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Abstract. In the gossiping problem, each node in a network starts with
a unique piece of information and must acquire the information of all
other nodes using two-way communications between pairs of nodes. In
this paper we investigate gossiping in n-node networks with n odd. We
use a linear cost model in which the cost of communication is proportional
to the amount of information transmitted. In synchronous gossiping, the
pairwise communications are organized into rounds, and all communica-
tions in a round start at the same time. We present synchronous algo-
rithms that match the lower bounds in [1] for a majority of odd values of
n. In asynchronous gossiping, a pair of nodes can start communicating
while communications between other pairs are in progress. We provide a
new short intuitive proof of the asynchronous lower bound in [1].

1 Introduction

Gossiping is an information dissemination problem in which each node of a
communication network has a piece of information that must be acquired by
all the other nodes. Information is communicated between pairs of nodes using
two-way communications or calls along the communication links of the network.
Gossiping is a well-studied problem. There are many papers describing algo-
rithms that minimize the gossip time on various interconnection networks such
as hypercubes and meshes. See [2, 3] for surveys of these results.

There has been less study of the minimum time needed to gossip when the
topology of the interconnection network does not restrict the communication
patterns. Knodel [4] proved that the number of rounds of communication nec-
essary to gossip is [loga(n)] when n is even, and [loga(n)] + 1 when n is odd.
He also proved sufficiency by describing gossip algorithms that meet the lower
bounds on numbers of rounds. The half-duplez version of this problem, in which
communication links can only be used in one direction at any given time, has
also been studied [5,6]. All of these papers assume a unit cost model in which
a communication takes one time unit independent of the amount of information
being transmitted. When messages are long, a linear cost model is more realistic
since the length of the messages in most gossip algorithms grows exponentially.



In this paper, we assume a store-and-forward, 1-port, full-duplex model in
which each communication involves two nodes and a single communication link,
each node communicates with at most one other node at any given time, and
information can flow simultaneously in both directions along a link. Each node
starts with a message of length 1. Messages can be concatenated and sent as a
single communication. We assume a linear cost model in which the time to send
a message of length k is 8 + k7 where 3 is the start-up time to initiate a call
between a pair of nodes and 7 is the propagation time of a message of length 1
along a link. If the two nodes involved in a call send messages of different lengths,
then the time for both nodes to complete the call is determined by the length of
the longer message. A call involving messages of length k& can be thought of as
a sequence of k steps each of which takes time 7.

The constant cost model is synchronous; each call takes one time unit, so a
gossip algorithm consists of a sequence of rounds of simultaneous pairwise calls.
Fraigniaud and Peters [7] investigated the structure of minimum-time gossip al-
gorithms using a linear cost model. They established lower and upper bounds
on the time to gossip when the number of nodes n is even and showed that
minimum-time gossip algorithms for n even are synchronous. They also gave
examples to show that the time to gossip can sometimes be reduced when n is
odd by allowing pairs of nodes to begin calls at different times.

Peters, Raabe, and Xu [1] studied gossiping with n odd and a linear cost
model. They proved a general lower bound of ([loga(n)] + 1) + nt which holds
for all odd n for both the synchronous and asynchronous cases. The bound is
achievable in the asynchronous case for some odd values of n, but for n = 2% — 1,
they proved that every gossip algorithm with start-up time ([loga(n)]+1)3 must
have total propagation time strictly greater than nr. For the synchronous case,
they proved stronger lower bounds and conjectured that their lower bounds are
achievable for all odd n. They gave an ad hoc algorithm that achieves the lower
bound for n = 2% — 1.

In Sect. 2, we consider synchronous gossiping. Our main result is a method
to construct gossip algorithms that achieve the lower bounds in [1]. We show
that such algorithms exist for all odd n in the top half of any range between two
consecutive powers of 2 (i.e., for 3 x 2872 +1 <n < 2% — 1 for any k > 3), and
also for some values in the bottom half of each range. Collectively, our results
account for 60% of the odd values of n and give support to the conjecture in [1].
In Sect. 3, we will deal with asynchronous gossiping. The proof in [1] that the
general lower bound cannot be achieved when n = 2* —1is long and complicated.
We give a much shorter and more intuitive proof of this result.

2 Synchronous Gossiping

Knodel [4] showed that gossiping in the unit cost model requires [logs(n)]+1
rounds when n is odd. This lower bound on number of rounds is also valid for
the linear cost model in both the synchronous and asynchronous cases. It is also
immediate that at least n steps are required because each node needs to acquire



n — 1 pieces of information, and at least one node is idle at any given time.
This gives a lower bound of max{[loga(n)]+1)3,n7}. Peters, Raabe, and Xu [1]
proved a lower bound of ([loga(n)]+1)8+nTt for odd n for both the synchronous
and asynchronous cases. They proved stronger lower bounds for the synchronous
case by fixing the number of rounds to be [log2(n)] + 1 and then focussing on
the required number of steps. We take the same approach to upper bounds.

The required number of rounds, [loga(n)] + 1, is the same for every odd n
between 28~ + 1 and 2% — 1, where k = [loga(n)]. The required total number
of steps and also the required numbers of steps in each of the rounds depends
on whether n is in the bottom half of the range, 21 +1<n <3 x2¥2_1, or
the top half of the range, 3 x 2F72 + 1 <n < 2F — 1.

Theorem 2.1 ([1]). A synchronous gossip algorithm for odd n in the top half
which has [loga(n)] + 1 rounds requires at least 2n — 2¥~' — 1 steps where
k = [log2(n)]. The numbers of steps in the rounds are 1 2 4 8 ... 282 g ¢
respectively where x = n — 2871,

Theorem 2.2 ([1]). A synchronous gossip algorithm for odd n in the bottom
half which has [log2(n)] + 1 rounds requires at least 2F=2 — 1 + 2["722:1 +

Ln’*?;izj steps where k = [loga(n)]. The numbers of steps in the first k — 2
rounds are 1 2 4 8 ... 2873 respectively. Two of the last three rounds have
k—2 k—2

n—2
2

n—2

y = [*=5—1 steps and the other round has x = |

| steps.

Congjecture 2.1 ([1]). There are synchronous gossip algorithms that achieve the
lower bounds of Theorems 2.1 and 2.2 for every odd n.

We note that there can be a trade-off between the number of rounds and the
number of steps in a gossip algorithm. If more than [loga(n)] + 1 rounds are
permitted, then the number of steps can often be reduced. Depending on the
relative values of 3 and 7, the fastest algorithm could have more than [logs(n)]+
1 rounds. We do not investigate this trade-off in this paper.

Our algorithms in this section and the next section are based on a property
of partial gossip algorithms and the notion of ezperts. We say that a node is an
expert of a set S if it knows the information of every node in S.

2.1 The Top Half

The main result in this section is an algorithm that achieves the lower bound
in Theorem 2.1. This proves Conjecture 2.1 for every odd n in the top half of
any range between two consecutive powers of 2. Qur result is the following.

Theorem 2.3. For any odd n in the top half, there is a synchronous gossip
algorithm with [logs(n)] +1 rounds and 2n—2¥—1 —1 steps, where k = [log,(n)].

As dictated by Theorem 2.1, our algorithm has k& + 1 rounds, where k =
[log2(n)], and the numbers of steps in the rounds are 12 4 8 ... 28=2 g ¢
respectively where 2 = n — 2¥~!. Qur algorithm and its proof of correctness are
based on the following property which we will prove to be true for every odd
n > 3.



Property 2.1. Let A, be the following property:
For any odd n such that [loga(n)] = k, there exists a partial gossip algorithm
with k rounds and 2°~! steps in each round i such that after k rounds:

1. 28=1 nodes are experts, and
2. the remaining n — 2¥~! nodes know at least 2¥=1 pieces of information.

In order to prove the above Property, let us prove Propositions 2.1 and 2.2,
which, together, will prove recursively the correctness of Property 2.1.

Proposition 2.1. Let n = 2% — p be an odd number such that [logs(n)] = k
and n > 3. If A, is true, then A, is true for any n' = 2% —p with k' > k.

Proof. Let n = 2¥ — p for any fixed k and odd p. Note that 1 < p < 2%~1 — 1,
since [loga(n)] = k. Also note that a gossip algorithm for n nodes has k + 1
rounds [4]. We will prove the proposition by induction on k.

Suppose that A,, is true and let ny = 28+ —p = 2F £ n. Partition the set S of
ny nodes into two subsets S; and S, such that |S;| = 2% and |Ss| = 2% —p =n.
Gossiping among n; nodes requires k£ + 2 rounds. During the first k& rounds of
a partial gossip algorithm, the nodes of S; and the nodes of Ss communicate
independently. The 2* nodes of S; can all be experts of S; after k rounds. The
n = 2F — p nodes of Sy can satisfy property A4,, after k rounds by assumption.
Round k + 1 of the partial gossip algorithm is illustrated in Fig. 1. The 2F~1
experts of Sy exchange all of their information with 2¥~1 of the experts of S; to
create 2% experts of S. The remaining 2*~! — p nodes of Sy exchange information
with 2¥~! —p nodes of S;. After round k+1, these 2¥ —2p nodes and the remaining
p nodes of S; each know at least 2% pieces of information. Since round &+ 1 takes
2% steps, all conditions of Property A4,,, are satisfied. We complete the induction
proof by observing that Ajg is true. O

Proposition 2.2. Let n = 2% — p be an odd number such that [logs(n)] = k
andn > 3. If A, is true, then:

(a) Aap_1 is true, and

(b) if p#£ 1, then Aapy is true.

Proof. (a) Suppose that A, is true and consider a set S of 2n— 1 nodes. Partition
S into three subsets S, S, and Sz such that |S;| = n, |Sy| = 271, and |S3| =
2F=1 _(p+1). Note that k+ 2 rounds are required to gossip among 2n — 1 nodes.
During the first k¥ — 1 rounds of a partial gossip algorithm, the nodes of Sy, Ss,
and S3 communicate within their own subsets. Since |S;| = n, the nodes of S;
can satisfy A,, by assumption. After k — 1 rounds, all nodes of Sy and S3 can be
experts of their respective subsets because the number of nodes in each set is at
most 2¥~! and is even. The communications during rounds k£ and k + 1 of the
partial gossip algorithm are shown in Fig. 2. It is not difficult to verify that S
satisfies all conditions of Property As,_1 after round k + 1.

(b) The proof that A,, implies As,41 when p # 1 is similar to the proof of
part (a). Partition the set S of 2n + 1 nodes into three subsets Si, S2, and S3
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such that |Si| = n, |So| = 2871 and [S3| = 28! — (p — 1). Gossiping among
2n + 1 nodes requires k + 2 rounds. As in part (a), the nodes of S;, S, and
S3 communicate within their own subsets during the first £ — 1 rounds of a
partial gossip algorithm. After £ — 1 rounds, the nodes of S; can satisfy A,, by
assumption, while all nodes of S, and S3 can be experts of their respective sets.
The communications during rounds k& and &k + 1 of the partial gossip algorithm
are shown in Fig. 3 and prove that S satisfies all conditions of Property As, 11
after round k + 1. The reason for the condition p # 1 can be seen in the diagram:
one node of Sy must communicate with a node of S, so we need |S3| < |S2|. O

First kK — 1 rounds k-th Round k + 1-st Round
ok—1 steps allowed 2k stepsy allowed
S1 92k =1 Lodes 28=1 nodes ok—1 experts of

f
experts of Sy experts of $;

S S1 U Sy U Sg

SR—1 _ -
ok _ p nodes ok—1 _ (p + 1) nodes 2 k(p1+ 1) nodes ok—1 _ p know at least
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)
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2k pieces of information

ok—1 _ p know at least

2k pieces of information

Fig. 3. Asp41 is true if A, is true (with p # 1)

Proof of Theorem 2.3. First we establish that Property A,, is true for every
odd n > 3. The case Az is true by inspection. Suppose that A,, is true for every
odd n with [logy(n)] = k for some k. That is, 4, is true for 2¥~1 < n < 2k,
Then A,, is true for n = 2¥+' — 1 by Proposition 2.1, and for every other odd n
with [log,(n)] = k + 1 by Proposition 2.2. Hence A,, holds for every odd n > 3.

Now, to prove Theorem 2.3 we use a gossip algorithm that partitions the set S
of n nodes into two subsets S; and Sy with |S;| = 28" and |Sy| =n— 281 = 2.
Since n is in the top half, 2872 + 1 < |Sy| < 2%~ — 1. During the first k — 1
rounds, the nodes of the two subsets S; and S; communicate within their own
subsets. After £ — 1 rounds, all nodes of S; can be experts of S; and the nodes
of S, can satisfy Property A,. The communications during rounds k and &k + 1
are shown in Fig. 4. It is not difficult to verify that all nodes of S will be experts



of S after round k + 1. Rounds k and k + 1 each use z = n — 2F~1 steps, so the
total number of steps for the algorithm is 2F=1 —14+2x 2z =2n 21 —1. O

First £k — 1 rounds k-th Round k + 1-st Round
z steps allowed z steps allowed
S1 282 nodes 2%=2 nodes ] 282 nodes
experts of Sq experts of S; U So & experts of S U So
— k-2
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+27 from So
experts of Sp
k_1 k_1 2F=2 nodes
2 — z nodes 2 — = nodes experts of S1 U So
experts of Sy
experts of Sp ‘I>
Se ok—2
2 2% =2 nodes 28 =2 hodes know So 2 nodes
experts of So +z from S experts of S; U So
x nodes .o
2z — 28=2 nodes know ||z — 2¥~2 nodes know r - 2'; fnSOdesS
experts of Sy 9
282 from So 282 from So
+z from S;

Fig. 4. Gossip algorithm in optimal time in the top half

2.2 The Bottom Half

We did not manage to show the correctness of Conjecture 2.1 for all odd n
in the bottom half, that is 2" +1 < n < 3 x 28=2 — 1. However, we have shown
that the conjecture is true in several cases, which asymptotically account for
approximately % of the values of odd n in the bottom half. The proofs are rather
long but the general ideas are similar to the proofs for the top half; we partition
the set of nodes into several subsets, gossip in the subsets independently, and then
exchange information among the subsets during the last few rounds using ad hoc
methods. We provide here only a summary of our results for the bottom half and
refer the reader to a technical report [8] for the details. Table 1 shows the values
of odd n for which we know that synchronous gossiping is possible in [loga(n)]+1
rounds and 2F-2 — 1 + 2[”’?72] + L”*ékﬁj steps where k = [loga(n)]. The
rightmost column indicates the percentage of values of odd n in each range. We
note that these results, together with the results for the top half, confirm the
conjecture for all odd n < 39 and for 60% of the values of odd n asymptotically.




Table 1. Summary of the results for odd n in the bottom half

Values of n Gossip algorithm that |Percentage of]
achieves the lower bound?| bottom half
n=2"T+1 YES 0
2’“*1:3 <n< [%2] ? 18.18
[3><211 +1] S”S[Hxi 1 YES 1.82
(et 2y o o [l 21y ? 13.33
(22 T << x2b 1 YES 16.66
F5x2P 3 41<n<3x282_5 ? 50
n=3x2"7-3 YES 0
n=3x2"7?-1 YES 0

3 Asynchronous Gossiping

3.1 The Equal Exchange Principle

Any asynchronous gossip algorithm for n nodes with n odd takes time at least
([loga(n)] + 1)B + nt [1]. We can derive several properties of gossip algorithms
that take time exactly ([loga(n)] + 1)8 + nr.

Property 3.1. No node can be idle during more than one step.

Proof. Suppose some node w is idle during two or more distinct steps. Since u
needs n — 1 steps to acquire the information of the other nodes, the total number
of steps will be greater than n. O

Property 3.2. Each node must be idle during at least one step.

Proof. Suppose that some node u is never idle. Since n is odd, there must be at
least one idle node during each of the n steps. This means that some other node
v must be idle during at least two distinct steps, which contradicts Property 3.1.

a

Property 3.3. Two nodes cannot be idle during the same step.

Proof. Each node must be idle during at least one step by Property 3.2 and each
node needs n — 1 steps to acquire the information of the other nodes. Summing
over all nodes gives a total requirement of n? communication units. Since n is
odd, there is at least one idle node during each step. If two nodes are idle during
the same step, then the total number of units is at least n? + 1 and this is not
possible in an algorithm with n steps. O

Property 3.4. Each node is idle during exactly one step, and all the idle steps
are distinct.

Proof. This follows directly from the other three properties. O



Based on these properties, we get a short proof of the Equal Exzchange Prin-
ciple first proved in [1].

Theorem 3.1 (Equal Exchange Principle [1]). Two nodes exchange the
same amount of information when they communicate.

Proof. Suppose two nodes v and v send different amounts of information to
each other during a communication. Then one of these nodes, say u is idle (i.e.,
not receiving information) during at least one step s while v is busy receiving
information from u. Since the number of nodes is odd, and since communications
occur between pairs of nodes, there must be another node w which is idle during
the same step s. This contradicts Property 3.3. O

3.2 The Casen =2 —1

The following theorem shows that the lower bound ([logs(n)] + 1)8 + nr
cannot be achieved by any gossip algorithm when n = 2% — 1. A different proof
of this result is given in [1]. The proof that we present here is much shorter and
more intuitive.

Theorem 3.2. Any gossip algorithm for n = 2 — 1 nodes, k > 3, takes time
strictly greater than ([log2(n)] + 1)8 + nt, for all 3 >0, 7 > 0.

Proof. A gossip algorithm can be represented as an n X n grid. Each row repre-
sents a node and each column represents a step of the algorithm. By Property 3.4,
each node must be idle during exactly one step, and these idle steps must be
distinct. Without loss of generality, we can arrange the idle steps along a diag-
onal. Figure 5 shows the case n = 15 with the idle steps shown in dark gray.

Consider the last two nodes, u = 2% — 2 and v = 2*¥ — 1 (nodes 14 and 15 in
Fig. 5). Node v is idle during the first step while all other nodes are busy. When
it starts its communication in step 2, it will inherit a delay of 8 + 7 from the
node with which it is communicating. So, v can only have k active rounds and
the numbers of steps in its rounds must be 1,2.4,...,2¥72 2¥=1 _ 1 as shown
in Fig. 5. Any increase in the number of steps in one of the first £ — 1 rounds
would violate the equal exchange principle and any decrease would prevent v
from acquiring enough information for its last round. The pattern for node w is
the same as for node v by a similar argument.

Next, consider the 2¥~1 — 2 nodes labelled 2 to 2¥~! — 1 (nodes 2 to 7 in
Fig. 5). None of these nodes is idle before step 2¥~! + 1. Since the amount of
information exchanged during each round i cannot be greater than 2!~', none
of these nodes can start round & later than step 2¥~!. Thus, these nodes have
at most one round after their idle steps and each node i, 2 < i < 271 must
exchange exactly ¢ — 1 pieces of information with another node during its last
round. These communications are indicated by light gray rectangles in Fig. 5.
The only available nodes for these exchanges are the 2¥~! — 2 nodes labelled
2F=1 to 28 — 3 (nodes 8 to 13). Therefore, exactly two of the nodes that are
active during the last step must exchange i pieces of information during their



last rounds for each i = 1,2,...,2F~1 — 1. We can show that this is impossible
by examining node w = 271 (node 8). If node w has k rounds before its idle
step, then it must exchange 2~ — 1 pieces of information during a single round
after its idle step and this gives three nodes (u, v, and w) exchanging 2¥~! — 1
pieces of information. If node w has k — 1 rounds before its idle step, then it
can have rounds k£ and k + 1 after its idle step. During round k, node w cannot
communicate with any of the nodes 1 through 2*~1 — 1 (nodes 1 to 7) because
they must all start round & no later than step 2¥~!. Node w cannot communicate
with any of nodes 2¥=! + 1 to 2¥ — 3 (nodes 9 to 13) because this would leave
three nodes with the same amount of information to exchange during their last
rounds (node w, the node with which w communicated in round &, and one of

nodes 2 to 2¥~1 —1). O
Steps
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nodes
1
2 O
3
4
s ( )
6 )
7
w = 8
9
10
11
12

13

e T ( ]
. sEm ( )

Fig. 5. Asynchronous gossiping with 15 nodes

4 Conclusion

We have shown that synchronous gossiping can be completed in time that
matches the lower bounds for approximately 60% of all odd values of n. This
provides evidence that the conjecture in [1] is true, but leaves the conjecture open
for most of the bottom halves of the ranges between consecutive powers of 2. We
have also given a simple new method to prove the lower bound on asynchronous
gossiping for n = 2¥—1. The extension of this method to other values of n remains
open. Finally, the trade-offs between the number of rounds and the number of
steps for both synchronous and asynchronous gossiping remain unexplored.
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