amount of information to exchange during their lastrounds (node w, the node with which w communicated in round k, and one ofnodes 2 to 2k�1 � 1). ut
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Fig. 5. Asynchronous gossiping with 15 nodes4 ConclusionWe have shown that synchronous gossiping can be completed in time thatmatches the lower bounds for approximately 60% of all odd values of n. Thisprovides evidence that the conjecture in [1] is true, but leaves the conjecture openfor most of the bottom halves of the ranges between consecutive powers of 2. Wehave also given a simple new method to prove the lower bound on asynchronousgossiping for n = 2k�1. The extension of this method to other values of n remainsopen. Finally, the trade-o�s between the number of rounds and the number ofsteps for both synchronous and asynchronous gossiping remain unexplored.
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