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Abstract. UMI-RT is an extension of UML for modelling embedded re-
active and real-time software systems. Its particular focus lies on system
descriptions on the architecturallevel, defining the overall system structure.
In this paper we propose to use UML-RT structure diagrams together with
the formal method CSP-OZ combining CSP and Object-Z. While CSP-OZ is
used for specifying the system components themselves (by CSP-OZ classes),
UML-RT diagrams provide the architecture description. Thus the usual ar-
chitecture specification in terms of the CSP operators parallel composition,
renaming and hiding is replaced by a graphical description. To preserve the
formal semantics of CSP-OYZ specifications, we develop a translation from
UML-RT structure diagrams to CSP. Besides achieving a more easily ac-
cessible, graphical architecture modelling for CSP-OZ, we thus also give a
semantics to UML-RT structure diagrams.

1 Introduction

Graphical modelling notations are becoming increasingly important in the design of
industrial software systems. The Unified Modelling Language (UML [BRJ99,0bj99]),
being standardised by the Object Management Group OMG; is the most prominent
member of a number of graphical modelling notations for object-oriented analysis
and design. UML-RT [SR98] is a UML profile proposed as a modelling language
for embedded real-time software systems. Although the name RT refers to real-
time, UML-RT’s main extension concerns facilities for describing the architecture
of distributed interconnected systems. UML-RT defines three new constructs for
modelling structure: capsules, ports and connectors, and employs these constructs
within UML’s collaboration diagrams to obtain an architecture description. The
advantage of UML-RT, like UML, is the graphical representation of the modelled
system. However, 1t lacks a precise semantics.

A different approach to the specification of software systems is taken when a
formal method is used as a modelling language. In contrast to UML, formal methods
have a precise semantics, but mostly do not offer graphical means of specification. A
joint usage of formal methods and graphical modelling languages could thus benefit
from the advantages and overcome the deficiencies of each method. A number of
proposals for combining UML with a formal method have already been made (e.g.
[CE98,DLC98,KC99,0R00]). This paper makes another contribution in this field,

focusing on one particular aspect of system modelling, the architecture descriptions.

The formal method we employ is CSP-OZ [Fis97,Fis00], a combination of the process
algebra CSP [Hoa85,R0s97] and the specification language Object-Z [Smi00,Spi92].
The work presented in this paper can be seen as a first step towards an integration of
UML and CSP-OZ. CSP-OZ has several features which makes it a suitable candidate
for a formal method supporting UML. To name just two: it is an object-oriented
notation (with concepts like classes, instantiation and inheritance), and, like UML,



it combines a formalism for describing static aspects (Z) with one for describing the
dynamic behaviour (CSP).

CSP-0O7Z specifications typically consist of three parts: first, some basic defini-
tions of e.g. types are made; second, classes are defined, and finally, the system archi-
tecture (components and their interconnections) is fixed. All ingredients which usu-
ally appear in UML class descriptions can be found in CSP-OZ classes: attributes,
methods and inherited superclasses are declared, associations can be modelled by
using attributes with type of another class. Furthermore, one part of a CSP-OZ
class specifies the dynamic behaviour of the class, which, in UML, is usually given
by a separate diagram, e.g. a state chart. In contrast to UML, CSP-OZ uses the
CSP process-algebraic notation for this purpose. The system architecture is given
by instantiating the classes into a suitable number of objects and combining them
using the CSP operators for parallel composition, hiding and renaming. To clarify
this overall structure of the system, often some sort of ad-hoc connection diagram
is drawn. But these diagrams only serve as an illustration of the CSP architecture
description; neither is the form of the diagrams fixed in any way, nor do they have
a formal semantics. Hence they cannot actually replace the CSP description.

For the integration of CSP-OZ and UML we start here with this last part of
CSP-OZ specifications. Defining the system architecture in the above described
sense 1s exactly the intended purpose of UML-RT structure diagrams. Qur proposal
in this paper is therefore to replace the textual CSP architecture descriptions by
UML-RT structure diagrams. To preserve the precision of a formal method we fix
the syntax and semantics of these diagrams. The advantages are twofold: UML-RT
provides us with a widely accepted graphical specification technique for defining
architectures, and additionally a formal semantics for UML-RT structure diagrams
in the setting of distributed communicating systems is achieved. For the other main
ingredients of CSP-OZ specifications, the classes, we envisage an integration with
UML in the following way: CSP-OZ classes are split into a static part, with an
appropriate representation by UML class diagrams, and a dynamic part, with a
representation by e.g. an activity diagram or a state chart. However, in this paper
we are only concerned with obtaining a graphical description of the architecture
specification.

Technically, the use of UML-RT diagrams within CSP-OZ is achieved by the fol-
lowing two issues: a formalisation of the syntax of UML-RT diagrams with Object-Z
and a formalisation of their semantics using the CSP operators for parallel compo-
sition, renaming and hiding. The major difficulty in giving a semantics to UML-RT
diagrams is the treatment of the multi-object notation of UML: a component may
communicate with a multi-object (a number of instances of the same class) over a
single channel. In this case some kind of addressing has to be introduced to achieve
communication with a particular instance, i.e. the channel additionally has to carry
addresses of receivers. Since the need for introducing an addressing mechanism in
communication is already visible in the architecture description, the translation also
has to take addressing into account. This is solved by introducing special address
parameters for processes and carrying out appropriate renamings on channel names
of components.

The case study in Section 4 demonstrates the usefulness of the multi-object
notation in a real-life application. In our applications the basic capsules in UML-RT
structure diagrams stand for CSP-OZ classes or simply CSP processes. However,
in this paper the details of CSP-OZ are not important. Here we only need the
architectural operators of CSP that allow us to connect CSP-OZ classes or CSP
processes: parallel composition, renaming and hiding.

For UML-RT the results of this paper are a contribution to its formal semantics.
We nevertheless believe that this is not the only possible interpretation (in par-



ticular since we only use a very simple form of protocols allowing for synchronous
communication over one channel); in a different setting a different semantics might
be conceivable. For CSP and CSP-OZ the benefit is a precise type of diagram for
describing the system architecture, replacing the informal connection diagrams that
appear in books on process algebra like [Hoa85], viz. UML-RT structure diagrams.
Particularly interesting 1s the use of multi-objects of UML-RT for a concise descrip-
tion of iterated CSP operators.

The paper is organised as follows. The next section gives a short introduction to
the specific constructs of UML-RT and formalises the syntax of structure diagrams
using Object-Z. Section 3 defines the semantics of these diagrams by a translation
to CSP. We illustrate our approach by some smaller examples and, in Section 4, by
the case study of an automatic manufacturing system. The conclusion summarises
our work and discusses some related approaches.

2 UML-RT

Currently, the UML, as standardised by the OMG;, is the most widely used object-
oriented modelling language. UML-RT (UML for Real-Time Systems) [SR98] is
an extension of UML designed for describing architectures of embedded real-time
systems. The emphasis of this extension lies on the modelling of the structure of
distributed systems, no particular real-time features are added to UML’s possibil-
ities. The extension uses standard UML tailoring mechanisms like stereotypes and
tagged values.

In the following, we briefly describe UML-RT and give some small examples.
UML-RT defines three constructs for modelling the structure of distributed systems:

Capsules Capsules describe complex components of systems that may interact
with their environment. Capsules may be hierarchically structured, enclosing a
number of subcapsules which themselves may contain subcapsules.

Ports Interaction of capsules with the environment is managed by attaching ports
to capsules. They are the only means of interaction with the environment. Ports
are often associated with protocols that regulate the flow of information passing
through a port. Ports can furthermore be either public or private. Public ports
have to be located on the border of a capsule.

Connectors Connectors are used to interconnect two or more ports of capsules
and thus describe the communication relationships between capsules.

For all three constructs stereotypes are introduced: < capsule>» and < port>> are
stereotypes for particular classes, whereas < connector>>> is a stereotype used for
an assoclation. The ports of a capsule class are listed in a separate compartment
after the attribute and operator list compartments. A class diagram can be used
to define all capsule classes of a system. The actual architecture of the system 1s
given by a collaboration diagram, fixing the components of the system and their
interconnections. In a collaboration diagram objects (instances of capsule or ports
classes) are represented by capsule roles and port roles. Port roles are indicated by
small black- or white-filled squares. Figure 1 gives a first example of an UML-RT
collaboration diagram.

The collaboration diagram shows a capsule of class CapsA consisting of two
subcapsules CapsX and CapsY . These capsules have ports pl and ¢l, which are
connected and private within capsule CapsA. Capsule CapsY furthermore has a
port p2 connected with the public port ¢2 of capsule CapsA. Capsule CapsA is
connected with capsule CapsB via a connector ¢3 between public ports ¢2 and rl1.

In the case of binary protocols (two participants in the communication), a port
and its counterpart can be depicted by black- and white-filled squares, respectively.



<<capsule>> <<capsule>>
CapsA CapsB

<<capsule>>
CapsX

<<capsule>>
CapsY

Fig. 1. Collaboration diagram

In the following we will always use the black-filled port for the sender and the
white-filled port for the receiver of messages.

Another UML notation frequently used in UML-RT collaboration diagrams is
the multi-object notation (depicted as a stack of rectangles); a number may be used
to indicate the actual number of instances. Figure 2 shows the use of the multi-
object notation for capsules and ports. Capsule A can communicate with instances
of the multi-capsule B via port p. The instance names {u, v, w}, attached to the
multi-capsule via a note, can be used for addressing the desired communication
partner. Addressing is needed since there is a single name for the sending port but
multiple receivers. The multiplicity of the sending port p indicates this addressing.

<<capsule>> <<capsule>> 3

A . c B FT-—=--- {u,v,w}

p q

Fig. 2. Multi-object notation for capsules

2.1 7Z formalisation of the syntax of UML-RT diagrams

For the translation of UML-RT collaboration diagrams into CSP we need a precise
description of their syntax. To this end, we use the formal method Z and its extension
Object-Z, which are frequently employed for syntax descriptions of UML diagrams
[FR99,KC99].

The building blocks of UML-RT collaboration diagrams are ports, connectors,
capsules and instances of capsules. For each of these we need a type for their names:

[PortName, ConName, CapName, InstName]

A port is always connected to some capsule. Thus a port has a port name, a capsule
name and a colour, viz. black or white. The intuition is that input ports are white
and output ports are black.

Colour ::= black | whate

Furthermore, a port may be a multi-object and thus has a multiplicity specified.
This is represented as an Object-Z class



__Port

name : PortName
cname : CapName
colour : Colour
mults : Ny

colour = white = multi = 1

with a state consisting of the attributes cname, colour and multi. We thus assume
that white ports (the receivers) always have multiplicity one. The particular receiver
of a message is solely determined by the sender. A port with multiplicity 1 is called
single port and a port with multiplicity greater than 1 is called a multi-port.

We assume that port names are unique, i.e. there exists an injective function P
from port names to ports:

‘ P . PortName ~~ Port

‘ Vna :domP e na = P(na).name [P respects port names]

The function P is a partial function because not every port name has to be used in
a given design.

A connector comprises a name and a finite set of ports. For simplicity we assume
that every connector combines exactly two ports. Thus we only consider the case of
binary protocols or point-to-point communication. The name of a connector is not
always given in UML diagrams, but we assume that some unique default name for
every connector can be generated. This is represented by an Object-Z class

__ Connector

name : ConName
ports : IF Port

Ftports = 2

where the state has the attributes name and ports. Also connector names are unique,
which is formalised by a suitable injective function N

‘ N : ConName -~ Connector

‘ Vna : domAN e na = N(na).name [V respects capsule names]

In UML-RT system components are represented by capsules. We distinguish be-
tween basic, compound and multi-object capsules. This is formalised using Object-Z
by defining a base class Capsule which is then extended via inheritance to sub-
classes CompCapsule and MultiCapsule. A basic capsule will be translated into a
CSP-0OZ class or simply a CSP process. It usually has a number of ports to be able
to communicate with its environment. A compound capsule has in addition some
subcapsules linked by connectors. A multi-object capsule is obtained from a basic
or compound capsule by adding a multiplicity.

Each capsule has a name. As before we assume that this name is unique, i.e. there
exists an injective function C from capsules names to capsules (and all their sub-
classes denoted by the operator |):



‘ C : CapName ~ | Capsule [Capsule and all its subclasses]

‘ Vna :domC e na = C(na).name [C respects capsule names]
A capsule has a name and a finite set of ports that are considered as public,
i.e. accessible from the environment. This is represented as an Object-Z base class

where the state has the attributes name and ports:

— Capsule

name : CapName
ports : IF Port

Y p : ports e p.cname = name

The consistency condition requires that all ports of a capsule refer to that capsule.

A compound capsule extends a given capsule by an inner structure consisting of
a finite set of subcapsules, referenced by names, and a finite set of connectors. We
use therefore the inheritance notation of Object-Z 1:

— CompCapsule

inherit Capsule

scnames : F CapName [ names of subcapsules]
conn : F Connector [inner connectors]
Ve :conn e c.ports C ports U|J{sn : scnames o C(sn).ports} [1]
Vcy,co : conn e cp.name = cs.name = ¢, = Co [2]
Yy, e conn e ¢y.ports N ca.ports # & = ¢ = ¢s [3]
Yec:conne¥p p :c.ports e p# p' = p.cname # p'.cname [4]
Ve:conneVp,p':cportse (p#p =
(p € ports = p.multi = p’.multi A p.colour = p’.colour) [5]
A
(p,p’ & ports = p.colour # p'.colour A [6]
((p.multi = 1 A p'.multi = C(p.cname).multi)
Vv
(p'.multi = 1 A p.multi = C(p’.cname).multi)) ) )

The ports of the subcapsules are treated as private, i.e. hidden form the environment.
The connectors link these private ports of the subcapsules to each other or to the
public ports of the whole capsule. The predicates state consistency conditions for
compound capsules:

— connectors can only connect ports given in the capsule (condition 1),

the name of a connector is unique within a capsule (condition 2),
any two connectors with a common port are identical, i.e. connectors represent
point-to-point connections without fan-out (condition 3),

— connectors may only connect ports of different capsules (condition 4).

Furthermore the multiplicities of the ports of a connector have to match:

! Tnheritance in Object-Z is syntactically expressed by simple inclusion of a class. Seman-
tically inheritance is expressed by signature extension and logical conjunction.



— if one port of the connector is public, the multiplicities and colours of both ports
of the connector coincide (condition 5),

— if both ports of the connector are private, the colours of the ports differ, one
is a single port and the other one has a multiplicity that coincides with the
multiplicity of the subcapsule of the single port (condition 6, see also Figure 2).
Note that this covers the case that both ports and hence both their subcapsules
are single ones.

A multi-capsule extends a basic or compound capsule by a multiplicity and the
names of the instances (we assume that these names are either given in the diagram,
e.g. by attaching a note to the multi-capsule, or can be generated). Using inheritance
this can be represented as follows:

— MultiCapsule

inherit Capsule

sename : CapName
mults : Ny
mames : F InstName

Finames = multi

Starting from ports, connectors and capsules, systems can be built up. A system
1s defined as an outermost capsule.

3 Translating UML-RT diagrams to CSP

UML-RT structure diagrams give a graphical description of the architecture of sys-
tems, their components and interconnections. The Object-Z formalisation so far
fixes the valid syntactic structures of these diagrams. For giving a formal semantics
of the behavioural aspects of the diagrams, we use another formal method which
1s particularly suited for the description of distributed communicating systems: the

process algebra CSP [Hoa85,Ros97].

3.1 A brief re-cap of CSP

CSP is a formal method for specifying and reasoning about processes. CSP describes
a system as a number of processes, possibly running in parallel and synchronously
communicating over named channels. Each process is built over some set of commu-
nication events, using operators like sequential composition or choice to construct
more complex processes. For describing the architecture of systems the operators
parallel composition, hiding and renaming are used.

Parallel composition Parallel composition, denoted by ||4, is used to set pro-
cesses in parallel, requiring synchronisation on all communication events in the
set A. A communication event consists of a channel name and some values of
parameters (e.g. ch.vy.vz). For instance, the term Ci ||{cp.1,ch.2y C2 describes
a parallel composition of components (] and C5 with joint execution of events
ch.1 and ch.2. Often the synchronisation set is simply a set of channels and
then stands for synchronisation on all events built over these channel names.
The operator ||| stands for interleaving, i.e. parallel composition with empty
synchronisation set. Since interleaving is associative, it can be iterated:

|||“ P; where I 1s a finite index set



Alphabetised parallel P4||p @ is another version of parallel composition. If A
and B are sets of events, Pa||p @ is the combination where P is allowed to
communicate in the set A, called the alphabet of P, and @ is allowed in the set
B, the alphabet of @, and both P and @ must agree on events in the intersection
AN B. Also alphabetised parallel can be iterated. For a finite index set [ the
notation is

||”[AZ'] o P where A; is the alphabet of P;.

Hiding Hiding, denoted by \A, 1s used to make communication events internal to
some components. Technically, hiding is achieved by renaming some events into
the invisible event 7. Thus they are not available for communication anymore.
This corresponds well to the concept of private ports.

Renaming Renaming, denoted by [R] where R is a relation between events, is
used to rename communication events. The renaming most often only concerns
the channel names, not the values of parameters. Therefore, R may also be
a relation on channel names. For instance, the term C[in — out] describes a
process C' where all communication events of the form in.z are renamed into
out.x.

3.2 Translation of examples

In general, every capsule of a diagram stands for an instantiation of a specific CSP
process. Ports are modelled by channels, subcapsules within some capsule have to
be put into parallel composition with appropriate synchronisation sets guaranteeing
the interconnections among capsules as defined by the connectors. If a capsule is ba-
sic and contains no further subcapsules, the concrete CSP process remains undefined
(since collaboration diagrams do not model the precise behaviour of components,
only the structure of the system) and the only part that is used in the architecture
description 1s the name of the capsule. The actual class or process definition be-
hind the capsule has to be specified somewhere else. Given the process names for
these basic non-hierarchical capsules, the CSP term for the whole diagram can be
inductively constructed.

Before giving a formal definition of the translation of UML-RT diagrams into CSP,
we explain the translation informally using the two examples shown in Figures 1
and 2 of the last section. In Figure 1, there are three basic capsules which do not
contain any subcapsules. For these three we assume to have some definition at hand
(e.g. as a CSP-OZ class) and just use their names:

CapsX, CapsY |, CapsB

All ports of the three capsules have multiplicity 1. Therefore no addressing is needed
here and the process names are not parametrised. For deriving the process term of
the compound capsule CapsA, we now have to compose processes CapsX and CapsY
in parallel. The choice of the synchronisation set requires some care. If we simply use
the names p; and ¢ of the ports attached to the connector ¢;, no communication
is possible at all in the CSP model because CapsX communicates only on channel
p1 whereas CapsY communicates only on channel ¢;. Instead we use the name of
the connector in the synchronisation set and carry out an appropriate renaming
of port names to connector names on the subcapsules by Rx = {p; — ¢} and
Ry ={q1 — c1,p2 — 2}

CapsX [Rx] ei11l1er, ey CapsY [Ry]

Thus communication between the capsules CapsX and CapsY is modelled by the
CSP paradigm of synchronous (or handshake or rendezvous) communication.



For obtaining the process for the compound capsule CapsA two more operations
have to be applied: the channel ¢; has to be renamed into ¢» (the name of the
public port on the border of CapsA) and afterwards the channel ¢; (connector of
two private ports) has to be hidden. Summarising, we get the following CSP process
for capsule CapsA:

CapsA = (CapsX[Rx] {1} |l{er,eny CapsY [Ry])[ea = go] \ {1}

The CSP process describing the complete architecture of the system is then the par-
allel composition of the two capsules CapsA and CapsB, again applying renaming,
synchronisation and hiding of private ports. System can be seen as the compound
capsule containing all capsules in the diagram.

System = (CapsA[gs — 3] {ea}|l{cs) CapsB[r = c3]) \ {es}

The example in Figure 2 requires a careful treatment of addressing. Port p with
multiplicity 3 indicates the possibility of capsule A to choose between different
receivers of messages sent over p. This is modelled by parameterising the process
name of A with a formal parameter Adr, standing for the set of possible receivers:
A(Adr,). For example, the CSP process

A(Adr,) = Produce(e); ( |

1)
Out:Ad”p.out.e), A(Adry)
repeatedly produces an element e which is then output in parallel to all addresses

out of the set Adr, via the multi-port p. Instantiating the formal parameter Adr,
with the address set {u, v, w} yields

A({u, v, w}) = Produce(e); (p.ule ||| p.vle ||| p.wle); A({u,v, w}).
Basic capsule B is treated as before. For example, the CSP process
B = q?z; Consume(z); B

repeatedly receives an element along port ¢, stores it in a local variable z and
consumes it.

Next, the process for the multi-capsule has to be constructed. Let us name this
process MB (for MultiB). The semantics of a multi-capsule is the interleaving of all
its instances. To achieve a correct addressing of the instances, communication over
port ¢ in the instance in is renamed into communication over ¢.in:

MB:|

) Blg — q.in]

n:{u,v,

Thus the instance name n is transmitted as part of the value over channel ¢. For
the above example B we obtain

Blg — q.in] = q.in?z; Consume(z); Blq — g.in].

Finally, compound capsule System is constructed. This requires an instantiation
of the address parameter of A with the set of receivers {u, v, w}, the instance names
of the multi-capsule attached to port p.

System = (A({u, v, whp = <] {3 ll{ey MB[g — c]) \ {c}

Capsule A may now use the instance names u, v, w as parameters for channel p and
thus send messages to particular instances.



3.3 Translation in general

Now we present a function 7 for translating a given capsule into a CSP process in
equational form. We start from the basic types

[Process, Chans, Val]

of CSP processes, CSP channels, and values sent along channels. We assume a
structure on the set of Fvents based on a recursive free type Data:

Data ::= basic{ Val)) | comp{(InstName x Data))
FEvents == Chans x Data

By convention, we abbreviate data of the form comp(in, v) by in.v and data of the
form basic(v) by just v. Also, following CSP conventions, events of the form (ch, d)
are written as ch.d so that a typical event will appear as ch.ing.....in,,.v where
m € N. This dot notation for CSP communications should not be confused with
the selection of components in Z schemas. Here the sequence n; .....in,, of instance
names will play the role of addresses to where the value v should be sent along the
channel ch.
With every process there is an alphabet of events associated:

| a : Process — P Events

The translation function
| T : Capsule — ProcessEquations

generates a set of process equations of the form
name(ParameterList) = ProcessExpression

This set 1s defined inductively on the syntactic structure of capsules.

(1) Let BC be a basic capsule with BC.ports = {p1, ..., Pm, @1, ..., ¢n} Where m,n €
N and py, ..., pm are single ports, i.e. with p;.mults = 1 for ¢ = 1,...m, and
i, ..., @n are multi-ports, i.e. with g;.mults > 1 for 3 = 1,...,n. Then we take
new formal parameters Adr, ..., Adr, standing for sets of instance names that
will serve as addresses to which the multi-ports ¢4, ..., ¢, can be connected.
The translation function 7 generates one process equation 7 (BC) for BC':

T(BC) = BC.name(Adry, ..., Adr,) = RHS
Here = stands for syntactic identity and RHS for a process with alphabet

a(RHS) C ({p1,..., pm} X Data)u
{@} x comp(Adry x Data) U ...U{q,} X comp(Adr, x Data)).

In our setting, RHS is the name of the corresponding CSP-OZ class.
(2) Let CC be a compound capsule with CC.ports = {p1, ..., Pm, @1, ..., ¢n} Where

m,n € N and p1,..., pm, q1, ---, gn are as above. Then we take new formal pa-
rameters Adr, ..., Adr, as above and define
T(CC) =
CC.name(Adry, ..., Adry) = [Eqn 1]

(( ||SN:CC.scnames [C(SN)'pOrtS[RSNch]] .
SN(B1, ey Bk(SN))[RSN,CC])[Pcc]) \ Hee

T(C(SN)) for all SN : CC.scnames [Egns 2]



Thus 7(CC) generates one new process equation (Eqn 1) where the right-
hand side uses an iterated alphabetised parallel composition and adds to it the
equations (Eqns 2) obtained by applying the translation function 7 inductively
to all subcapsules in C'C'. The alphabetised parallel iterates over all names SN
of subcapsules in CC'.
Suppose 71, ..., rg(sn) are the multi-ports of the subcapsule with the name SN.
Then the actual address parameters B; with i = 1,...,k(SN) for these multi-
ports are defined as follows:

e B; = Adry, if r; is connected to a public multi-port p; of C'C

o B; = MC.inames if r; is connected to a single port p; of a multi-capsule

MC inside CC
The renaming Rsy, cc changes port names to connector names:
Rsn,cc = {pn : PortName; cn : ConName |
dp : C(SN).ports; ¢ : CC.conn e
p € c.ports A pn = p.name A cn = c.name o (pn — cn)}

The renaming Pc¢ is used to rename connectors from a subcapsule to a public
port on the border of the capsule back to the name of the public port:

Peoc = {en: ConName; pn : PortName |
Jp: CC.ports; ¢: CC.conn e
p € c.ports A pn = p.name A cn = c.name o (cn — pn)}

Finally, all remaining connector names are hidden:
Hee ={c: CC.conn e c.name}
Let MC be a multi-capsule with

C(MC .cname).ports = {p1,..., Pms Q1, --s Gn}

where m,n € Nand p1, ..., pm, @1, .-, ¢n are as above. Again we take new formal
parameters Adry, ..., Adr, as above and define
T(MC) =
MC .name(Adry, ..., Adry,) = [Eqn 1]

T(C(MC .cname))) [Eqn 2]

MC .cname(Adry, ..., Adry)[in]

in:MC.inames

Thus 7 (MC') generates one new process equation (Eqn 1) where the right-hand
side uses an iterated interleaving operator and adds to it the equation (Eqn
2) obtained by applying the translation function 7 inductively to the capsule
inside MC'. The interleaving operator iterates over all instances of this capsule.
Each instance is formalised by applying a renaming operator denoted by the
postfix _[in)] where in is an instance name. For a given process P this operator

is defined by
Plin)] = P[{ch : Chans; d : Data | ch.d € «(P) e ch.d — ch.in.d}]

(cf. the construction of the process MB in the example in subsection 3.2).

In the following we assume that a collaboration diagram implicitly contains a capsule
System enclosing all capsules appearing in the diagram. The CSP process for the
capsule System gives the architecture description.



4 Case Study: Automatic Manufacturing System

In this section we apply our approach to a larger case study. It concerns the archi-
tectural description of an automatic manufacturing system. In automatic manufac-
turing systems the transportation of material between machines is carried out by
autonomous or holonic transportation agents, i.e. vehicles or robots without drivers
and without a central control for scheduling?. In [Weh00] a CSP-OZ specification of
an automatic manufacturing system is given in which the architecture of the system
is described by a CSP term and the components (capsules) are given by CSP-OZ
class definitions. Here, we will only present the architecture, initially modelled by
a UML-RT collaboration diagram and then translated into a CSP term using the
translation 7 of the previous section.

The automatic manufacturing system consists of the following parts (see Figure
3): two stores In and Out, one for workpieces to be processed (the in-store) and one
for the finished workpieces (the out-store); two holonic transportation systems (Hts)
T1 and T2; and three machines (Wzm?) A, B and C for processing the workpieces.

In \ / Out
O O

Fig. 3. Plant

Every workpiece has to be processed by all three machine tools in a fixed or-
der (In > A - B — C — Out). The Hts’ are responsible for transporting the
workpieces between machines and stores. They work as autonomous agents, free
to decide which machine to serve (within some chosen strategy). Initially the in-
store is full and the out-store as well as all machines are empty. When a machine
1s empty or contains an already processed workpiece it broadcasts a request to the
Hts in order to receive a new workpiece or to deliver one. The Hts’ (when listening)
send some offer to the machines, telling them their cost for satisfying the request.
Upon receipt of offers the machine decides for the best offer and give this Hts the
order, which then executes it. Execution of a job involves loading and deloading of
workpieces from/to Hts and from/to stores and machines. This way, all workpieces
are processed by all three tools and transported from the in- to the out-store.

The CSP-OZ specification of this manufacturing system contains class definitions
Store and Wzm. The most complex component His is split into three parts: one

2 This case study is part of the priority research program “Integration of specification
techniques with applications in engineering” of the German Research Council (DFG)
(http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/index.htnl).

? in German: Werkzeugmaschine



for managing the acquisition of new jobs (Acquisition), one for coordinating the
driving in the plant hall (Driver) and a control part (HtsCtrl). The control part calls
component Acquisition when an order should be acquired (with response new order),
and component Driwer when the vehicle has to move. Furthermore, component
Acquisition frequently asks Driver about their current position, which is influencing
the cost of offers.

Store 2
loadHtsWzm loadHtsSt deloadHtsSt
deload deloadHtsSt
loadHtsWzm

acquireOrder

whichPosition
FT----1 {T1,12}

Hts

position

tellPosition

Fig.4. Architecture of the Manufacturing System

Figure 4 shows the architecture of the manufacturing system as an UML-RT
structure diagram. In most cases we have omitted the names of connectors. They
only appear at the places where they are necessary in the transformation: when the
connected ports have different names. In the other cases, we simply assume that the
connector name equals the names of connected ports (and consequently omit the
otherwise necessary renaming). We also sometimes omit port names of subcapsules
when they agree with the port names of the compound capsule. The set of process
equations corresponding to the graphical architecture description is constructed
inductively. First, the process names and parameters for all basic capsules are fixed.
For each of these names, a corresponding CSP-OZ class has to be declared in the
rest of the specification. Thus we obtain:



Store

Driver

Acquisition(Adroger)

HtSCtrl(AdrloadHtstma AdrdeloadHtstma AdrloadHtsSta AdrdeloadHtsSt)
Wzm(Adrrequesta Adrorder)

Next, we construct the process equations for the multi-capsules Store and Wzm.
Their process names are MStore and MWzm, respectively.

MStore = Store[In] ||| Store[ Out]

szm(Adrrequesta Adrorder) =
|||w:{A,B, cl Wzm(Adrrequesta Adrorder) [(U))]

The component Hts is the most complex one. First, the process equation for the

compound capsule 1s constructed.

HtS(AdrloadHtstma AdrdeloadHtstma
AdrloadHtsSta AdrdeloadHtsSta Adroﬁer) =

(Driver[tellPosition — position] .. || At Acm
(Acquisition(Adroge,)[whichPosition +— position] A ... || 4cm
HtsCtrl( Adrioaaries wam, Advdctoadtits wam, AdPioadrsst, AdTdeioadrisst)))
\Priths

with the following sets of events used for synchronisation and hiding:

Apriver = {arrived, drive, position}
A pcqui = {acquireOrder, newOrder, listen, offer, order}
Acrr = {loadHts Wzm, deloadHts Wzm, load HtsSt | deload HtsSt,

newOrder, acquire Order, arrived, drive}

PrivHls = {arrived, drive, position, acquireOrder, newOrder}

For reasons of readability we have unfolded the iterated alphabetised parallel com-
position in the process equation for His. The renaming Pc¢ is in this case empty
since we have adopted the convention that omitted connector names equal their
port names.

Next, the process equation for the multi-capsule MHts is constructed:

MHtS(AdrloadHtstma AdrdeloadHtstma
AdrloadHtsSta AdrdeloadHtsSta Adroﬁer) =

14 HtS(AdrloadHtstma AdrdeloadHtstma
AdrloadHtsSta AdrdeloadHtsSta Adroﬁer)[(in)]

n:{T1,T2}
Finally we can give the system description, applying once again the translation
scheme for compound capsules:

System =
(MHts({A, B, C},{A, B, C},{In, Out},{In, Out},{A, B, C})

Aprs | AmwamUAnmsiore

(MWem({T1, T2}, {T1, T2}) ayyon || Assiere MStore)) \ PrivSys
with synchronisation sets and private channels

Anrees = {loadHisWem, deloadHts Wzm , loadHtsSt, deload HtsSt



listen, offer, order}
Artwem = {loadHtsWzm, deloadHts Wzm , offer, order, request }
Anrstore = {loadHlsSt, deloadHtsSt }

PTiUS!/S = AMHts U AMWzm U AMStore

This completes the translation.

5 Conclusion

In this paper, we have proposed a translation of UML-RT structure diagrams into
CSP. This allows us to use graphical architecture descriptions in CSP-OZ with-
out losing its formal semantics. The technique is not only applicable to CSP-OZ
specifications, but more generally to all specification languages which use CSP for
structure descriptions. The only change needed then is the interpretation of basic
capsules, which stand for CSP-OZ classes in our case but may also be interpreted
differently. The translation gives one possible semantics to UML-RT collaboration
diagrams. In a different setting (for instance hardware design on a much lower ab-
straction level), a different semantics might be conceivable.

The basis for the translation given in this paper is a formalisation of the syntax
of UML-RT structure diagrams in Object-Z. This is similar to the work done in
[KC99], which formalises the syntax of UML class diagrams with Z and uses the
formalisation for a translation of class diagrams to Object-Z classes.

So far we have not explicitly treated protocols, which are also part of UML-RT.
Protocols are used for specifying the type of interactions which may take place over
some connector. A protocol can for instance define a set of signals passed over a con-
nector, or can give a valid communication sequence. Since the basic communication
paradigm of CSP is synchronous communication, we have assumed that all proto-
cols define synchronous communication over a single channel. However, we envisage
the possibility of using more elaborate protocols in an architecture description, for
instance protocols for defining asynchronous communication or communication over
unreliable channels. To fit into the CSP view on UML-RT diagrams, these protocols
should be specified in CSP. This approach to protocol definition is similar to the
method chosen in WRIGHT [AG97], an architecture description language (ADL)
based on CSP. In WRIGHT, an architecture description consists of a set of compo-
nents together with a collection of connectors which are given in CSP.

Another work similar to ours is the ADL Darwin [MDEK95]. Darwin is both a
graphical and a textual modelling language; it has a formal semantics in terms of
Milner’s m-calculus [Mil99]. The usage of a calculus with mobility is necessary there
because Darwin allows to specify dynamically evolving system structures. Since our
goal was to find a graphical description of CSP structure specifications, we had no
need for incorporating facilities for describing mobility.

A completely different semantic approach to UML-RT diagrams can be found
in [GBSS99]. There the focus is on using a visual but still well-defined formalism
(interaction graphs) for interpreting UML-RT diagrams.
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