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ABSTRACT
Multi-Objective Multi-Agent Planning (MOMAP) addresses
the problem of resolving conflicts between individual agent
interests and the group interests. In this paper, we address
this problem by presenting a formal framework to represent
objective relationships, a decision model using a Vector-
Valued Decentralized Markov Decision Process (2V-DEC-
MDP) and an algorithm to solve the resulting 2V-DEC-
MDP. The formal framework of a Vector-Valued MDP con-
sidered uses the value function which returns a vector repre-
senting the individual and the group interests. An optimal
policy in such contexts is not clear but in this approach we
develop a regret-based technique to find a good tradeoff be-
tween the group and individual interests. To do that, the
approach we present uses Egalitarian Social Welfare order-
ings that allow an agent to consider during its local opti-
mization the satisfaction of all criteria and reducing their
differences. The obtained result is a good balance between
individual and group satisfactions where the local policies
can lead to more global satisfying behaviors in some settings.
This result is illustrated in many examples and compared to
alternate local policies.

1. INTRODUCTION
Planning rationally with an individual agent involves opti-

mizing the achievement of its objectives. Planning rationally
with a group of agents by optimizing the achievement of the
overall objectives would not necessarily be optimal, or even
acceptable, for an individual agent within the group. When
optimizing the overall behavior of a group of agents, one
difficulty is to address conflicts between individual agents’
interests and the group’s interests [3, 8]. To deal with some
aspects of optimization in such a context requires consider-
ing a social law of the group that leads to some satisfying
solution. A well-known theoretical tool studying such multi-
agent systems is Von-Neumann-Morgenstern (VN-M) game

theory [9]. In this concept, the solution of each agent is to
compute the optimal decision for itself under the assump-
tion that all others are doing likewise. This multi-agent
decision process leads to a Nash equilibrium: if any agent
were to change its decision, its payoff would be reduced.
This approach considers that there are no sociological con-
straints and that agents can egoistically maximize their own
benefit. Group preferences introduce some social relation-
ships among agents from rationality of the group [4]. There
has been a lot of work on deriving group preferences from
individual preferences [8]. The fundamental issue is, given
arbitrary preference orderings for each individual in a group,
there always exists a way of combining these individual pref-
erence orderings to generate a consistent preference ordering
group.

The system we consider is composed of agents, each of
which has a set of objectives to attain. Each agent uses an
MDP to define a local policy to solve its multi-objective
problem. The accomplishment of objectives of an agent
can have an effect on the accomplishment of the objectives
of other agents. This problem is directly related to COIN
(Collective Intelligence) which is about the effect of an in-
dividual’s actions on the general welfare where only local
utilities are exhibited without defining a desirable global
behavior [11]. The solution we propose of this problem
is a formal framework to represent the objective relation-
ships and a decision model using a 2V-DEC-MDP where
the vector-value functions of agents represent the individual
and the group interests. The resulting vector-valued MDP
allows each agent to derive a local policy where individual
and group interests are respected. Concerning the group
interest, we distinguish between two criteria which, some-
times, could be non-additive. These criteria are: a positive
effect on the group where an agent improves the satisfac-
tion of some agents and a negative effect where an agent
degrades the satisfaction of some agents (nuisance). The
vector of values considered allows an agent to represent its
individual satisfaction, its positive effect on the group and
its negative effect on the group. Thus, to prefer a decision
over another one, an agent needs an operator to compare
between vectors of values [10]. To deal with this issue, we
consider social welfare orderings over multi-attributes value
functions borrowed from welfare economics: (1) maximizing
the sum of all utilities of the member of society (utilitarian
concept), and (2) minimizing differences between the utili-
ties of the member of society (egalitarian concept). The first
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makes sense when all members contribute to an overall goal
of the society. This is not the case in many multi-objective
applications where objectives could potentially be conflict-
ing. The second, egalitarian functions consider differences
in individual welfare unjust and removes these differences.
We use this concept to respect both individual and group
interests.

2. MULTI-OBJECTIVE MULTI-AGENT PLAN-
NING

We describe our formal framework considering the objec-
tives of agents and their relationships and how to best act to
solve this multi-objectives problem. MOMAP can be seen
as a tuple (A, {Oi,Ri,Fi}i∈A) where:

• A is a set of agents i.

• Each agent has a set of objectives Oi.

• Ri = {FBi, LBi, Fi, Li} are four functions that assign,
from the state st

i of agent i at time t, to each objective
o

j
i ∈ Oi respectively the set of objectives developed by

other agents that facilitate the achievement of objec-
tive o

j
i , the set of objectives that limit objective o

j
i ,

the set of objectives that are facilitated by objective
o

j
i and the set of objective that are limited by objec-

tive o
j
i . Functions FBi, LBi, Fi and Li allows us to

express relationships between objectives similar to the
ones found in TAEMS [3] and they can be defined more
formally as follows :

– FBi(o
j
i , s

t
i) = {ob

a ∈ Oa|s
t
i∧o

j
i |=⊥,∃st+1

i ∈ out(ob
a) :

st+1

i |= o
j
i} where st

i is the current state and st+1

i

is one of the possible states could be reached after
the achievment of ob

a represented by out(ob
a). This

set contains the objectives of the other agents
which, when achieved, allow the achievment of
o

j
i .

– LBi(o
j
i , s

t
i) = {ob

a ∈ Oa|s
t
i |= o

j
i ,∃st+1

i ∈ out(ob
a) :

st+1

i ∧o
j
i |=⊥}. This set contains the objectives of

the other agents which, when achieved, make the
achievment of o

j
i not possible (soft relation could

be “making difficult”) the achievment of o
j
i .

– Fi(o
j
i , s

t
i) = {ob

a ∈ Oa|s
t
i∧ob

a |=⊥, ∃st+1

i ∈ out(oj
i ) :

st+1

i |= ob
a}. This set contains objectives enabled

by the achievment of objective o
j
i .

– Li(o
j
i , s

t
i) = {ob

a ∈ Oa|s
t
i |= ob

a,∃st+1

i ∈ out(oj
i ) :

st+1

i ∧ ob
a |=⊥}. This set contains objectives dis-

abled by the achievment of objective o
j
i .

• Fi = {gaini, Degrade Costi, {Rij , P enaltyij}i,j∈A, i�=j}
are functions assigned to each agent i to assess its local
and social satisfaction when achieving an objective o

j
i :

– Gaini(o
j
i |FBi(o

j
i , s

t
i)) is the reward gained by agent

i when achieving objective o
j
i knowing the state

of the set of objectives FBi(o
j
i , s

t
i) ;

– Degrade costi((o
j
i |LBi(o

j
i , s

t
i)) is the cost of degra-

dation on achieving objective o
j
i knowing the state

of the set of objectives LBi(o
j
i , s

t
i) ;

– Ric(o
l
c|o

j
i ) is the gain rewarded by an agent c

when achieving objective ol
c ∈ Fi(o

j
i , s

t
i) given the

achievement of objective o
j
i by agent i. This func-

tion measures the contribution of agent i in the
society ;

– Penaltyic(o
k
c |o

j
i ) is the opportunity cost of achiev-

ing objective o
j
i on objective ok

c ∈ Li(o
j
i , s

t
i) achieve-

ment of agent c. This function measures the nui-
sance of agent i in the society. It’s also used as a
cost of discoordination between agents.

Functions Gaini and Degrade costi concern the satisfaction
of th same agent i that’s why its possible to aggregate them
into the same function named in general a conditional util-
ity function where its elicitation [2] is a problem orthogonal
to the one studied in this paper. However, functions Rij

and Penaltyij often concern different agents and their ag-
gregation is sometimes not possible because they involve on
different types of dependency and different preferences of
agents.

Each agent develops an MDP Mi to optimally reach the
set of objectives. At each step of decision t, an agent achieves
an objective o

j
i by considering the relationships FBi, LBi,

Fi and Li which are assumed to be deduced from its local
observation at this time.

3. ILLUSTRATIVE EXAMPLES
For the significance of MOMAP settings, we present some

examples considered for illustration inspired from “robocup
rescue” or robots sweeping an area.

3.1 Example 1: Coordinated robot motion
We consider the scenario of heavy traffic of robots as de-

picted in Figure 1(a). Robots should make a decision of their
locations that make the traffic easy. The actions of each
robots are north (n), south (s) , east (e) , west (o), north-east
(ne), north-west (no), south-east (se), south-west (so) and
the wait action (w) allowing the robot not to move. Except
action (w), all the other actions are stochastic with (80%) to
reach the target cell and 10% to reach one of each neighbours
(the left and the right cells). When one of the neighbour cell
doesn’t exist, there is 10% chance to stay at the same cell.
This decision making problem can be described by our ap-
proach. Indeed, for each robot, the decision to move to a
location has a social effect since it can make easy or difficult
the movements of the others robots. The example presented
consists of a fleet of robots organized into four coalitions
moving into a grid as presented in Figure 1. The goal is that
each coalition (s, c, t and p) has an initial location (a cor-
ner) and should move to a final location (diagonally opposed
corner) where robots should try to trade-off between the
self-interested and the cooperative-directed behaviors. This
example can be formalized as a MOMAP problem as follows.
First, the functions we used in our approach are measured
as follows Rij is the gain in Manhattan distance gained by
the coalition, penaltyij concerns the cost of potential colli-
sions with robots while Ri is just the gain in the distance
(distance(current cell, destination)−shortest distance) by
robot i. The cost of collisions between robots of coalitions s,
c, t, p are given in the following payoff matrix. This matrix
represents at which degree an agent i is harmful for another.
For example, a robot of coalition c is harmfull for a robot of
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coalition t with cost −3. Differently speaking, when a robot
of coalition c collides with a robot of coalition t, it pays -3.

(a)

(b)

Figure 1: An example of robot traffic scenario: (a)
initial state, (b) final state reached with MOMAP

c t s p

c −1 −3 −1 −2
t −1 −1 −2 −3
s −3 −2 −1 −1
p −2 −1 −3 −1

Second, the functions of Ri return at initial state sini, for
example, for robot c3 acting with south-east (se) to reach
the target cell (3,3) (the cells are numbered column by col-
umn): Fc3((3, 3), sini) = { cells reached by action south (s)
of c6, cells reached by action west of c4, cells reached by
action east of robot c2 }, Lc3((3, 3), sini) = {cells reached
by action south of c4 } while FBc6((2, 2), sini) = { cells
reached by actions south, south-west and south-east of c3 }
and LBc2((2, 2), sini) = { cells reached by action wait of c3
}. We can also generalize these sets to some compositions of
objectives like c3 exits cell (2,2) and it will be occupied by
c4 or c2 limit the achievement of objective (2, 2) by c6. How
agents make decision is the concern of the next sections.

3.2 Example 2: Local spatial coordination
The aggregate motion of a fleet of robots in a limited space

can be seen as a “Flocking” which is a model for group move-
ment. MOMAP can be used as a framework to formalize
flocking since it consists of three simple steering behaviors
(rules): separation steer to avoid crowding local flockmates,
alignment steer towards the average heading of local flock-
mates and cohesion steer to move towards the average posi-
tion of local flockmates. MOMAP can formalize these three
behaviors using a multi-criteria decision making where sepa-

ration can be seen as a first criterion represented by a social
reward measured by an average distance between an agent
and the others, alignment can be seen as a second criterion
represented by a local reward by counting the number of
agents heading the same direction and cohesion can be seen
as the third criterion representing the distance between the
agent and the middle of the group. An illustration of this
example is given in Section 6.

3.3 Example 3: Emergent coalition formation
Another example can be an emergent coalition formation

from local behavior of agents where a group of agents should
be splited into coalitions to achieve tasks. Each agent can se-
quentially make a decision on which tasks it can participate.
Initially an agent can decide to participate to all tasks and
progressively can decide to eliminate some tasks according to
the participation of other agents. This distributed decision
process can be formalized by MOMAP where a decision can
be assessed according to the individual reward to participate
to the achievement of a task and the social reward taking
into account the difficulty or the facility to achieve the task
with the participation of the other agents. An illustration
of this example is given in Section 6.

4. DECISION MODEL: VECTOR-VALUED
DEC-MDP

The decentralized decision process can be described by
< ×i∈ASi,×i∈AAi, {Pi, ARi}i∈A, T >, where each agent
i develops a decision process Mi =< Si, Ai, Pi, ARi, T >

characterized by: (1) The set of states Si where a state
st

i contains the set of objectives achieved by an agent i

up to time t. Other features could be considered in the
state. An agent i has only a partial observability about
the global state of the whole system represented by the re-
lationships Fi, Li, FBi, LBi which we assume derived from
its local observation. (2) Each agent i has a set of actions

Ai = {a1
i , a

2
i , . . . , a

kα

i , w}, where a
j
i is an action to satisfy

objective j, w is the action null that dictates to the agent
to do nothing. When acting with an action ai at state st

i,
the system moves from st

i to st+1

i = st
i

S
{oj

i}. (3) The dy-
namic of the process is given by a distribution probability
Pi(s

t+1

i , a, st
i) that is the probability to reach the state st+1

i

when acting with action a at state st
i. (4) Functions Fi de-

fined in MOMAP allow us to augment the reward function
ARi by introducing the effect on the other agents. The def-
inition of ARi, in our context, and the intuitions it conveys
are given in the following. (5) T is the number of decision
steps (Horizon). And, (6) the Bellman equation of Mi us-
ing the augmented reward function ARi and the dynamic
process Pi which we explain in detail in MOMAP context:

Vi(s
t
i) = ARi(s

t
i) + max

ak

i

X

s
t+1

i

Pi(s
t+1

i , a
k
i , s

t
i) · Vi(s

t+1

i ) (1)

Vi(s
T
i ) = ARi(s

T
i )

4.1 Probability of transition
To compute Pi, we introduce the probability PMi to achieve

an objective o
j
i at time t. The probability PMi of an ob-

jective o
j
i at time t being in state st

i is the probability that

all objectives of FBi(o
j
i , s

t
i) are achieved before t and no
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objective of LB(oj
i , s

t
i) is achieved before t:

PMi(o
j
i , t) =

X
d

Pr(δ
o

j
i

= d)·
X

(k1,...,kn)∈[0,t−d]n

ΠαPMα(ol
α, kα)·

X
(x1,...,xn)∈[0,t−d]m

(1 − ΠβPMβ(ol
β , xβ))

where α is an agent and ol
α ∈ Oα s.t. ol

α ∈ FBi(o
j
i , s

t
i)

and n = |FBi(o
j
i , s

t
i)|, β is an agent and ol

β ∈ Oβ s.t. ol
β ∈

LBi(o
j
i , s

t
i) and m = |LBi(o

j
i , s

t
i)| and Pr is a distribution

probability of δ
o

j
i

which is the duration of achieving objec-

tive o
j
i . Now, to define Pi we can see that the transition

from one state to another depends on the objective achieve-
ment. Then, the probability to move to a new state is the
probability to achieve the objective. More formally speak-
ing: Pi(s

t+1
i , a

j
i , s

t
i) = PMi(o

j
i , t + 1). This probability is

similar to the ones developed in [3, 1].

4.2 Vector-Valued DEC-MDP for MOMAP
The value rewarded by an agent when achieving an ob-

jective depends on the objectives that facilitate and limit
it and on the value rewarded to the other agents of the
society represented by the agents for which the objective
facilitates or limits their objectives. Consequently, we dis-
tinguish between different reward functions of an objective
o

j
i : Ri(o

j
i |FBi(o

j
i , s

t
i), LBi(o

j
i , s

t
i)) that represents the im-

mediate reward an agent gains when achieving its objective
o

j
i knowing FBi(o

j
i ), LBi(o

j
i , s

t
i), the reward gained by the

agent representing its contribution in the society of agents
JRi(Fi(o

j
i ), Li(o

j
i , s

t
i)|o

j
i ) and the opportunity cost measur-

ing the cost of conflict or the degradation of the achievement
of the other objectives JPenaltyi. This measure allows us
to evaluate the cost an agent is willing to pay when its ac-
tion can be in conflict with another action of another agent
(cost of discoordination). It represents, also, the cost of nui-
sance of the agent. In the following, we will describe how
those functions can be computed in an egalitarian society
and used to calculate :

ARi(s
t
i) =

0
@

(Ri(o
j
i |FBi(o

j
i , s

t
i), LBi(o

j
i , s

t
i))

JRi(Fi(o
j
i )|o

j
i )

JPenaltyi(Li(o
j
i , s

t
i)|o

j
i ))

1
A

where o
j
i is the objective satisfied at time t. ARi (a vector

of rewards and costs) takes into account the self-interested
criterion and the the cooperative criterion. We describe later
how this augmented reward could be restricted to egoist
or cooperative agents. The Bellman equation (equation 1)
deals with the vector value function Vi which is a triplet
(v1

i , v2
i , v3

i ) where v1
i is the expected value of the local sat-

isfaction of agent i, v2
i is the expected value of the satisfac-

tion of the group and v3
i is the expected value of nuisance of

agent i. The value function Vi is of the same dimensionality
as ARi.

0
@

v1
i (st)

v2
i (st)

v3
i (st)

1
A =

0
@

Ri(s
t)

JRi(s
t)

JPenaltyi((s
t)

1
A +

�max
a

j
i
∈Ai

X
st+1

Pi(s
t+1
i , a

j
i , s

t
i) ·

0
@

v1
i (st+1)

v2
i (st+1)

v3
i (st+1)

1
A (2)

�max operator means that we have to maximize the first
and second criteria and to minimize the third one. This
leads to derive a policy π subject to: Vi(s

t
i) =

8>>>>>>><
>>>>>>>:

Ri(o
j
i |FBi(o

j
i , s

t
i), LBi(o

j
i , s

t
i)) + maxak

i

P
s

t+1

i
Pi(s

t+1
i , ak

i , st
i).v

1
i (st+1

i )

JRi(Fi(o
j
i , s

t
i)|o

j
i ) + maxak

i

P
s

t+1

i
Pi(s

t+1
i , ak

i , st
i).v

2
i (st+1

i )

JPenaltyi(Li(o
j
i , s

t
i)|o

j
i ) + minak

i

P
s

t+1

i
Pi(s

t+1
i , ak

i , st
i).v

3
i (st+1

i )

This equation means that an agent makes a decision that
maximizes its local gain, and the potential gain of the agents
y of objective ok

y ∈ Fi(o
j
i , s

t
i) and that minimizes the degra-

dation of the gain of agents z of objectives ol
z ∈ Li(o

j
i , s

t
i).

5. SOLVING 2V-DEC-MDP
The goal is to maximize the satisfaction of all individual

criteria of agents by using the egalitarian concept. We in-
troduce social welfare orderings over vector-value functions.

5.1 Egalitarian approach for MOMAP
We assume that all agents evolve with egalitarian laws.

The egalitarian social welfare is then translated in our ap-
proach by: each agent acts to maximize its reward, the sat-
isfaction of agents of objectives in Fi(o

j
i ) (maximizing the

minimum profits in Fi(o
j
i )) and to minimize the nuisance on

agents of objectives in Li(o
j
i ) (minimizing the maximum op-

portunity cost in Li(o
j
i )). Then, the satisfaction of an agent

i when achieving an objective o
j
i is then assessed by:

JRi(Fi(o
j
i )|o

j
i ) = max

a
j
i
∈Ai

min
b�=i

X

ok
b
∈Fi(o

j
i
,st

i
)

Rib(o
k
b |o

j
i ) (3)

JPenaltyi(Li(o
j
i )|o

j
i ) = min

a
j
i
∈Ai

max
c �=i

X

ok
c∈Li(o

j
i
,st

i
)

Penaltyic(o
k
c |o

j
i ) (4)

Example 1. To illustrate equations 3 and 4, let consider
agent 1 which has two actions a and b to achieve an objective
o. This objective is related to objectives o1 and o2 of agent
2 and objectives o3 and o4 of agent 3 by the relationship F1.
When acting with action a or b, agent 1 rewards from agent
2 R12(o1|o)+R12(o2|o) and R13(o3|o)+R13(o4|o) from agent
3. Let these rewards be 10 = 3+7 and 11 = 5+6 for action
a and 12 = 6 + 6 and 5 = 3 + 2 for action b. Equation 3 in
the example is max(min(10,11),min(12,5)) which is 10.

In general, Ri(o
j
i |FBi(o

j
i , s

t
i), LBi(o

j
i , s

t
i)), is a conditional

utility that sometimes is given by the equation:
Ri(o

j
i |FBi(o

j
i , s

t
i), LBi(o

j
i , s

t
i)) =

ω1·gaini(o
j
i |FBi(o

j
i , s

t
i)) − ω2·Degrade Costi(o

j
i |LBi(o

j
i , s

t
i)

where functions gaini and Degrade Costi are specific con-
ditional utilities. In this paper, we assume that Ri is an
aggregate linear function of gaini and Degrade Costi be-
cause they concern the preference of the same agent. The
rest of the paper describes how an agent constructs a pol-
icy about the sequence of achieving its objectives taking its
effect on the society.

5.2 Mono-objective policies
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Egoistic policy. An agent is egoist when it does not take
into account how much utilities the other agents can poten-
tially gain if it commits to the target objective. In this case,
the Egoistic policy πeg is then given by (i.e. p1 in Figure 2):

πeg = arg max
ak

i

Ri(s
t
i) +

X

s
t+1

i

Pi(s
t+1
i , a

k
i , s

t
i) · v

1
i (st+1

i )

Optimistic completely cooperative policy. An agent is
completely cooperative when its behavior is directed by the
potential gain of the other agents. In this case, by using egal-
itarian definition of JRi (equation 3), the optimistic com-
pletely cooperative policy is given by: πoco = arg

max
a

j
i
∈Ai

min
b∈A−{i}

X

ok
b
∈Fi(o

j
i
,st

i
)

Rib(o
k
b |o

j
i ) +

X

s
t+1

i

Pi(s
t+1
i , a

j
i , s

t
i)·v

2
i (st+1

i )

Pessimistic completely cooperative policy. An agent is
pessimistic completely cooperative when its behavior is di-
rected by the potential opportunity penalty. In this case,
by using egalitarian definition of JPenaltyi (equation 4),
the pessimistic completely cooperative policy is given by:
πpco = arg min

a
j
i
∈Ai

maxc∈A−{i}

X

ok
c∈Li(o

j
i
,st

i
)

Penaltyic(o
k
c |o

j
i ) +

X

s
t+1

i

Pi(s
t+1
i , a

j
i , s

t
i) · v

3
i (st+1

i )

5.3 Regret-Based policy for MOMAP
The policy of an agent has to balance between its ego-

ist and optimistic/pessimistic cooperative behaviors. To do
that, we show how Equation 1 could be solved by deriv-
ing a policy reaching this balance. The resulting MDP is
a Vector-Valued MDP in an egalitarian context where the
overall goal of the agent is to maximize its local utility and
the gain of the other agents and to minimize the opportunity
penalty. The socially satisfying policy πss is, then, subject
to: Vi(s

t
i) =

8>>>><
>>>>:

max
a

j
i

Ri(s
t
i) + v′1

i (st+1
i )

max
a

j
i

minb∈A−{i}

P
ok

b
∈Fi(oij) Rib(o

k
b |o

j
i ) + v′2

i (st+1
i )

min
a

j
i

maxc∈A−{i}

P
ok

c∈Li(o
j
i
,st

i
)
Penaltyic(o

k
c |o

j
i ) + v′3

i (st+1
i )

s.t. v′k
i (st+1

i ) =
P

s
t+1

i
Pi(s

t+1
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To derive the policy πss we take advantage of informa-
tion obtained from the policies {πeg , πoco, πpco}. To do that,
let V ∗

eg , V ∗
oco and V ∗

pco be the values of the initial state that
an agent can expect to gain when it follows the policies
πeg , πoco, πpco respectively (Example 2). These values are
computed by using a standard dynamic programming tech-
nique. The following discussion concerns all systems where
(V ∗

eg , V ∗
oco, V

∗
pco) is not a solution (multi-objective problems).

In such cases, we use vector (V ∗
eg, V ∗

oco, V
∗

pco) as the best so-
lution and the satisfying policy πss leads to values that are
as close as possible to this vector. Then, the quality of the
policy is measured by the distance between its values and
the values of vector (V ∗

eg, V ∗
oco, V

∗
pco). The difficulty is to de-

fine an admissible measure to assess the distance between
the vector value of a policy and vector (V ∗

eg, V ∗
oco, V

∗
pco). A

policy using an Euclidean distance, as all the weighed sum

(3,10,9) (17,6,8)

p1 : (17,6,8)
p2: (3,10,9)
p3: (3,10,9)

(12,7,4) (11,9,6)

p2: (10,11,8)
p1 : (12,7,4)

p3: (10,11,8)
p3: (3,10,9)

p3: (3,10,9)

p1 : (17,6,8)

p3: (3,10,9)

(15,9,5.5)
(9,11,8)

p2: (9,11,8)

Z0

Z1 Z2

Z3 Z4 Z5 Z6 Z7 Z8

Figure 2: Mono-criterion policy computation

Z0

Z1 Z2

Z3 Z4 Z5 Z6 Z7 Z8

(0.18,0.41,0) (0,0.45,0.11) (0.12,0.18,0.32) (0.29,0.36,0.45) (0.47,0,0.11) (0.35,0.18,0.33)

(0.12,0.18,0.32) (0.35,0.18,0.33)

(0.12,0.18,0.32)

Figure 3: Regret-based algorithm computation

approaches, does not take into account the fluctuation on
the criteria. We consider, then, another measure similar to
Tchebychev norm.

Definition 1. A vector of regrets of vector value (v1, v2, v3)
is given by a new vector:

(vr,1, vr,2, vr,3) = (
|vr,1−V ∗

eg |

V ∗

eg
,
|vr,2−V ∗

oco|

V ∗

oco
,
|vr,3−V ∗

pco|

V ∗

pco
), V ∗

i >

0, i ∈ {eg, oco, pco} because at least one terminal state has
a non-zero reward.

Definition 2. A solution (v1, v2, v3) is preferred over a
solution(v′1, v′2, v′3) when (vr,1, vr,2, vr,3) is preferred over
(v′r,1, v′r,2, v′r,3) using a leximin order (Leximin Regret).

The motivation of these definitions is to make leximin in-
dependent from the scale factors and to perform the lex-
imin order on values with more global sense among criteria
rather than values with a local sense as in Tchebychev norm.
That’s why the use of the ratio competitive regret measure
improves standard leximin techniques [10].

Example 2. Let consider the example given in Figure 2
where states Zi have a vector reward function where the
scores of dimension 2 and 3 are respectively computed from
equation 3 and 4 as depicted in Example 1. p1, p2, p3 are
mono-criterion policies which prefer a vector over another
by comparing respectively the value of criterion 1, 2 and
3. From p1, p2, p3 we derive an ideal vector value (17,11,9)
which is used to assign to each state Z3, Z4, Z5, Z6, Z7, Z8 its
regret vector value. Regret vector values of states Z2, Z1, Z0

are computed using a lexicographic order on the regret vec-
tor values of Z3, Z4, Z5, Z6, Z7, Z8 as depicted in Figure 3.

Regret-Based Algorithm to solve 2V-DEC-MDP

1. Let r(st) be the vector of regrets of (R(st), JR(st), JPenalty(st))
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2. Compute V ∗

eg, V ∗

oco, V
∗

pco of mono-objective policies.

3. For all terminal state sT do

4. (vr,1(sT ), vr,2(sT ), vr,3(sT )) = r(sT ) using equation 1

5. For t = T-1 downto 1 do

6. For all states st do

7. (vr,1(st), vr,2(st), vr,3(st)) = r(st)+LexminRegreta∈Ai

X

st+1

Pi(s
t+1

, a, s
t) · (vr,1(st+1), vr,2(st+1), vr,3(st+1))

8. πlex,r(s
t) = argLexminRegreta∈Ai

P
st+1 Pi(s

t+1, a, st)·
(vr,1(st+1), vr,2(st+1), vr,3(st+1))

9. return πlex,r

A policy πlex,r allows an agent to reduce the regret ratio for
each criterion by considering the leximin Regret.

Theorem 1. The algorithm to solve 2V-DEC-MDP us-

ing lex, r measure is polynomial

Proof. The complexity of the algorithm is polynomial be-
cause of n polynomial mono-optimisations to compute V ∗

i

of criterion i and a further optimization using the values
vlex,r.�

Theorem 2. The policy πlex,r is Pareto optimal.

Proof. This policy uses the leximin order which leads to a
Pareto optimal solution [10]. �

Theorem 3. If the vector value (V ∗

eg, V ∗

oco, V
∗

pco) is a so-

lution then it’s the vector value of the initial state using

πlex,r.

Proof. The assigned vector (V r,eg , V r,oco, V r,pco) to (V ∗
eg , V ∗

oco, V ∗
pco))

using the ratio competitive regret is (0,0,0). This vector is
lexicographically preferred over the others. �

6. ILLUSTRATION AND SOME EMPIRICAL
RESULTS

In this section, we present some illustrative examples show-
ing how MOMAP framework can help in formalising and
solving such problems. Some of those examples have been
implemented using MOMAP where the obtained results are
presented in the experimental section.

6.1 Example 1 : Coordinated motion
In this section we show how robots evolve in the grid of the

example, depicted in Figure 1, following the policy derived
by our approach. Given the initial state of the grid we can
develop the vector of values of actions of each robot. We
consider robots s5, c4, p5, t4 for illustration of how robots
make their decisions according to the vector-value function.

Regarding the vector of values of Table 1, robot s5 per-
forms action e (by symmetry robot t2 performs o), c4 per-
forms action s (by symmetry p2 performs action n) and t4
performs action w (s2 performs action w).

s5 c4 p5 t4
n (−1, 2,−3) − (0,2,−2) −

no (−2, 2,−2) − − −

ne (0, 2,−6) (−2, 2,−6) (−1, 1,−2) −

s − (−1,2,−1) − (−2, 2,−6)
so − (0, 2,−6) − (−1, 0,−6)
se (−3, 2,−2) (−2, 2,−1) − −

w (−2, 0, 0) (−2, 0, 0) (−4, 0, 0) (−4,0,0)
e (−1,2,−1) (−1, 2,−3) − −

Table 1: Vector values for actions of robots s5,c4,p5
and t4 (preferred vectors are in bold)

The decisions made at the next steps are similar. The
global behavior is close to the optimal one where robots in
the first steps move towards the middle of the grid (high
value of the first criterion, individual reward, and a weak
value of the third criterion, penalty) and then they rotate
around the cells in the middle of the grid (high value of the
penalty criterion and a weak value of individual reward, as
shown by Table 1) leading to the final state (Figure 1(b))
where a good balance between reaching the destination and
avoiding collisions is achieved. If we use an egoistic policy,
the robots tend to go toward cells in the centre that provoke
many collisions because this policy uses only the first crite-
rion without being concerned with the other criteria. The
optimistic approach leads to behaviors of agents that make
a long time to reach destinations because the policy uses
only the second criterion without being concerned with the
other criteria. This leads to an agent dedicated to the satis-
faction of the other agents. It considers its own satisfaction
only when the satisfaction of the others is respected. The
pessimistic policy leads to a very careful behavior. In many
situations, agents prefer waiting rather than executing any
other actions because they consider only the penalty of po-
tential collisions. Optimistic and pessimistic behaviors are
not convergent.

6.1.1 Performance Analysis
The criteria used to compare the policies are: the number

of collisions (discoordination) and time needed by a coalition
to reach destination. Table 1 shows that the egoistic policy
leads to many collisions and conflicting decisions, while full
optimistic cooperative policy that can be seen as an egoistic
group policy for a coalition leads to less conflicts but it takes
a long time to reach the destination. The full pessimistic
policy allows a coalition to avoid collisions and conflicting
decisions but it takes a very long time to reach destination.
Our approach is an equilibrium among all the criteria since it
takes a reasonable time to reach destination (close to egoistic
policy) and it reduces significantly collisions and conflicting
decisions (close to full pessimistic cooperative policy). As
we can see the policies derived from local MDPs are not
completely coordinated (4 conflicts). JPenalty measures
the cost the agents are willing to pay when they accept that
their local policies are discoordinated in some states.

6.1.2 Comparaison with Classical Approaches
We have compared (using the example of Figure 1) our

approach with approaches using cooperation structures and
communication mechanisms similar to GPGP or PGPP [5].
This approach is based on an incremental coordination of
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policy collisions steps to reach destination
πeg 40 41

πocop 9 137
πpcop 0 289
πlex,r 4 73

Table 2: Results of different policies
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Figure 4: A comparison of time to reach destinations

partial plans of agents to solve conflicts between all agents.
Each agent builds a partial plan that it broadcasts to col-
lect and solve conflicts. When the coordination of the partial
plan successes, another planning step followed by a coordi-
nation step cycle is performed. This incremental processing
is repeated until a full plan is constructed and coordinated
or a coordination step fails. Our approach converges quickly
and it reduces the number of conflicts (Figures 4, 5). The
PGPP and similar approaches are slower because they spend
more time in collecting and solving conflicts.

6.2 Example 2 : Local spatial coordination
In this experiment, we consider a fleet of robots to coor-

dinate their movement taking into account obstacles. The
coordinated movement is the result of local decisions as de-
picted in Figure 6. The objective is that robots can move
towards their destinations (individual reward), reduce the
disturb of the movement of the other robots (penalty) and
help them to easily reach their destination (social reward).

In Figure 6, we can see that agent are, initially, grouped
together at the bottom of (Figure 6(a)). The first step they
will be self-organized into groups to move, in a coordinated
way, towards their destination (Figure 6(b,c)). The sec-
ond step, agents have to cross towards two narrow corridors
where conflicts can occur between agents of the same group
(Figure 6(c)). The third step, agents in a distributed way
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Figure 5: A comparison of conflict number
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(c) (d)

(e) (f)

Figure 6: Example of Local Spatial Coordination

have avoided conflicts by making coordinated decisions (Fig-
ure 6(d)) where an agent crosses the corridor while the other
makes a decision to be far from the corridor. The fourth step
where we see in Figure 6(e,f) agents moving towards their
destination. At destination agents surround the destination
which is a good equilibrium between reaching destination
and avoiding collisions.

6.3 Example 3 : Emergent coalition formation
In this experiment, we consider a fleet of robots (fire fight-

ers) at the middle of the grid (station of fire fighters) as de-
picted in Figure 7, a set of tasks (fires) defined at the four
corners of the grid and we present how agents with local
decisions create four coalitions to achieve the four defined
tasks. As explained in section 2, agents consider initially
the four tasks and then by an incremental decision making
with multiple criteria, individual reward and social reward,
agents form coalitions to deal with the four tasks. This ex-
ample is inspired from the “robocup rescue” where a fleet
of robots could be the fire fighters and tasks could be fires
to extinguish. With the MOMAP framework we can see
in Figure 7 that agents behave in flocks. Initially, agents
are grouped together in the middle of the grid (station of
fire fighters) and there are four destinations (fires). Agents
at the beginning make distributed decisions that organise
themselves into groups (Figure 7(b,c)), then the agents, in
a distributed and coordinated way, they move towards their
destinations (Figure 7(d,e,f)). Steps (d,e,f) show how agents
coordinate their locations and they surround the target fire.
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Figure 7: Example of Emergent Coalitions

7. RELATED WORK
This work could pave the way to new approaches to deal

with Collective Intelligence which is about inducing a col-
lection of agents with no exhibition of desired global behav-
ior. Wolpert et al. define a Wonderful life utility (WLU)
functions as a sum of Ri where local rewards are assumed
cumulative while in our approach this assumption could be
relaxed by the use of an augmented reward function ARi.
This augmented function can represented non-cumulative
rewards as a vector considering individual and social re-
wards.

This approach is also a contribution in Multi-agent sys-
tems because it overcomes the main difficulty encountered
in MAS design problem and mechanism designs which is
the design of artificial cooperation structures to enforce co-
ordination and to exhibit a desired behavior. Such coop-
eration structures make scaling up difficult and often non-
robust because of a costly communication. Most of these ap-
proaches need a centralized common communication mech-
anisms while in MOMAP the communication is very limited
or prohibited.

This approach is in the spirit of many existing models of
MDPs with vector value functions [10, 6] and appropriate
algorithms to solve them where most of them use backward
induction, policy iteration and value iteration by substitut-
ing operations (+,×) by (max, min) in computations. Other
approaches have been interested in the use of a qualita-
tive version of MDPs and algebraic MDPs [6, 7]. Besides
these positive results, we propose an alternative to stan-
dard MDPs combining regret measure similar to Tcheby-

chev norm with an appropriate lexicographic order and a
backward induction algorithm to derive a satisfying policy.
Further comparisons with these non-classical MDPs model
will be developed in the future work. Another contribution
of our model is the use of these non-classical models of MDP
for multi-agent planning coordination problem.

8. CONCLUSION
We have presented a multi-criteria decision making tech-

nique for multi-objective multi-agent planning. We pre-
sented three contributions: (1) We have introduced a frame-
work to represent objective relationships, (2) a related de-
cision model using vector-valued decentralized Markov de-
cision process and (3) a regret-based algorithm to solve the
obtained DEC-MDP. We have shown that solving this DEC-
MDP can lead to a more satisfying social behavior in certain
settings. Furthermore, this approach reduces the number of
conflicts and can converge quickly enough. Further experi-
ments and analysis are needed to characterize more specifi-
cally the emerging global behavior and its convergence. Fu-
ture work will also concern the use of multi-criteria Rein-
forcement Learning [12] of Ri, JRi and JPenaltyi and its
effect on the emerging behavior and the coordination (dis-
coordination) of local policies.
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