
IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION 1

Sensor OpenFlow: Enabling Software-Defined Wireless Sensor Networks
Tie Luo, Hwee-Pink Tan, and Tony Q. S. Quek

Abstract—While it has been a belief for over a decade that
wireless sensor networks (WSN) are application-specific, we
argue that it can lead to resource underutilization and counter-
productivity. We also identify two other main problems with
WSN: rigidity to policy changes and difficulty to manage. In
this paper, we take a radical, yet backward and peer compat-
ible, approach to tackle these problems inherent to WSN. We
propose a Software-Defined WSN architecture and address key
technical challenges for its core component, Sensor OpenFlow.
This work represents the first effort that synergizes software-
defined networking and WSN.

Index Terms—Software-defined networking, OpenFlow, wire-
less sensor networks.

I. MOTIVATION

EVER since their debut over a decade ago, wireless
sensor networks (WSN1) have been conceived to be

application-specific [1], which has probably formed a belief
thus far. However, we deem it worth an afterthought, with the
upsurge of sensor applications nowadays and the advancement
of sensor technologies such as multi-modal and high-end
mote platforms (e.g., Imote2, Stargate and NetBridge). These
new changes render application-specific WSN prone to (1)
resource underutilization, where multiple WSN for respective
applications are deployed in the same or overlapping terrain
while a single “versatile” WSN could achieve the same ob-
jectives, and (2) counter-productivity, where different vendors
develop WSN in isolation without adequately reusing common
functionalities which would considerably expedite prototyping
and production.

Another problem with WSN is that they are rigid to policy
changes. Policies are rules related to network-exogenous fac-
tors such as business operation and user access, as opposed to
network-endogenous factors such as node and link properties
which have been extensively studied over the years and han-
dled algorithmically. Policy changes, engendered by the ever-
changing business needs, are hard to cope with by algorithms
and often dictate manual reconfiguration or reprogramming of
WSN, which is difficult because of vendors’ complicated and
often proprietary implementations. As a result, it is usually
inevitable to involve vendors and hence incur delay in policy
enforcement, and considerable financial and opportunity cost.

A third problem is that WSN are hard to manage. This
is because developing a network management system (NMS)
for distributed WSN is a demanding task in the first place.
Furthermore, in practice, this task is often scheduled as

Manuscript received July 31, 2012. The associate editor coordinating the
review of this letter and approving it for publication was D. Qiao.

The authors are with the Institute for Infocomm Research, A*STAR,
Singapore. T. Q. S. Quek is also with Singapore University of Technol-
ogy and Design, Singapore (e-mail: {luot, hptan, qsquek}@i2r.a-star.edu.sg,
tonyquek@sutd.edu.sg).

Digital Object Identifier 10.1109/LCOMM.2012.12.121712
1Throughout this paper, we use “WSN” regardless of its singular or plural

form to avoid readers’ inconvenience in pronouncing “WSNs”.

Fig. 1. Software-defined wireless sensor networks.

“phase-II” in project planning, and hence entails “hacking”
existing code on sensor nodes, which is a big headache to
developers and is highly error-prone.

The above problems are not superficial symptoms but are
inherent to WSN and deep-rooted in the architecture: each
node is fully fledged with all physical up to application
layer functionalities, collectively behaving like an autonomous
system that performs various networking functions such as data
forwarding and network control. Although this architecture
works well most of the time due to many well-designed
algorithms, it lacks good abstraction and carries too much
complexity, making WSN unwieldy, inelastic to change and
hard to manage.

II. SD-WSN AND SENSOR OPENFLOW

In this paper, we take the first move to tackle the above-
mentioned problems, using a radical, yet backward and peer
compatible, approach. We propose Software-Defined WSN
(SD-WSN), an architecture featuring a clear separation be-
tween a data and a control plane, and Sensor OpenFlow (SOF),
the core component of SD-WSN as a standard communication
protocol between the two planes. The data plane consists
of sensors performing flow-based packet forwarding, and the
control plane consists of one (or possibly more) controller that
centralizes all the network intelligence, performing network
control such as routing and QoS control. This architecture is
depicted in Fig. 1. The whole idea is to make the underlying
network (i.e., data plane) programmable by manipulating a
user-customizable flow table on each sensor via SOF.

Our proposal is underpinned by the recently emerged
software-defined networking (SDN) paradigm [2] and Open-
Flow [3], proposed for enterprise and carrier networks. They
have become a resounding success, gaining wide support from
a large number of industries including Microsoft, Google,
Facebook, HP, Deutsche Telekom, Verizon, Cisco, IBM, and
Samsung.

1089-7798/12$31.00 c© 2012 IEEE

2 IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION

In the academia, related research has recently heated up on
a variety of topics [4]–[7]. These studies were all conducted
in the context of enterprise and carrier networks alike, such
as data centers, where SDN/OpenFlow originated from. In
stark contrast, WSN represent a sheerly distinct environment
and thereby confront concepts like SD-WSN and SOF with
significant challenges.

However, we deem it worth exploring to introduce the
fundamental idea of SDN into WSN and tailor it into a
viable approach to solve WSN-inherent problems. Indeed, we
envisage SD-WSN to transform traditional WSN into networks
that are:
• Versatile: supporting multiple applications in a plug-and-
play manner; sensors are no longer application-dependent
but application-customizable. This is achieved by (i) the
programmable data plane which supports virtually all sorts
of packet forwarding rules, and (ii) the control plane which
decouples upper applications from physical devices (i.e., sen-
sors) and provides a global, unified view of the underlying
network to the applications.
• Flexible: easy to enforce policy changes throughout the
entire network, which used to be a tedious task and is prone
to inconsistency. This is achieved by the centralized and
extremely granular network control in SD-WSN, where the
granularity is supplied by the fully user-customizable flow
tables.
• Easy to manage: building an NMS is no different from
adding another application on top of the control plane, using
open APIs and without hassle of hacking existing code. In
addition, the centralized network view provided by the control
plane is a great facility, as network administrators prefer
centralized NMS in practice.

III. TECHNICAL CHALLENGES

The fundamental assumption that OpenFlow makes is that
the underlying network is composed of high-speed switches
such as Ethernet/MPLS switches and IP routers. OpenFlow
was also designed as a wired protocol, and its typical use cases
are data centers, cellular backhaul, enterprise WiFi backbone,
and WANs. Compared to WSN, these represent significant
disparities and lead to major challenges in designing SOF.

A. Data Plane: Creating Flows

At the data plane, packets are handled as per flows. A flow
is a programmable (i.e., user-customizable) set of packets that
share certain properties specified by a Match in a flow-table
entry, or flow entry for short. The Match is often wildcarded,
like “IP source address is 10.0.*.*”, and packets that match it
will be treated as in the same flow and be imposed an Action
(e.g., “send to port 1”) specified by the same flow entry (cf.
Fig. 1 or 2).

OpenFlow implicitly assumes the presence of IP-like ad-
dressing so as to create flows. For example, it defines Match
fields such as IPv4_SRC, ETH_DST and MPLS_LABEL to
match packets with IPv4 source address, Ethernet destination
address and MPLS label, respectively. However, as opposed
to address-centric OpenFlow networks, WSN are typically
data-centric—acquiring data of interest is more important than
knowing who sent the data—and employ different addressing
such as attribute-based naming, e.g., “nodes whose sensing

temperature>30◦C”. SOF must cope with this in the first place
for flow creation.

B. Control Plane: SOF Channel

An OpenFlow channel is an end-to-end connection used to
transmit control messages between a controller and a switch.
An SOF channel is similarly defined. However, this channel
must provide TCP/IP connectivity [8] for reliable end-to-
end in-order message delivery, and the two end-parties are
identified using IP addresses. These are generally unavailable
in WSN and need to be addressed.

C. Overhead of Control Traffic

SDN can (and usually would) host the OpenFlow channel
out of band, i.e., using a separate dedicated network. This is
normally not practical for WSN and the SOF channel has to
be hosted in band, i.e., by the WSN itself. Thus, the resource-
constrained WSN will have to additionally carry control traffic
between controllers and sensors. This is further exacerbated
by the fact that control traffic in WSN tends to be large due to
the high network dynamics (node/link failures, energy-aware
routing, mobility, etc.). Hence, without a proper mechanism
to curb control traffic overhead, the underlying WSN can be
overloaded.

D. Traffic Generation

End-users are considered peripheral to SDN and hence out
of the scope of OpenFlow. On the contrary, sensor nodes
behave like end-users by generating data packets, in addition
to merely forwarding data as OpenFlow switches do.

E. In-Network Processing

At times, WSN need to process data in-situ, e.g., perform
data aggregation or decision fusion, in order to reduce data
redundancy and conserve network resource such as bandwidth
and energy. This is another feature absent in SDN.

F. Backward and Peer Compatibility

Albeit radical, SOF should desirably provide backward
compatibility, with respect to traditional (non-OpenFlow and
non-SOF) networks, so as to protect legacy investments.

It is also desirable for SOF to offer peer compatibility, i.e.,
to be compatible with OpenFlow networks which are concur-
rently being developed and standardized, for interoperability
purposes.

IV. PROPOSED SOLUTIONS

In this section, we provide a suite of preliminary solutions
to the issues identified above, based on the latest OpenFlow
specification (v1.3.0) [8].

LUO et al.: SENSOR OPENFLOW: ENABLING SOFTWARE-DEFINED WIRELESS SENSOR NETWORKS 3

Fig. 2. A flow entry with Match defined in the OXM format.

Fig. 3. Creating Class-1 flows by defining Match using OXM.

A. Data Plane: Creating Flows

We give two solutions for flow creation, from which a
network operator can choose based on his own preference. The
first solution is to redefine flow tables to cater for the special
addressing schemes in WSN. We classify WSN addressing
schemes into Class-1, compact network-unique addresses such
as the ZigBee 16-bit network addresses (e.g., 0x796F as as-
signed by the CSkip algorithm [9]), and Class-2, concatenated
attribute-value pairs (CAV) such as “30<temperature<60”
and “Zone-ID=7 AND x-coordinate>150”.

We handle Class-1 by exploiting the OpenFlow extensible
match (OXM), a type-length-value (TLV) format used to
define flow Matches, as explained by Fig. 2. In SOF, we
introduce two new oxm_type’s to represent Class-1 addresses:
OXM_SOF_SRC (source) and OXM_SOF_DST (destination), and
construct Class-1 flow Matches under the same OXM frame-
work. A self-explanatory example is given in Fig. 3, where the
flow will be composed of packets with source network address
of 0x7900–0x79FF and destination address of 0 (ZigBee
coordinator).

We handle Class-2 by introducing our CAV format, which
is a quadruple defined by Fig. 4. Then, by adding a new
oxm_type, OXM_SOF_CAV, we are able to form any Class-2
flows, as illustrated by Fig. 5, where temperature is assumed
to be an int32 stored at offset 48 of each packet, Zone-ID
(int16) at offset 40, and x-coordinate (int16) at offset 42.

The second solution is to augment WSN with IP, for which
we capitalize on and recommend two off-the-shelf IP stacks:

• uIP and uIPv6: uIP is an IPv4 implementation on Contiki
OS [10], an open source operating system for WSN and
the Internet of things. uIPv6 is a fully compliant IPv6
extension to uIP and is “IPv6 Ready Phase 1 certified”
(has the right to use the IPv6 Ready silver logo). Both
uIP and uIPv6 are now part of Contiki OS, contributed
by Cisco, Redwire, SAP and SICS.

• Blip: the Berkeley IP implementation for low-power net-
works [11], which is an open source IPv6 implementation
for TinyOS based on the 6LoWPAN standard [12]. It has
been extensively verified on MicaZ, TelosB, and Epic
platforms.

B. Control Plane: SOF Channel

The design of control plane must be consistent with the data
plane. Therefore, corresponding to the two solutions above, we
also provide two solutions for the SOF channel. If the network

Fig. 4. The (new) CAV format with one AV pair; multiple AV pairs shall
be concatenated.

Fig. 5. Creating Class-2 flows by defining Match using CAV.

operator chooses the non-IP solution, i.e., redefining flow
tables, then the SOF channel can be supplied by overlaying
a transport protocol directly over WSN. Designing such a
protocol has been well studied in the past decade and hence,
not to reinvent the wheel, we compile and make publicly
accessible a comprehensive list of credible works on WSN
transport protocol design, implementation, experimentation
and verification [13].

If, otherwise, the network operator chooses to augment
WSN with IP (and use our recommended IP stacks), SOF
channels will be self-supplied because uIP, uIPv6 and Blip
are all shipped with ready-to-use TCP implementations.

C. Curbing Control Traffic

As aforementioned, the control traffic carried by the in-
band SOF channel may overload the underlying WSN. Our
solution is based on the following observations. First, the
control traffic is mainly comprised of two types of control
messages: (1) packet-in and (2) packet-out or flow-mod.
A packet-in is a flow setup request, sent by a sensor to a
controller to seek instruction on how to handle an incoming
packet upon table-miss (a packet does not match any flow
entry). A packet-out or flow-mod is the response from the
controller giving instruction to the requesting sensor.

Second, the control traffic resulting from this can be sig-
nificant, because WSN traffic is often bursty—an event of
interest can trigger a large swarm of packets from several
sensors, leading to many flow setup requests simultaneously.
This scenario repetitively appears because each flow entry is
associated with an expiring timer.

In our solution, a sensor only sends one packet-in for
the first table-miss and suppresses subsequent packet-in
whose associated packets have the same destination address
(Class-1 or Class-2) as the first packet, until the corresponding
packet-out or flow-mod is received or a predefined timeout
occurs. The rationale is twofold. Firstly, because the end-to-
end SOF channel is slow (as it is in-band of WSN), the latency
between sending packet-in and receiving packet-out or
flow-mod is much larger than in OpenFlow. Therefore, there
can be a large number of incoming packets during this interval.
Secondly, since the major traffic in WSN is upstream (from
many sensors to one or a few sinks), it is effective to use
destination addresses to bundle packets into flows.

4 IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION

(a) Prerequisite of OpenFlow: a TLV of IPv4 must be preceded by a TLV
of ETH_TYPE=0x0800.

(b) OpenFlow-compatible SOF flow entries: a Class-1 entry (upper) and
a Class-2 entry (lower).

Fig. 6. Making SOF peer compatible with OpenFlow.

In fact, this method can also be applied to (general)
OpenFlow networks. We have developed such an algorithm
called Control-Message Quenching (CMQ) [14] for OpenFlow
networks and verified its effectiveness in reducing flow setup
latency and elevating network throughput.

D. Traffic Generation

We add a traf-gen module on each sensor as shown in
Fig. 1. It is a simple module that can be implemented as an
interrupt routine, because sensory data generation consists of
two very simple steps: reading data from the sensing hardware,
and converting the data if needed. An example is given below,
based on the Arduino sensor platform [15]:

int raw = analogRead(pin); // read raw data from h/w pin
// next, convert to user-friendly data:
// 1) in the case of ultrasound sensors, raw is the measured distance in cm:
float distanceInMeter = raw / 100;
// 2) in the case of temperature sensors, raw is degree Celsius scaled by 20:
float temperatureInCelsius = raw / 20;
// 3) in the case of potentiometers, raw is voltage scaled from 5(V) to 1023:
float voltage = raw * 5.0 / 1023.0;

Depending on implementation, this traf-gen module can
run in a blocking (synchronously awaiting sensory data to
become available), callback (asynchronously triggered by a
“data-available” event), or round-robin (periodically checking
if data are available) manner.

E. In-Network Processing

An in-net proc module is added as shown in Fig. 1. If
the processing is not needed by a packet, this module simply
passes the packet intact to the flow table. In case of possible
future changes to the processing algorithm, we use over-the-
air programming (OTA), a commercially available technology
that allows updating sensor firmware and software wirelessly
and remotely. Libelium [16], for instance, offers a package
that features secured and interference-free OTA programming
over a large network in seconds or up to a few minutes.

We note that in-network processing makes the design not
purely “clean-slate”, which we deem as a compromise that
WSN has to make due to its unique characteristics. In fact, data
aggregation is the most common in-network processing and
can usually be accomplished using standard operations such
as average, median, min, max, or removing redundant data.
Therefore, it could be absorbed into flow tables as a special
way of packet handling, which would mitigate the compromise
and enhance network programmability. We leave this as an
open question to the research community.

F. Backward and Peer Compatibility

SOF inherits backward compatibility from OpenFlow. An
SOF-hybrid sensor will have a NORMAL logical port defined

similarly as by OpenFlow, which directs packets to traditional
sensor network forwarding.

The novelty lies in handling peer compatibility. To be
compatible with OpenFlow, SOF should enable OpenFlow
to recognize SOF flow tables so that OpenFlow can rele-
gate Class-1 and Class-2 flow entries to SOF. We exploit
a prerequisite structure of OpenFlow, which specifies that a
protocol-specific OXM TLV, e.g., IPv4, must be preceded by
a particular value of ETH_TYPE for differentiation purposes.
For example, an IPv4 TLV must be preceded by a ETH_TYPE
of 0x0800 (Fig. 6a), and similarly, IPv6 by 0x86dd and ARP
by 0x0806.

For the newly introduced Class-1 and Class-2 flows, we
designate two unused values of ETH_TYPE, 0x0802 and
0x0808, respectively. Thus, an SOF flow entry (oxm_type
= OXM_SOF_SRC/DST or OXM_SOF_CAV) can be defined as
exemplified by Fig. 6b, which achieves peer compatibility.

V. CONCLUSION

This paper presents the first effort that synergizes SDN
and WSN to solve WSN-inherent problems. The proposed
solution, SD-WSN with SOF, might provoke interesting dis-
cussions from the research community and open the door to a
wide range of innovation opportunities. By that and ultimately,
we expect to see a new generation of WSN that are versatile,
flexible, and easy to manage.

REFERENCES

[1] W. Heinzelman, “Application-specific protocol architectures for wireless
networks,” Ph.D. dissertation, MIT, 2000.

[2] Open Networking Foundation, “Software-defined networking: the new
norm for networks,” white paper, Apr. 2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[4] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: low-overhead
datacenter traffic management using end-host-based elephant detection,”
in 2011 IEEE INFOCOM.

[5] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” in 2010 ACM SIGCOMM.

[6] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for wireless mesh
networks,” in 2011 IEEE WiMAN.

[7] K. Jeong, J. Kim, and Y.-T. Kim, “QoS-aware network operating system
for software defined networking with generalized OpenFlows,” in 2012
IEEE/IFIP NOMS.

[8] Open Networking Foundation, “OpenFlow switch specification,” Apr.
16, 2012, version 1.3.0. Available: https://www.opennetworking.org/
images/stories/downloads/specification/openflow-spec-v1.3.0.pdf

[9] A. Elahi and A. Gschwender, ZigBee Wireless Sensor and Control
Network. Prentice Hall, 2009, chapter 9.

[10] The Contiki OS, http://www.contiki-os.org.
[11] Blip: Berkeley IP, http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip.
[12] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “IETF RFC4944

(6LoWPAN): Transmission of IPv6 packets over IEEE 802.15.4 net-
works,” 2007. Available: http://www.ietf.org/rfc/rfc4944.txt

[13] T. Luo, H.-P. Tan, and T. Q. S. Quek, “A compiled list of transport
protocols for wireless sensor networks,” May 2012. Available: http://
www1.i2r.a-star.edu.sg/∼luot/wsn-tp.pdf

[14] T. Luo, H.-P. Tan, P. C. Quan, Y. W. Law, and J. Jin, “Enhancing re-
sponsiveness and scalability for OpenFlow networks via control-message
quenching,” in 2012 International Conference on ICT Convergence.

[15] Arduino platform, http://www.arduino.cc.
[16] D. Gascon, A. Bielsa, F. Genicio, and M. Yarza, “Over the air program-

ming with 802.15.4 and zigbee - OTA,” May 9, 2011. Available: http://
www.libelium.com/over the air programming OTA 802.15.4 ZigBee/

