The VLDB Journal manuscript No.
(will be inserted by the editor)

Methods for Finding Frequent Items in Data Streams

Graham Cormode - Marios Hadjieleftheriou

Received: date / Accepted: date

Abstract The frequent items problem is to process a stream
of items and find all items occurring more than a given frac-
tion of the time. It is one of the most heavily studied prob-
lems in data stream mining, dating back to the 1980s. Many
applications rely directly or indirectly on finding the fre-
quent items, and implementations are in use in large scale
industrial systems. However, there has not been much com-
parison of the different methods under uniform experimen-
tal conditions. It is common to find papers touching on this
topic in which important related work is mischaracterized,
overlooked, or reinvented.

In this paper, we aim to present the most important al-
gorithms for this problem in a common framework. We have
created baseline implementations of the algorithms, and used
these to perform a thorough experimental study of their prop-
erties. We give empirical evidence that there is considerable
variation in the performance of frequent items algorithms.
The best methods can be implemented to find frequent items
with high accuracy using only tens of kilobytes of memory,
at rates of millions of items per second on cheap modern
hardware.

1 Introduction

Many data generation processes can be modeled as data
streams. They produce huge numbers of pieces of data, each
of which is simple in isolation, but which taken together lead
to a complex whole. For example, the sequence of queries
posed to an Internet search engine can be thought of as a

stream, as can the collection of transactions across all branches

of a supermarket chain. In aggregate, this data can arrive at
enormous rates, easily in the realm of hundreds of gigabytes
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per day or higher. While this data may be archived and in-
dexed within a data warehouse, it is also important to pro-
cess the data “as it happens”, to provide up to the minute
analysis and statistics on current trends. Methods to achieve
this must be quick to respond to each new piece of informa-
tion, and use resources which are very small when compared
to the total quantity of data.

These applications and others like them have led to the
formulation of the so-called “streaming model” [38,3]. In
this abstraction, algorithms take only a single pass over their
input, and must accurately compute various functions while
using resources (space and time per item) that are strictly
sublinear in the size of the input—ideally, polynomial in the
logarithm of the input size. The output must be produced at
the end of the stream, or when queried on the prefix of the
stream that has been observed so far. (Other variations ask
for the output to be maintained continuously in the presence
of updates, or on a “sliding window” of only the most re-
cent updates). Some problems are simple in this model: for
example, given a stream of transactions, finding the mean
and standard deviation of the bill totals can be accomplished
by retaining a few “sufficient statistics” (sum of all values,
sum of squared values etc.). Others can be shown to re-
quire a large amount of information to be stored, such as
determining whether a particular search query has already
appeared anywhere within a large stream of queries. Deter-
mining which problems can be solved effectively within this
model remains an active research area.

The frequent items problem is one of the most heavily
studied questions in data streams research. The problem is
popular due to its simplicity to state, and its intuitive inter-
est and value. It is important both in itself, and as a subrou-
tine within more advanced data stream computations. Infor-
mally, given a sequence of items, the problem is simply to
find those items which occur most frequently. Typically, this
is formalized as finding all items whose frequency exceeds



Fig. 1 A stream of items defines a frequency distribution over items. In
this example, with a threshold of ¢ = 20% over the 19 items grouped
in bins, the problem is to find all items with frequency at least 3.8 —
in this case, the green and red items (middle two bins).

a specified fraction of the total number of items. Variations
arise when the items are given weights, and further when
these weights can also be negative. An illustrative example
is shown in Figure 1.

This abstract problem captures a wide variety of settings.
The items can represent packets on the Internet, and the
weights the size of the packets. Then the frequent items rep-
resent the most popular destinations, or the heaviest band-
width users (depending on how the items are extracted from
the flow identifiers). Or, the items can represent queries made
to an Internet search engine, and the frequent items are now
the (currently) popular terms. These are not simply hypo-
thetical examples, but genuine cases where algorithms for
this problem have been used by large corporations: AT&T [15]

and Google [39] respectively. Given the size of the data (which

is being generated at high speed), it is important to find al-
gorithms which are capable of processing each new update
very quickly, without blocking. It also helps if the working
space of the algorithm is very small, so that the analysis can
happen over many different groups in parallel, and because
small structures are likely to have better cache behavior and
hence further help increase the throughput.

Obtaining efficient and scalable solutions to the frequent
items problem is also important since many streaming ap-
plications need to find frequent items as a ‘subroutine’ of
another, more complex computation. Most directly, mining
frequent ifemsets inherently builds on finding frequent items
as a basic building block [33]. Finding the entropy of a stream
requires learning the most frequent items in order to directly
compute their contribution to the entropy, and remove their
contribution before approximating the entropy of the resid-
ual stream [13]. The HSS technique uses hashing to derive
multiple substreams, the frequent elements of which are ex-
tracted to estimate the frequency moments of the stream [6].

Other work solves generalized versions of frequent items
problems by building on algorithms for the ‘vanilla’ version
of the problem. Several techniques for finding the frequent
items in a sliding window model operate by keeping track
of the frequent items in many sub-windows [20,2,32]. The
‘heavy hitters distinct” problem, where the count of an item
is the number of distinct pairs containing that item paired
with a secondary item, is typically solved extending a fre-

quent items algorithm with distinct counting algorithms [31,
7]. Frequent items have also been applied to models of prob-
abilistic streaming data [29], and within faster ‘skipping’
techniques [5].

Thus the problem remains an important one to under-
stand and study in order to produce efficient streaming im-
plementations. It remains an active area, with a steady flow
of new submissions addressing the problem or variations
thereof. However, sometimes prior work is overlooked or
mischaracterized: algorithms first published in the eighties
have been “rediscovered” two decades later; existing work
is sometimes claimed to be incapable of a certain guarantee,
which in truth it can provide with only minor modifications;
and experimental comparisons often compare against meth-
ods that are less suitable for the given problem than others
that are not included (although where a subset of methods
have been compared, the results are broadly in agreement
with those we present here). In this paper, we try to set out
clearly and concisely the main ideas in this area, as well as
the common pitfalls.

Our goals are threefold:

— To provide a clear explanation of the most important
algorithms for the frequent items problem, and allow
comparison of their properties by using common nota-
tion and terminology. In doing so, we aim to clarify the
historical development of these algorithms, and clear up
some misconceptions.

— To provide baseline implementations of many of these
algorithms against which future algorithms can be com-
pared, and on top of which algorithms for different prob-
lems can be built.

— To perform a thorough experimental evaluation of the
algorithms over a variety of data sets to indicate their
performance in practice.

2 Definitions

Definition 1 Given a stream S of n items t; ... t,, the fre-
quency of an item ¢ is f; = |{j|t; = i}| (i.e. the number
of indices j where the jth item is 7). The exact ¢-frequent
items comprise the set {i|f; > ¢n}.

Example. The stream S = (a,b,a,c,c,a,b,d) has f, =
3, fo =2, f. =2, fqg = 1. For ¢ = 0.2, the frequent items
are a,b and c.

A streaming algorithm which solves this problem must
use a linear amount of space, even for large values of ¢:
Given an algorithm that claims to solve this problem, we
could insert a set S of IV items, where every item has fre-
quency 1. Then, we could also insert N copies of item .
If 7 is then reported as a frequent item (occurring more than



50% of the time) then ¢ € S, else ¢ € S. Consequently, since
correctly being able to test membership of such a set .S re-
quires 2(N) space, 2(N) space is also required to solve
the frequent items problem. This bound holds even allowing
the algorithm to use randomization. Instead, an approximate
version is defined based on a tolerance for error €.

Definition 2 Given a stream S of 7 items, the e-approximate
frequent items problem is to return a set of items F' so that
for all items @ € F, f; > (¢ — €)n, and there isno ¢ ¢ F
such that f; > ¢n.

Since the exact (¢ = 0) frequent items problem is hard in
general, we will use “frequent items” or “the frequent items
problem” to refer to the e-approximate frequent items prob-
lem. A related problem is to estimate the frequency of items
on demand:

Definition 3 Given a stream S of n items defining frequen-
cies f; as above, the frequency estimation problem is to pro-
cess a stream so that, given any ¢, an fz is returned satisfying
fi<fi<fiten.

A solution to the frequency estimation problem allows
the frequent items problem to be solved (slowly): one can
estimate the frequency of every possible item ¢, and report
those i’s whose frequency is estimated above (¢ — €)n. Ex-
haustively enumerating all items can be very time consum-
ing (and sometimes impossible; e.g., when the items can
be arbitrary strings). However, all the algorithms we study
here solve both the approximate frequent items problem and
the frequency estimation at the same time. Most solutions
are deterministic, but we also discuss randomized solutions,
which have a user-specified probability of failure.

Many other variations of the problem have been stud-
ied, and in Section 5 we discuss these and the extent to
which they can be solved by extensions of the described al-
gorithms.

3 Frequent Items Algorithms

We divide the algorithms for finding the frequent items into
three classes. Counter-based algorithms track a subset of
items from the inputs, and monitor counts associated with

these items. For each new arrival, the algorithms decide whether

to store this item or not, and if so, what counts to asso-
ciate with it. A second class are derived from quantile al-
gorithms: we show how the problem of finding (approxi-
mate) quantiles allows us to find the frequent items. Lastly,
we discuss sketch algorithms, which are (randomized) lin-
ear projections of the input viewed as a vector, and solve the
frequency estimation problem. They therefore do not explic-
itly store items from the input. In this presentation, we omit

consideration of a few algorithms based on randomly sam-
pling items from the input, in order to keep the scope of this
study bounded, and because these algorithms have attracted
less interest and fewer applications.

A Note on Dictionary Issues. A common feature of several
algorithms is that when given a new item, they test whether
it is one of k being stored by the algorithm, and if so, in-
crement its count. The cost of supporting this operation de-
pends a lot on the model of computation assumed. A simple
solution is to use a hash table storing the current set of items,
but this means that an otherwise deterministic solution be-
comes randomized in its time cost, since it takes expected
O(1) operations to perform this step. Given suitable hard-
ware, associative memory can be used to answer this in con-
stant time; in fact, making greater use of such hardware in
streaming algorithms is the subject of recent work by Bandi
et al. [4]. But in the absence of this hardware, a dynamic
dictionary data structure is needed: for example, Misra and
Gries [37] discuss the use of an AVL tree. In practice, hash-
ing is commonly used, meaning that these deterministic al-
gorithms have randomized implementations.

3.1 Counter-based Algorithms

Majority Algorithm. The problem of frequent items dates
back at least to a problem first studied by Moore in 1980. It
was published as a ‘problem’ in the Journal of Algorithms
in the June 1981 issue, as follows

[J.Alg 2, P208-209] Suppose we have a list of n
numbers, representing the “votes” of n processors on
the result of some computation. We wish to decide if
there is a majority vote and what the vote is.

In addition to posing this “majority”” question as a prob-
lem, Moore also invented the MAJORITY algorithm along
with Boyer in 1980, described in a technical report from
early 1981 [9]. To them, this was mostly of interest from the
perspective of automatically proving the correctness of the
solution (the details of this were published in 1991, along
with a partial history [10]). In the Dec 1982 Journal of Al-
gorithms, a solution provided by Fischer and Salzburg was
published [24]. Their proposed algorithm was essentially
identical to MAJORITY, although it was presented differ-
ently, and was accompanied by a proof that the number of
comparisons was minimized. MAJORITY can be stated as
follows: store the first item and a counter, initialized to 1. For
each subsequent item, if it is the same as the currently stored
item, increment the counter. If it differs, and the counter is
zero, then store the new item and set the counter to 1; else,
decrement the counter. After processing all items, the al-
gorithm guarantees that if there is a majority vote, then it



Algorithm 1: FREQUENT(k)

Algorithm 2: LOSSYCOUNTING(k)

Algorithm 3: SPACESAVING(k)

1 n<0 1 n—0;A0;T « 0 1 n—0;
2T —0; 2 foreach i do 2T
3 foreach i do 3 ne—n+1; 3 foreachido
4 nen+1 4 ifi € Tthen ¢; —c¢; +1; 4 nen+1
5 if i € T then 5 else 5 ifi € T then ¢; «— ¢; + 1;
6 | ci—ci+1; 6 T — TU{i}; 6 else if |T| < k then
7 elseif |T'| < k& — 1 then 7 ¢j — 1+ 4; 7 T — TuU{i};
8 T —TU{i}; . 8 ; 1;
9 ‘ ¢ : 1; t 8 if [n/k] # A then 9 else "
. ’ 9 A k|
10 else forall j € T do 10 for;l éné %’ do 10 J «— argminjer ¢j;
11 cj—cj—1; . . 11 ci—c;+1;
: 1 fc; < AthenT — T J
12 L if ¢; = 0 then T — T\{j}: [ ifej < AthenT —T\{j}; 12 T — TU{NG):

Fig. 2 Pseudocode for counter-based algorithms

must be the item stored by the algorithm. The correctness
of this algorithm is based on a pairing argument: if every
non-majority item is paired with a majority item, then there
should still remain an excess of majority items. Although not
posed as a streaming problem, the algorithm has a streaming
flavor: it takes only one pass through the input (which can
be ordered arbitrarily) to find a majority item. To verify that
the stored item really is a majority, a second pass is needed
to simply count the true number of occurrences of the stored
item.

Frequent Algorithm. Twenty years later, two papers were
published [30,21] which include essentially the same gener-
alization of the Majority algorithm to solve the problem of
finding all items in a sequence whose frequency exceeds a
1/k fraction of the total count. Instead of keeping a single
counter and item from the input, the FREQUENT algorithm
stores k — 1 (item, counter) pairs. The natural generaliza-
tion of the Majority algorithm is to compare each new item
against the stored items 7', and increment the corresponding
counter if it is amongst them. Else, if there is some counter
with count zero, it is allocated to the new item, and the
counter set to 1. If all £ — 1 counters are allocated to distinct
items, then all are decremented by 1. A grouping argument
is used to argue that any item which occurs more than n/k
times must be stored by the algorithm when it terminates.

Figure 3 illustrates some of the operations on this data
structure. Pseudocode to illustrate this algorithm is given
in Algorithm 1, making use of set notation to represent the
operations on the set of stored items 7": items are added and
removed from this set using set union and set subtraction
respectively, and we allow ranging over the members of this
set (thus implementations will have to choose appropriate
data structures which allow the efficient realization of these
operations). We also assume that each item j stored in 7" has
an associated counter c;. For items not stored in 7', then c;
is defined as 0 and does not need to be explicitly stored.

It is sometimes stated that the FREQUENT algorithm does
not solve the frequency estimation problem accurately, but
this is erroneous. As observed by Bose er al.[8], executing
this algorithm with k£ = 1/e ensures that the count associ-
ated with each item on termination is at most en below the
true value.

The two papers published in 2002 (which cite [24]) re-
discover an algorithm first published in 1982. This n/k gen-
eralization was first proposed by Misra and Gries [37]. Misra
and Gries proposed a method which they refer to as “Algo-
rithm 3”, which is equivalent to FREQUENT. In deference to
this early discovery, this algorithm is also often referred to as
the “Misra-Gries” algorithm in more recent work on stream-
ing algorithms. In the same paper, the method referred to
there as “Algorithm 2” correctly solves the problem but has
only speculated worst case space bounds.

The time cost of the algorithm is dominated by the O(1)
dictionary operations per update, and the cost of decrement-
ing counts. Misra and Gries use a balanced search tree, and
argue that the decrement cost is amortized O(1); Karp ez al.
propose a hash table to implement the dictionary [30]; and
Demaine et al. show how the cost of decrementing can be
made worst case O(1) by representing the counts using off-
sets and maintaining multiple linked lists [21].

Lossy Counting. The LOSSYCOUNTING algorithm was pro-
posed by Manku and Motwani in 2002 [33], in addition to
a randomized sampling-based algorithm and techniques for
extending from frequent items to frequent itemsets. The al-
gorithm stores tuples which comprise an item, a lower bound
on its count, and a ‘delta’ (A) value which records the differ-
ence between the upper bound and the lower bound. When
processing the ith item, if it is currently stored by the algo-
rithm in 7" then its lower bound is increased by one; else,
a new tuple is created with the lower bound set to one, and
its A value set to [i/k]. Periodically, all tuples whose upper
bound is less than |i/k | are deleted. These are correct upper
and lower bounds on the count of each item, so at the end
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Fig. 3 Counter based data structure: the blue (top) item is already
stored, so its count is incremented when it is seen. The green (middle)
item takes up an unused counter, then a second occurrence increments
the counter by one.

./

of the stream, all items whose count exceeds n/k must be
stored. As with FREQUENT, setting k = 1/¢ ensures that the
error in any approximate count is at most en. A careful ar-
gument demonstrates that the worst case space used by this
algorithm is O(% log en), and for certain input distributions
itis O(1).

Storing the delta values ensures that highly frequent items
which first appear early on in the stream have very accurate
approximated counts. But this adds to the storage cost. A
variant of this algorithm is presented by Manku in slides for
the paper [34], which dispenses with explicitly storing the
delta values, and instead has all items sharing an implicit
value of A(i) = |i/k]. The modified algorithm stores (item,
count) pairs. For each item in the stream, if it is stored, then
the count is incremented; otherwise, it is initialized with a
count of 1. Every time A(7) increases, all counts are decre-
mented by 1, and all items with zero count are removed from
the data structure. The same proof suffices to show that the
space bound is O(% log en). This version of the algorithm
is quite similar to the method presented by Misra and Gries
which is labelled “Algorithm 2” in [37]; but in [34], a space
bound is proven. The time cost is O(1) dictionary opera-
tions, plus the periodic compress operations which require
a linear scan of the stored items. This can be performed
once every O(Z logen) updates, in which time the number
of items stored has at most doubled, meaning that the amor-
tized cost of compressing is O(1). We give pseudocode for
this version of the algorithm in Algorithm 2, where again T’
represents the set of currently monitored items, updated by
set operations, and ¢; are corresponding counts.

Space Saving. The deterministic algorithms presented thus
far all have a similar flavor: a set of items and counters
are kept, and various simple rules are applied when a new
item arrives. The SPACESAVING algorithm of Metwally et
al. [35] also fits this template. Here, k (item, count) pairs are
stored, initialized by the first & distinct items and their exact
counts. As usual, when the next item in the sequence cor-
responds to a monitored item, its count is incremented. But
when the next item does not match a monitored item, the

(item, count) pair with the smallest count has its item value
replaced with the new item, and the count incremented. So
the space required is O(k) (resp. O(%)), and a short proof
demonstrates that the counts of all stored items solve the fre-
quency estimation problem with error n/k (resp. en). It also
shares the nice property of LOSSYCOUNTING that items
which are stored by the algorithm early in the stream and
not removed have very accurate estimated counts. The algo-
rithm appears in Algorithm 3. The time cost is bounded by
the dictionary operation of finding if an item is stored, and of
finding and maintaining the item with minimum count. Sim-
ple heap implementations achieve this in O(log1/¢) time
per update. When all updates are unitary (+1), a faster ap-
proach is to borrow ideas from the Demaine er al. imple-
mentation of FREQUENT, and keep the items in groups with
equal counts. By tracking a pointer to the group with small-
est count, the find minimum operation takes constant time,
while incrementing counts takes O(1) pointer operations (the
“Stream-Summary” data structure in [35]).

3.2 Quantile Algorithms

The problem of finding the ¢-quantiles of a sequence of
items drawn from a totally ordered domain is to find an
item ¢ such that it is the smallest item which dominates
¢n items from the input. We define the rank of item 7 as
rank(i) = 3, f;; i.e., this is the total frequency of all
items dominated by i. So the ¢ quantile is the ¢ which satis-
fies rank(é) < ¢n and rank(i + 1) > ¢n. The approximate
version allows en uncertainty in the ranks, i.e., to find an ¢
such that rank(7) < (¢ + €)n and rank(i + 1) > (¢ — €)n.

This problem is more general than frequent items, since
a solution to the approximate quantiles problem allows fre-
quent items to be found, by the following observation: sup-
pose i is a frequent item with f; > 2en. Then i must be
reported as the approximate ¢ quantile for all values of ¢ in
the range rank(¢) + € to rank(: + 1) — €, and by our assump-
tion on f;, this range is non-empty. Similarly, if the quantile
algorithm also produces an estimate of rank(¢) with error at
most en, this can be used to solve the frequency estimation
problem, since f(i) = rank(i + 1) — rank(¢).

GK Algorithm. The approximate quantiles algorithm of Green-

wald and Khanna [26], usually referred to simply as the GK
algorithm is somewhat similar to LOSSYCOUNTING, in that
it stores tuples containing an item from the input, a fre-
quency count g, and a A value. Here though, the tuples are
kept sorted under the total order of the domain of items. The
g value encodes the difference between the lowest possible
rank of the stored item and the previous stored item; the A
value encodes the difference between the greatest possible
rank of the item and lowest possible rank. An estimated rank
of any item (whether it is stored by the algorithm or not) can



be computed from this information. Every new arrival is in-
serted as a new tuple in the sorted order with a g value of
1 and a A value of |en]. This ensures that the requirements
on g and A are met. Periodically, a “compress” operation
removes some tuples: for two adjacent tuples ¢ and ¢ + 1, if
gi + git1 + Air1 < en, then the ith tuple is removed, and
we set g;+1 < ¢i+1+gi- It can be shown that this allows the
rank of any item to be estimated with error at most en, and
that (under a slightly formalized version of the algorithm)
the space required is bounded by O(1 log en). The time cost
requires inserting new tuples into a list in sorted order, and
periodically scanning this list to merge some adjacent tuples.
This can be supported in (amortized) time logarithmic in the
size of the data structure.

QDigest. The QDIGEST algorithm was proposed by Suri ef
al. [41] in the context of monitoring distributed data. How-
ever, it naturally applies to a streaming setting. It assumes
that the ordered domain can be represented as the set of in-
tegers {1...U}. Each tuple stored by QDIGEST consists of
a dyadic range and a count. A dyadic range is a range whose
length is a power of two, and which ends at a multiple of its
own length, i.e., can be written as {j2¢ — 1...(j + 1)2°}.
Each new item i is inserted as a trivial dyadic range {i}
with count 1 (or the count of that range is incremented if it
is already present in the data structure). Observe that every
non-trivial dyadic range can be partitioned into two dyadic
ranges of half the length; call the set comprised of a range
and its two half-length subranges a triad. The algorithm en-
forces the invariants that each non-trivial range has an as-
sociated count at most ﬁ; and that the sum of counts as-
sociated with every triad is at least loegnU' If the second of
these does not hold, then a compressing operation removes
the counts associated with the two subranges and adds them
on to the parent range. It is then straightforward to show
that when these invariants hold, the total number of ranges
with non-zero counts is at most O(@). Moreover, the true
frequency of an item is at most the sum of counts of the
log U ranges which contain that item, and since their count
is bounded, the count of the trivial range corresponding to an
item is at most an en underestimate. Hence, the data struc-
ture directly solves the frequency estimation problem, and
further, a walk over the induced tree structure in time linear
in the data structure size extracts all frequent items.

In implementing this algorithm, the main challenge is to
implement the compress operation so that its cost is min-
imized and it correctly restores the required invariants on
execution: it is not clear that the version of compress pre-
sented in the original g-digest paper [41] restores the invari-
ant. Subsequently, alternate implementations of the g-digest,
with additional properties (such as ensuring that if a range
is present in the summary, then so is its parent range) have
been proposed [28,16]. The time cost of the best of these is
(amortized) O(loglog U).
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Fig. 4 Sketch data structure: each new item is mapped to a set of coun-
ters, which are incremented.

3.3 Sketches

Here, we use the term ‘sketch’ to denote a data structure
which can be thought of as a linear projection of the input.
That is, if we imagine the stream as implicitly defining a
vector whose i-th entry is f;, the sketch is the product of this
vector with a matrix. For the algorithm to use small space,
this matrix will be implicitly defined by a small number of
bits. The algorithms use hash functions to define the linear
projection. There is sometimes confusion on this issue, but
it is straightforward to interpret the algorithms below which
are defined in terms of using hash functions to map items
to array entries as also defining a (sparse) matrix. Hence,
it is meaningful to use both hashing and linear projection
terminology to talk about sketches, and there is no need to
draw a distinction between the two perspectives.

The sketch algorithms solve the frequency estimation
problem, and so need additional information to solve the fre-
quent items problem. We outline two sketching approaches
below, followed by methods which augment the stored sketch
to find frequent items quickly.

CountSketch. The first sketch in the sense that we use the
term was the AMS or Tug-of-war sketch due to Alon et
al. [1]. This was used to estimate the second frequency mo-
ment, F = ), f?. It was subsequently observed that the
same data structure could be used to estimate the inner-product
of two frequency distributions, i.e., Y, f; f/, for two distri-
butions given (in a stream) by f; and f/. But this means
that if f; is defined by a stream, at query time we could
find the product with f; = 1 and f; = 0 for all j # i.
Then, the true answer to the inner product should be ex-
actly f;. The error guaranteed by the sketch turns out to be
6F21 /2 < en with probability at least 1 — § for a sketch of
size O(% log1/8). The ostensibly dissimilar technique of
“Random Subset Sums” [25] (on close inspection) turns out
to be isomorphic to this instance of the algorithm.
Maintaining this data structure is slow, since it requires
updating the whole sketch for every new item in the stream.
The COUNTSKETCH algorithm of Charikar et al. [14] dra-
matically improves the speed by showing that the same un-
derlying technique works if each update only affects a small
subset of the sketch, instead of the entire summary. The



Algorithm 4: COUNTSKETCH(w, d)

C[1,1]...C[d,w] < 0;
for j — 1toddo
L Initialize g;, h;;

foreach i do
n«—mn-+1;
for j — 1toddo
| Clishj ()] < Cljs hyj (@), 5]+ g5(3);

N QA W N -

Fig. 5 Pseudocode for sketching algorithms

sketch consists of a d x w array C of counters, and two hash
functions for each of the d rows, h; which maps input items
onto [w], and g which maps input items onto {—1,+1}.

Algorithm 5: COUNTMIN(w, d)

C[1,1]...C[d,w] < 0;
for j — 1toddo
L Initialize g;;

foreach i do
n«—mn-+1;
for j — 1toddo
| Clishj ()] < Cljs hj ()] + 15

N A W N -

anteed at all times to induce non-negative frequencies, and
the “general” case, where the total weight of an item is al-
lowed to be negative. Only sketch based algorithms have

Each input item ¢ causes g, () to be added on to entry C[j, h;(¢)] been shown to adapt to these settings. In the strict case,

inrow j, for 1 < j < d. The estimate f; is median;<;<q
g;(2) C[j, h;(4)]. The estimate derived for each value of j
can be shown to be correct in expectation and has variance
depending on F» /w. Figure 4 shows a schematic of the data
structure under the update procedure: the new item ¢ gets
mapped to a different location in each row, where g; (i) is
added on to the current counter value in that location. We
illustrate the core of the update algorithm in Algorithm 4.
Using d rows drives down the probability of giving a bad

estimate, so setting d = log 3 and w = O(Z) ensures that

fi has error at most 6F21 /2 < en with probability at least
1 — 4. Giving this guarantee requires that each g and h is
picked independently from a family of pairwise independent
hash functions. Efficient implementations of such hash func-
tions are described by Thorup [42]. The total space used is
O(Z log 5), and the time per update is O(log ) worst-case.

CountMin Sketch. The COUNTMIN sketch algorithm of
Cormode and Muthukrishnan [19] can be described in sim-
ilar terms to COUNTSKETCH. As before, an array of d X w
counters is maintained, and pairwise independent hash func-
tions h; map items onto [w] for each row. Each update is
mapped onto d entries in the array, each of which is incre-
mented. Now f; = miny <;<q C[j, h;(4)]. The Markov in-
equality is used to show that the estimate for each j overes-
timates by less than n/w, and repeating d times reduces the
probability of error exponentially. So setting d = log % and
w = O(%) ensures that /i has error at most en with proba-
bility at least 1 — 6. Consequently, the space is O(Z log )
and the time per update is O(log %) The data structure and
update procedure is consequently much like that illustrated
for the Count-Sketch in Figure 4, with g;(4) always equal to
1. The update algorithm is shown in Algorithm 5.

Finding Frequent Items using a Hierarchy. Sketches al-
low us to model the removal of items (to denote the conclu-
sion of a packet flow; or the return of a previously bought
item, say) as an update with negative weight. Two varia-
tions follow: the “strict” version, where the input is guar-

an approach based on divide-and-conquer will work: addi-
tional sketches are used to determine which (dyadic) ranges
of items are frequent [19]. If a range is frequent, then it can
be split into two equal subranges, and the frequency of each
subrange estimated from an appropriate sketch, until a sin-
gle item is returned. More generally, rather than splitting the
range into 2 subranges, we can split into b. This trades off
update time against query time: if all items ¢ € {1...U},
then [log, U] sketches suffice, but each potential range is
split into b > 1 subranges when answering queries. Thus,
updates take O(log, U log $) hashing operations, and O(1)
counter updates for each hash. Typically, moderate constant
values of b are used (between 2 and 256, say); choosing b to
be a power of two allows fast bit-shifts to be used in query
and update operations instead of slower divide and modulo
operations. This results in COUNTMIN sketch Hierarchical
and COUNTSKETCH Hierarchical algorithms.

Finding Frequent Items using Group Testing. In the gen-
eral case, even this fails, and new techniques are needed [18,
40]. The idea of “group testing” in this context [18] ran-
domly divides the input into buckets so that we expect at
most one frequent item in each group. Within each bucket,
the items are divided into groups so that the “weight” of
each group indicates the identity of the frequent item. This
can be seen as an extension of the Count-Min sketch, since
the structure resembles the buckets of the sketch, with ad-
ditional information on subgroups of each bucket (based on
the binary representation of items falling in the bucket); fur-
ther, the analysis and properties are quite close to those of
a Hierarchical Count-Min sketch. For each bucket, we keep
additional counts for the total frequency of all items whose
binary representation has the ith bit set to 1. This increases
the space to O(% log U log ¢) when the binary representa-
tion takes log U bits. Each update requires O(log $) hashes
as before, and updating O(log U) counters per hash.



4 Experiments
4.1 Setup

We ran several algorithms under a common implementation
framework to test as accurately as possible their relative per-
formance. All algorithms were implemented using C++, and
used common subroutines for similar tasks (e.g., hash ta-
bles) to increase comparability. We ran experiments on a 4
Dual Core Intel(R) Xeon(R) 2.66 GHz with 16 GB of RAM
running Windows 2003 Server. The code was compiled us-
ing Microsoft’s Visual C++ 2005 compiler and g++ 3.4.4
on cygwin. We did not observe significant differences be-
tween the two compilers. We report here results obtained us-
ing Visual C++ 2005. The code extended and enhanced the
MassDal implementations http://www.cs.rutgers.

edu/~muthu/massdal-code—-index.html;the new

versions can be downloaded from http://www.research.

att.com/~marioh/frequent—-items.

For every algorithm we tested a number of implemen-
tations, using different data structures to implement the ba-
sic set operations. For some algorithms the most robust im-
plementation was obvious. For other algorithms we present
here results of competing solutions. We compare counter
based algorithms, quantile estimation algorithms, and sketch
algorithms. For counter based algorithms we examine: FRE-
QUENT using the Demaine et al implementation technique
of linked lists (F), LOSSYCOUNTING keeping separate delta
values for each item (LCD), LOSSYCOUNTING without deltas
(LC), SPACESAVING using a heap (SSH), and SPACES AV-
ING using linked lists (SSL). For quantile algorithms we ex-
amine: GK (GK) and QDIGEST (QD). Finally, we examine
the following sketches: hierarchical COUNTSKETCH (CS),
hierarchical COUNTMIN sketch (CMH), and the Combina-
torial Group Testing variant of COUNTMIN (CGT). We sep-
arate these comparisons into the three categories of algo-
rithms, since each group has different characteristics. Counter
based algorithms solve only the frequent elements problem.
Quantile algorithms are also good for estimating quantiles,
and hence more powerful. Sketches work under both inser-
tions and deletions and are the only alternative in applica-
tions that need to support deletions. The added functional-
ity of quantile and sketch algorithms comes at a cost; usu-
ally, either at the expense of reduced update throughput,
or increased memory consumption. Previous work has not
distinguished these classes, leading to the observation that
sketch algorithms require more space than counter-based al-
gorithms, although the classes really apply to different sce-
narios.

We ran experiments using real network traffic and gen-
erated data. The network data set was drawn from 24 hours
of traffic from a router in a major network backbone. We
ran experiments using 10 million packets of HTTP traffic,

and 10 million packets of all UDP traffic. We generated data
from a skewed distribution (Zipf), varying the skew from 0.8
to 2 (in order to obtain meaningful distributions that produce
at least one heavy hitter per run). Finally, we also varied the
frequency threshold ¢, from 0.0001 to 0.01. In our exper-
iments, we set the error guarantee e = ¢, since our results
showed that this was sufficient to give high accuracy in prac-
tice.

We compare the efficiency of the algorithms with respect
to:

Update throughput, measured in number of updates per

millisecond.

— Space consumed, measured in bytes.

— Recall, measured in the total number of true heavy hit-
ters reported over the number of true heavy hitters given
by an exact algorithm.

— Precision, measured in total number of true heavy hitters
reported over the total number of answers reported. Pre-
cision quantifies the number of false positives reported.

— Average relative error of the reported frequencies. We

measure separately the average relative error of the fre-

quencies of the true heavy hitters, and the average rela-
tive error of the frequencies of the false positive answers.

For all of the above, we perform 20 runs per experiment
(by dividing the input data into 20 chunks and querying the
algorithms once at the end of each run). Furthermore, we
ran each algorithm independently from the others to take
advantage of possible caching effects. We report averages on
all graphs, along with the 5th and 95th percentiles as error
bars.

4.2 Counter based algorithms

In this section we compare FREQUENT (F), LOSSYCOUNT-
ING with delta values (LCD), LOSSYCOUNTING without
deltas (LC), SPACESAVING using a heap (SSH), and SPACE-
SAVING using linked lists (SSL). First we present results
for the Zipf generated data. The default skew parameter, un-
less otherwise noted, is z = 1.0, and the default frequency
threshold is ¢ = 0.001. Then, we show trends for the net-
work traffic data.

Space and Time costs. Figures 6(a) and 6(b) show the up-
date throughput of the algorithms as a function of data skew
(2) and increasing frequency threshold (¢) respectively. We
can see that update throughput increases significantly for
highly skewed data. This is expected, since high skew trans-
lates to a very small number of truly frequent items, simpli-
fying the problem. SSL is very fast, but SSH (the same algo-
rithm, but implemented with a heap) is appreciably slower.
This shows how data structure choices can affect the perfor-
mance. In fact, one might expect the heap based solution to
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be even slower. However, since SSH has to restore the min
heap property after each update, in practice, updates only
slightly change the frequency of an item, so this only takes a
small number of operations. It is also clear that the range
of frequency thresholds (¢) considered did not affect up-
date throughput (notice the log scale on the horizontal axis).
As we see in the subsequent plots, the summary structures
fit within a modern second level cache, so there is no ob-
vious effect due to crossing memory boundaries here. We
would expect smaller thresholds to result in a larger num-
ber of frequent elements, hence larger data structures and
decreased throughput. In our datasets, the total number of
truly frequent elements for z = 1.0 varies from 713 to 6 as
¢ increases; a small enough difference not to affect running
times.

Figure 6(c) plots the space consumed by each structure.
In our implementations of LOSSYCOUNTING, the maximum
number of counters was fixed as a function of ¢, to avoid

memory allocation during stream processing. For the other
algorithms, the space used is directly determined by ¢. So
the space consumed is not affected by skewness for fixed
¢ (hence we omit the plot). Varying ¢ has a direct effect.
Smaller ¢’s imply a significantly larger number of candi-
dates exceeding the frequency threshold that need to be main-
tained. It should be noted here that, for our datasets, a naive
solution that maintains one counter per input item would
consume many megabytes (and this grows linearly with the
input size). This is at least 12 times larger than SSH for
¢ = 0.0001 (which is the most robust algorithm in terms of
space), and over a thousand times larger than all algorithms
for ¢ = 0.01. Clearly, the space benefit of these algorithms
even for small frequency thresholds is substantial in prac-
tice.

Precision and Recall. Figures 6(d) and 6(e) plot recall, com-
puted as the total number of true frequent items returned
over the exact number of frequent items. The deterministic
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algorithms guarantee to return all ¢ frequent items, and pos-
sibly some false positives, so we expect 100% recall, which
is observed in the plots. Figures 6(f) and 6(g) plot precision.
We also show the 5th and 95th percentiles in the graphs as
error bars. Precision is the total number of true answers re-
turned over the total number of answers. Precision is an in-
dication of the number of false positives returned. Higher
precision means smaller number of false positive answers.
There is a clear distinction between different algorithms in
this case. When using € = ¢, F results in a very large num-
ber of false positive answers, while LC and LCD result in
approximately 50% false positives for small skew param-
eters, but their precision improves as skewness increases.
This is expected since frequent items are easier to identify
for highly skewed data where the number of potentially fre-
quent candidates is small, and there are fewer “almost fre-
quent” items. Decreasing e relative to ¢ would improve this
at the cost of increasing the space used. However, SSL and
SSH yield 100% accuracy in all cases (i.e., no false posi-
tives), with about the same or better space usage. Note that

(e) UDP: Precision vs. ¢.

(f) UDP: ARE vs. ¢ (frequent items).

these implement the same algorithm and so have the same
output, only differing in the underlying implementation of
certain data structures. Finally, notice that by keeping ad-
ditional per-item information, LCD distinguishes between
truly frequent and potentially frequent items marginally bet-
ter than LC.

Relative Error. Figures 6(h) and 6(i) plot the average rel-
ative error in the frequency estimation of the truly frequent
items. The graph also plots the 5th and 95th percentiles as
error bars. All algorithms except F have zero estimation er-
ror with zero variance. Clearly sophisticated counter based
algorithms are able to track the exact frequency of the truly
frequent items exactly, which is expected. F yields very large
frequency estimation errors for low skew , but the error drops
as the skew increases. The variance is very small in all cases.
On the other hand, estimation error for F increases as ¢ in-
creases.

Figures 7(a) and 7(b) show the average relative error in
the frequency estimation of false positive answers. SSL and
SSH do not report any false positives for average and high
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Fig. 9 Performance of quantile algorithms on synthetic data

skew, hence the error is zero. For the rest of the algorithms it
is clear that the estimated frequencies of non-frequent items
can be far from their true values. F always returns an under-
estimate of the true count of any item, hence its errors are
less than 1; LC and LCD always return overestimates based
on a A value, and so yield inflated estimates of the frequen-
cies of infrequent items.

Network Data. Finally we ran the same experiments on real
network traffic. Figures 8(a) to 8(c) show results for HTTP
traffic, while Figures 8(d) to 8(f) for UDP traffic. In both
cases, we track the most frequent destination IP addresses.
We plot everything as a function of ¢. The trends observed
are similar to the ones for generated data, hence we omit a
more detailed analysis for brevity.

Conclusion. Overall, the SPACESAVING algorithm appears

conclusively better than other counter-based algorithms, across

a wide range of data types and parameters. Of the two imple-
mentations compared, SSH exhibits very good performance

(h) Zipf: ARE vs. ¢ (frequent items).

(1) Zipf: ARE vs. ¢ (false positives).

in practice. It yields very good estimates, with 100% recall
and precision, consumes very small space and is fairly fast to
update (faster than LC and LCD). Alternatively, SSL is the
fastest algorithm with all the good characteristics of SSH,
but consumes twice as much space on average. If space is
not a critical issue SSL is the implementation of choice.

4.3 Quantile algorithms

Quantile structures are more expensive to update and store

compared to counter based algorithms, but they solve a more

general problem. When a quantile estimation algorithm needs
to be maintained, it can be used to solve the frequent items

problem as well. In this section we compare the GK and

QDigest algorithms. We run the same set of experiments,

using a default value of z = 1.0 and ¢ = 0.001.
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Fig. 10 Performance of quantile algorithms on real network data

Space and Time Costs. Figures 9(a) and 9(b) show the up-
date throughput of the algorithms. GK is not affected by data
skewness, while QD becomes faster as the data becomes
more skewed. Increasing frequency thresholds (¢) has a pos-
itive effect on update performance, especially for QD proba-
bly due to the reduced structure size (from 4MB to less than
100KB as ¢ varies). Figures 9(c) and 9(d) plot the space con-
sumed. Notice that data skewness affects the structure size
of the quantile algorithms (in contrast with counting based
algorithms). The QD algorithm is able to compress into a
smaller data structure when the data are more skewed, since
more of the total “weight” of the input is stored in a small
number of leaves in the tree. On the other hand the GK al-
gorithm is negatively affected as skew increases. Notice that
the size of the quantile structures is up to 7 times larger than
the most space inefficient counter based algorithm. Analyti-
cally, this cost is a logarithmic factor (log U for QD, log(en)
for GK), which seems to be the root cause of the higher cost.
Indeed, for small enough values of ¢, QD begins to approach
the size of the naive solution.

Precision, Recall, and Error. We omit the figures for recall,
since both algorithms have 100% recall in all cases. Figures
9(e) and 9(f) plot precision. The precision of GK is very low.
The algorithm reports a large number of false positives. The
precision of QD improves as the skew increases and as ¢
increases, but remains below 80% in all cases. This is not a
surprising result, since these algorithms are not tailored for
frequent item identification, and are being run with e being

(e) UDP: Precision vs. ¢.

0.08
0.001 0.0001

@ (log scale)

0.001
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(f) UDP: ARE vs. ¢ (frequent items).

large relative to ¢; reducing e would improve precision, but
cost yet more in space.

Figures 9(g) and 9(h) plot the average relative error in
the frequency estimation of the truly frequent items. These
quantile estimation algorithms are not very accurate for fre-
quency estimation, for average data skewness. Finally, Fig-
ure 9(i) plots the average relative error in the frequency es-
timation of false positives. Here, GK vastly overestimates
the frequency of some rare items, and QD also inflates fre-
quencies somewhat. Straightforwardly, we do not expect the
algorithms to give useful results without increasing the al-
ready high space costs, due to the very large number of false
positive answers and the fact that the algorithms are not ro-
bust in estimating frequencies in general.

Network data. The performance of quantile algorithms on
network data is shown in Figure 10. The trends are the same
as for synthetic data, both for HTTP and UDP traffic, with
the only observable difference being slightly larger precision
and smaller relative errors.

Conclusion. Overall, the quantile algorithms cannot com-
pete against the counter based algorithms for identifying
heavy hitters. They have larger structures, are slower to up-
date, and yet still do not estimate frequencies accurately.

4.4 Sketch algorithms

Finally, we evaluate sketching algorithms. The advantage of
sketches is that they support deletions, and hence are the
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only alternative in fully dynamic environments (that is, cases
where there is a large number of deletions and insertions).
This comes at the cost of increased space consumption and
slower update performance. We run the same set of exper-
iments, using a default value of z = 1.0 and ¢ = 0.001.
Recall that the algorithms all take a parameter b which de-
termines the “fan-out” of a hierarchy used to search for the
frequent items. This parameter b is usually chosen to be a
power of 2 for efficiency. We compared various values of
b, as shown in Figure 11. Subsequently, we use a hierarchy
with b = 16 for all algorithms, since this seems to offer
the the best tradeoff between speed, size and precision. The
sketch depth is set to d = 4 throughout, and the width to
w = 2/¢, based on the analysis of the COUNTMIN sketch.
This keeps the space of CS and CMH relatively close, and
CGT constant factors larger.

Space and Time Cost. Figures 12(a) and 12(b) show the up-
date throughput of the algorithms. Update throughput is not
affected by data skewness, and marginally affected by varia-
tions in ¢, except for the CGT algorithm. CS has the slowest
update rate among all algorithms, due to the larger number
of hashing operations needed. The fastest sketch algorithm
is from 5 up to 10 times slower than the fastest counter based
algorithm. Figures 12(c) and 12(d) plot the space consumed.
The size of the sketches is fairly large compared to counter
based algorithms. CMH is the most space efficient sketch
and still consumes space 3 times as large as the least space
efficient counter based algorithm.

Precision, Recall and Error. Figures 12(e) and 12(f) plot
recall. We observe that for the sketches the recall is not al-
ways 100%. The error of CMH is one sided, and as a conse-
quence, it still guarantees 100% recall; CGT does not have
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Fig. 13 Performance of sketch algorithms on synthetic data (precision

as strong a guarantee, but also achieved 100% recall in all
our experiments. CS has a higher probability of failing to re-
cover some frequent items, but still achieved close to 100%
in all cases (94% in the worst case). Since these are prob-
abilistic algorithms, in practice there is a small probability
of failure (equal to 1% for our experiments). Nevertheless,
overall recall is very close to 100% in all cases.

Figures 13(a) and 13(b) plot precision. CMH has low
precision for average skewness, but improves as data skew
increases. CMH can accurately estimate the frequencies of
only the most frequent items. As the distribution approaches
a uniform distribution the error in estimated frequencies in-
creases, and the number of false positives increases. The
other algorithms exhibit precision higher than 85% in all
cases.

Figures 13(c) and 13(d) plot the average relative error
in the frequency estimation of the truly frequent items. For
sufficiently skewed distributions all algorithms can estimate
item frequencies very accurately. Results here are very com-
parable, since they essentially correspond to a single instance
of a COUNTSKETCH or COUNTMIN sketch, both with the
same amount of space for each point plotted. Hence CMH
and CGT are quite similar, corresponding to a single COUNT-
MIN sketch (with different random choice of hash functions,
leading to variations). We do not expect ¢ to affect estima-
tion accuracy significantly, but as ¢ increases the total num-
ber of answers decreases which could make a difference. CS
exhibits erratic behaviour here. This could be attributed to a

(e) Zipf: ARE vs. Skew (false positives).

(f) Zipf: ARE vs. ¢ (false positives).

and average relative error)

random failure of the sketch, since this is a probabilistic al-
gorithm !

Finally, Figures 13(e) and 13(f) plot the average rela-
tive error in the frequency estimation of false positives. The
errors increase substantially in this case for CMH and low
skew data. CS seems to be able to estimate frequencies very
accurately, but exhibits outliers once again.

Network data. Figure 14 shows results for network data.
Once again, recall for all algorithms was almost 100% and
is not shown in the figure. The general trends here are al-
most the same as for synthetic datasets, the only exception
being the CS algorithm having lower precision for HTTP
data. Nevertheless, precision is once again higher than 75%
in all cases. Notice also that the average relative error of fre-
quencies is significantly smaller for UDP data. It is clear that
these algorithms are affected heavily by the application and
data at hand.

Conclusion. There is no clear winner among these algo-
rithms. CMH has small size and high update throughput,
but is only accurate for highly skewed distributions. CGT
consumes a lot of space but it is the fastest sketch and is
very accurate in all cases, with high precision and good fre-
quency estimation accuracy. CS has low space consumption
and is very accurate in most cases, but has slow update rate

! Notice that even though we average over 20 runs, we simply par-
tition the input and use the same randomly chosen hash functions
throughout the experiment. Hence, failures can propagate over all runs,
since we simply query the same sketch repetitively.
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Fig. 14 Performance of sketch algorithms on real network data

and exhibits some random behaviour. The right tradeoff be-
tween choice of algorithm, ¢ and hierarchy parameter b will
therefore depend on the exact situation.

5 Extensions

As mentioned in the introduction, there are many natural
variations of the fundamental frequent items problem which
can be addressed by extending the known algorithms.

Weighted input. The definition above assigns all arriving
items equal, unit weight. A more general model allows each
item to have a weight w, and the frequency of an item is the
sum of its weights throughout the stream (and N is replaced
with the sum of all weights). The analysis of SPACESAVING
and QDIGEST extends to allow arbitrary weights [17]. It is
less clear how to generalize LOSSYCOUNTING and FRE-
QUENT for this problem. Sketch methods such as COUNTS-
KETCH and COUNTMIN directly handle weighted updates:
when updating entries in the sketch, the value of the hash
function g;(¢) (+1 or -1) is multiplied by the weight w.

Heavy Changes. Given two streams representing, say, the
distribution of search queries on two different days, it is
possible to subtract one frequency vector from the other to
define a difference vector. The heavy hitters in this vector
correspond to items which have experienced large change
in their frequency: this can be positive or negative. This
problem has been proposed as a challenge in the context

(e) UDP: Precision vs. ¢.

(f) UDP: ARE vs. ¢ (frequent items).

of web search [27]. Sketch algorithms still give good es-
timation of frequencies, but the approach of a hierarchical
search as advocated by Bu er al. [11] may not always work,
due to the negative frequencies. Instead, variations of the
GROUPTESTING approach can solve this problem [18]; gen-
eralizations of this approach trade off the space needed at the
cost of increased query time [40].

Top-k items. The top-k items are those items with the k-
highest frequencies. Let f; denote the kth highest frequencys;
the problem can be restated as finding all items whose fre-
quency exceeds fj1. But by a similar hardness proof to that
for the original exact frequent items problem (Section 2),
even approximating this problem by promising to return items
whose frequency is at least (1 — ¢) f, requires space linear in
the input size. Further weakenings of this problem to make
it tractable yields formalizations which are more similar in
nature to the approximate frequent items problem.

Assumptions on the frequency distribution. Many realis-
tic frequency distributions are skewed, with a few items with
high frequency, and many with low frequency. Such distri-
butions are characterized by the Zipfian, pareto, or power-
law distributions (these three distributions are essentially iden-
tical up to change of parameters). The Zipfian distribution
with parameter z, for example, states that fi, the kth most
frequent item, has frequency proportional to £~*. For large
enough z (greater than 1, say), this can simplify the frequent
items problem, and reduce the space needed to, for exam-
ple, O(el%) in the case of SPACESAVING [35]. Under the
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assumption that the frequency distribution is skewed, this
can also make the top-k items problem tractable [14,35].

Tail Bounds. A related issue to top-k and fixed distribu-
tion versions is whether distribution-dependent guarantees
can be proved. The “residual norm” of a stream, denoted
by F, es(®) i3 the sum of pth powers of the frequencies af-
ter removing the k largest. The guarantees given so far have
been in terms of the F} 59 norm, but it is straightforward
to extend the analysis of the COUNTMIN sketch and the
COUNTSKETCH to give bounds in terms of the Ffes(k) and
F2*™) norms respectively, provided the width of the sketch
w is sufficiently larger than k. It is of interest to study whether
similar bounds hold for other frequent item algorithms. Such
bounds are of use not simply due to the tighter guarantees
that follow, but because such tail bounds are at the heart of
recent work on signal processing, such as Compressed Sens-

ing [23,12].

Distributed Streams. A variation of the problem is when
there are multiple streams observed by different parties, and
the goal is to compute the frequent items over the union of
the streams. It is straightforward to solve this problem by
combining all the frequent items and their estimated counts
from each observer, so an additional requirement is to pro-
duce summaries of streams which can be merged together to
form summaries of the union of the input streams while oc-
cupying no more space than the summary of a single stream.
This is relevant when there are many streams and the infor-
mation needs to be sent over a (sensor) network. Sketches,
and the QDIGEST have this merging property. It is less clear
how to correctly merge the other counter-based and quantile
algorithms while keeping their size bounded.

Distinct Frequent Items. In the Distinct Frequent Items
problem (also known as “superspreaders”) the input streams
are of the form (4, j), and f; is now defined as |{j|(,j) €
S}. Multiple occurrences of (4, j) therefore still only count
once towards f;. Techniques for “distinct frequent items”
rely on combining frequent items algorithms with “count
distinct” algorithms [31,7].

Time-decay. While processing a long stream, it may be de-
sirable to weight more recent items more heavily than older
ones. Various models of time decay have been proposed. In
a sliding window, only the W most recent items, or only
the (W) items arriving within the last 7" time units, should
be considered to define the frequent items. The space used
should be sublinear in W, and solutions have been proposed
with dependency log W or better [20,2,32]. Exponential de-
cay gives an item with ‘age’ a a weight of exp(—Aa) for
a fixed parameter A. The ‘age’ can be derived from times-
tamps, or implied by the count of items which arrive sub-
sequently. This generates a weighted instance of frequent
items, but the weights vary as time increases. However, due

to the structure of the decay function, the decay can be han-
dled quite efficiently [17]. Other decay functions (such as
a polynomially decaying weight) require significantly more
complex solutions.

6 Conclusions

We have attempted to survey algorithms for finding frequent
items in streams, and give an experimental comparison of
their behavior to serve as a baseline for comparison. Even
so, we had to omit a few less popular algorithms based on
random sampling. For insert-only streams, the clear con-
clusion of our experiments is that the SPACESAVING algo-
rithm, a relative newcomer, has surprisingly clear benefits
over others. We observed that implementation choices, such
as whether to use a heap or lists of items grouped by frequen-
cies, tradeoff speed and space. Quantile algorithms, with
guarantees which appear similar on paper, are demonstrated
to be a poor solution for finding frequent items in compar-
ison to the dedicated solutions. They are therefore not rec-
ommended for solving this core problem; on the other hand,
if a quantile summary is already being kept to summarize a
data distribution, it may be used secondarily to extract in-
formation about item frequencies. For sketches, there is not
such a clear answer, with different algorithms excelling at
different aspects of the problem. Due to the increased costs
to obtain comparable results, in many situations it seems that
counter-based methods are preferable to sketches, unless ei-
ther the streams contain a large number of deletions (making
counter-based methods unviable) or else if hardware issues
(such as parallelization or other techniques) make the sketch
methods more powerful.

We do not consider this the end of the story, and con-
tinue to experiment with other implementation choices. Our
source code, datasets and experimental test scripts are avail-
able so that others can use these as baseline implementa-
tions, and for experimental repeatability. We have done some
testing over different computing architectures and observed
similar relative performance of the algorithms in terms of
throughput.

There have been some other careful comparisons of the
performance of streaming algorithms for different problems
recently. Dobra and Rusu [22] have studied sketches for the
problem of estimating join sizes (vector inner products). Met-
wally et al. compare a variety of algorithms for estimating
the number of distinct elements [36]. This recent interest
highlights the importance of benchmarking. It is indicative
that streaming has “come of age”, in that there are several
competing solutions for these fundamental problems, and
that these are sufficiently powerful and stable to make it
valuable to perform rigorous comparisons. The next logi-
cal step is to extend such studies (and availability of code)
for other foundational streaming problems, such as finding
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quantiles, frequency moments, and more complex mining
problems (mining frequent itemsets and clusters).
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