
A CSP View on UML-RT structure diagramsClemens Fischer, Ernst-R�udiger Olderog and Heike WehrheimUniversit�at OldenburgFachbereich InformatikPostfach 2503, D{26111 Oldenburg, GermanyFax: +49 441 7982965f�scher,olderog,wehrheimg@informatik.uni-oldenburg.deAbstract. UML-RT is an extension of UML for modelling embedded re-active and real-time software systems. Its particular focus lies on systemdescriptions on the architectural level, de�ning the overall system structure.In this paper we propose to use UML-RT structure diagrams together withthe formal method CSP-OZ combining CSP and Object-Z. While CSP-OZ isused for specifying the system components themselves (by CSP-OZ classes),UML-RT diagrams provide the architecture description. Thus the usual ar-chitecture speci�cation in terms of the CSP operators parallel composition,renaming and hiding is replaced by a graphical description. To preserve theformal semantics of CSP-OZ speci�cations, we develop a translation fromUML-RT structure diagrams to CSP. Besides achieving a more easily ac-cessible, graphical architecture modelling for CSP-OZ, we thus also give asemantics to UML-RT structure diagrams.1 IntroductionGraphical modelling notations are becoming increasingly important in the design ofindustrial software systems. The Uni�ed Modelling Language (UML [BRJ99,Obj99]),being standardised by the Object Management Group OMG, is the most prominentmember of a number of graphical modelling notations for object-oriented analysisand design. UML-RT [SR98] is a UML pro�le proposed as a modelling languagefor embedded real-time software systems. Although the name RT refers to real-time, UML-RT's main extension concerns facilities for describing the architectureof distributed interconnected systems. UML-RT de�nes three new constructs formodelling structure: capsules, ports and connectors, and employs these constructswithin UML's collaboration diagrams to obtain an architecture description. Theadvantage of UML-RT, like UML, is the graphical representation of the modelledsystem. However, it lacks a precise semantics.A di�erent approach to the speci�cation of software systems is taken when aformalmethod is used as a modelling language. In contrast to UML, formalmethodshave a precise semantics, but mostly do not o�er graphical means of speci�cation. Ajoint usage of formal methods and graphical modelling languages could thus bene�tfrom the advantages and overcome the de�ciencies of each method. A number ofproposals for combining UML with a formal method have already been made (e.g.[CE98,DLC98,KC99,OR00]). This paper makes another contribution in this �eld,focusing on one particular aspect of system modelling, the architecture descriptions.The formalmethod we employ is CSP-OZ [Fis97,Fis00], a combination of the processalgebra CSP [Hoa85,Ros97] and the speci�cation language Object-Z [Smi00,Spi92].The work presented in this paper can be seen as a �rst step towards an integration ofUML and CSP-OZ. CSP-OZ has several features which makes it a suitable candidatefor a formal method supporting UML. To name just two: it is an object-orientednotation (with concepts like classes, instantiation and inheritance), and, like UML,

it combines a formalism for describing static aspects (Z) with one for describing thedynamic behaviour (CSP).CSP-OZ speci�cations typically consist of three parts: �rst, some basic de�ni-tions of e.g. types are made; second, classes are de�ned, and �nally, the system archi-tecture (components and their interconnections) is �xed. All ingredients which usu-ally appear in UML class descriptions can be found in CSP-OZ classes: attributes,methods and inherited superclasses are declared, associations can be modelled byusing attributes with type of another class. Furthermore, one part of a CSP-OZclass speci�es the dynamic behaviour of the class, which, in UML, is usually givenby a separate diagram, e.g. a state chart. In contrast to UML, CSP-OZ uses theCSP process-algebraic notation for this purpose. The system architecture is givenby instantiating the classes into a suitable number of objects and combining themusing the CSP operators for parallel composition, hiding and renaming. To clarifythis overall structure of the system, often some sort of ad-hoc connection diagramis drawn. But these diagrams only serve as an illustration of the CSP architecturedescription; neither is the form of the diagrams �xed in any way, nor do they havea formal semantics. Hence they cannot actually replace the CSP description.For the integration of CSP-OZ and UML we start here with this last part ofCSP-OZ speci�cations. De�ning the system architecture in the above describedsense is exactly the intended purpose of UML-RT structure diagrams. Our proposalin this paper is therefore to replace the textual CSP architecture descriptions byUML-RT structure diagrams. To preserve the precision of a formal method we �xthe syntax and semantics of these diagrams. The advantages are twofold: UML-RTprovides us with a widely accepted graphical speci�cation technique for de�ningarchitectures, and additionally a formal semantics for UML-RT structure diagramsin the setting of distributed communicating systems is achieved. For the other mainingredients of CSP-OZ speci�cations, the classes, we envisage an integration withUML in the following way: CSP-OZ classes are split into a static part, with anappropriate representation by UML class diagrams, and a dynamic part, with arepresentation by e.g. an activity diagram or a state chart. However, in this paperwe are only concerned with obtaining a graphical description of the architecturespeci�cation.Technically, the use of UML-RT diagrams within CSP-OZ is achieved by the fol-lowing two issues: a formalisation of the syntax of UML-RT diagrams with Object-Zand a formalisation of their semantics using the CSP operators for parallel compo-sition, renaming and hiding. The major di�culty in giving a semantics to UML-RTdiagrams is the treatment of the multi-object notation of UML: a component maycommunicate with a multi-object (a number of instances of the same class) over asingle channel. In this case some kind of addressing has to be introduced to achievecommunication with a particular instance, i.e. the channel additionally has to carryaddresses of receivers. Since the need for introducing an addressing mechanism incommunication is already visible in the architecture description, the translation alsohas to take addressing into account. This is solved by introducing special addressparameters for processes and carrying out appropriate renamings on channel namesof components.The case study in Section 4 demonstrates the usefulness of the multi-objectnotation in a real-life application. In our applications the basic capsules in UML-RTstructure diagrams stand for CSP-OZ classes or simply CSP processes. However,in this paper the details of CSP-OZ are not important. Here we only need thearchitectural operators of CSP that allow us to connect CSP-OZ classes or CSPprocesses: parallel composition, renaming and hiding.For UML-RT the results of this paper are a contribution to its formal semantics.We nevertheless believe that this is not the only possible interpretation (in par-

ticular since we only use a very simple form of protocols allowing for synchronouscommunication over one channel); in a di�erent setting a di�erent semantics mightbe conceivable. For CSP and CSP-OZ the bene�t is a precise type of diagram fordescribing the system architecture, replacing the informal connection diagrams thatappear in books on process algebra like [Hoa85], viz. UML-RT structure diagrams.Particularly interesting is the use of multi-objects of UML-RT for a concise descrip-tion of iterated CSP operators.The paper is organised as follows. The next section gives a short introduction tothe speci�c constructs of UML-RT and formalises the syntax of structure diagramsusing Object-Z. Section 3 de�nes the semantics of these diagrams by a translationto CSP. We illustrate our approach by some smaller examples and, in Section 4, bythe case study of an automatic manufacturing system. The conclusion summarisesour work and discusses some related approaches.2 UML-RTCurrently, the UML, as standardised by the OMG, is the most widely used object-oriented modelling language. UML-RT (UML for Real-Time Systems) [SR98] isan extension of UML designed for describing architectures of embedded real-timesystems. The emphasis of this extension lies on the modelling of the structure ofdistributed systems, no particular real-time features are added to UML's possibil-ities. The extension uses standard UML tailoring mechanisms like stereotypes andtagged values.In the following, we briey describe UML-RT and give some small examples.UML-RT de�nes three constructs for modelling the structure of distributed systems:Capsules Capsules describe complex components of systems that may interactwith their environment. Capsules may be hierarchically structured, enclosing anumber of subcapsules which themselves may contain subcapsules.Ports Interaction of capsules with the environment is managed by attaching portsto capsules. They are the only means of interaction with the environment. Portsare often associated with protocols that regulate the ow of information passingthrough a port. Ports can furthermore be either public or private. Public portshave to be located on the border of a capsule.Connectors Connectors are used to interconnect two or more ports of capsulesand thus describe the communication relationships between capsules.For all three constructs stereotypes are introduced: �capsule� and �port� arestereotypes for particular classes, whereas �connector� is a stereotype used foran association. The ports of a capsule class are listed in a separate compartmentafter the attribute and operator list compartments. A class diagram can be usedto de�ne all capsule classes of a system. The actual architecture of the system isgiven by a collaboration diagram, �xing the components of the system and theirinterconnections. In a collaboration diagram objects (instances of capsule or portsclasses) are represented by capsule roles and port roles. Port roles are indicated bysmall black- or white-�lled squares. Figure 1 gives a �rst example of an UML-RTcollaboration diagram.The collaboration diagram shows a capsule of class CapsA consisting of twosubcapsules CapsX and CapsY . These capsules have ports p1 and q1, which areconnected and private within capsule CapsA. Capsule CapsY furthermore has aport p2 connected with the public port q2 of capsule CapsA. Capsule CapsA isconnected with capsule CapsB via a connector c3 between public ports q2 and r1.In the case of binary protocols (two participants in the communication), a portand its counterpart can be depicted by black- and white-�lled squares, respectively.

<<capsule>> <<capsule>>

<<capsule>> <<capsule>>

p1 p2 q2q1 r1

c1 c2 c3

CapsA CapsB

CapsX CapsYFig. 1. Collaboration diagramIn the following we will always use the black-�lled port for the sender and thewhite-�lled port for the receiver of messages.Another UML notation frequently used in UML-RT collaboration diagrams isthe multi-object notation (depicted as a stack of rectangles); a number may be usedto indicate the actual number of instances. Figure 2 shows the use of the multi-object notation for capsules and ports. Capsule A can communicate with instancesof the multi-capsule B via port p. The instance names fu; v ;wg, attached to themulti-capsule via a note, can be used for addressing the desired communicationpartner. Addressing is needed since there is a single name for the sending port butmultiple receivers. The multiplicity of the sending port p indicates this addressing.
��
��
��
��

��
��
��
��

<<capsule>> 3<<capsule>>

p q

c
A 3 B

{u,v,w}Fig. 2. Multi-object notation for capsules2.1 Z formalisation of the syntax of UML-RT diagramsFor the translation of UML-RT collaboration diagrams into CSP we need a precisedescription of their syntax. To this end, we use the formalmethod Z and its extensionObject-Z, which are frequently employed for syntax descriptions of UML diagrams[FR99,KC99].The building blocks of UML-RT collaboration diagrams are ports, connectors,capsules and instances of capsules. For each of these we need a type for their names:[PortName;ConName;CapName; InstName]A port is always connected to some capsule. Thus a port has a port name, a capsulename and a colour, viz. black or white. The intuition is that input ports are whiteand output ports are black.Colour ::= black j whiteFurthermore, a port may be a multi-object and thus has a multiplicity speci�ed.This is represented as an Object-Z class

Portname : PortNamecname : CapNamecolour : Colourmulti : N1colour = white) multi = 1with a state consisting of the attributes cname, colour and multi. We thus assumethat white ports (the receivers) always have multiplicity one. The particular receiverof a message is solely determined by the sender. A port with multiplicity 1 is calledsingle port and a port with multiplicity greater than 1 is called a multi-port.We assume that port names are unique, i.e. there exists an injective function Pfrom port names to ports:P : PortName 7� Port8 na : domP � na = P(na):name [P respects port names]The function P is a partial function because not every port name has to be used ina given design.A connector comprises a name and a �nite set of ports. For simplicity we assumethat every connector combines exactly two ports. Thus we only consider the case ofbinary protocols or point-to-point communication. The name of a connector is notalways given in UML diagrams, but we assume that some unique default name forevery connector can be generated. This is represented by an Object-Z classConnectorname : ConNameports : FPort#ports = 2where the state has the attributes name and ports. Also connector names are unique,which is formalised by a suitable injective function N :N : ConName 7� Connector8 na : domN � na = N (na):name [N respects capsule names]In UML-RT system components are represented by capsules. We distinguish be-tween basic, compound and multi-object capsules. This is formalised using Object-Zby de�ning a base class Capsule which is then extended via inheritance to sub-classes CompCapsule and MultiCapsule. A basic capsule will be translated into aCSP-OZ class or simply a CSP process. It usually has a number of ports to be ableto communicate with its environment. A compound capsule has in addition somesubcapsules linked by connectors. A multi-object capsule is obtained from a basicor compound capsule by adding a multiplicity.Each capsule has a name. As before we assume that this name is unique, i.e. thereexists an injective function C from capsules names to capsules (and all their sub-classes denoted by the operator #):

C : CapName 7� # Capsule [Capsule and all its subclasses]8 na : domC � na = C(na):name [C respects capsule names]A capsule has a name and a �nite set of ports that are considered as public,i.e. accessible from the environment. This is represented as an Object-Z base classwhere the state has the attributes name and ports:Capsulename : CapNameports : FPort8 p : ports � p:cname = nameThe consistency condition requires that all ports of a capsule refer to that capsule.A compound capsule extends a given capsule by an inner structure consisting ofa �nite set of subcapsules, referenced by names, and a �nite set of connectors. Weuse therefore the inheritance notation of Object-Z 1:CompCapsuleinherit Capsulescnames : FCapName [names of subcapsules]conn : FConnector [inner connectors]8 c : conn � c:ports � ports [Sfsn : scnames � C(sn):portsg [1]8 c1; c2 : conn � c1:name = c2:name) c1 = c2 [2]8 c1; c2 : conn � c1:ports \ c2:ports 6= ?) c1 = c2 [3]8 c : conn � 8 p; p 0 : c:ports � p 6= p 0) p:cname 6= p 0:cname [4]8 c : conn � 8 p; p 0 : c:ports � (p 6= p 0)(p 2 ports) p:multi = p 0:multi ^ p:colour = p 0:colour) [5]^(p; p 0 62 ports) p:colour 6= p 0:colour ^ [6]((p:multi = 1 ^ p 0:multi = C(p:cname):multi)_(p 0:multi = 1 ^ p:multi = C(p 0:cname):multi))))The ports of the subcapsules are treated as private, i.e. hidden form the environment.The connectors link these private ports of the subcapsules to each other or to thepublic ports of the whole capsule. The predicates state consistency conditions forcompound capsules:{ connectors can only connect ports given in the capsule (condition 1),{ the name of a connector is unique within a capsule (condition 2),{ any two connectors with a common port are identical, i.e. connectors representpoint-to-point connections without fan-out (condition 3),{ connectors may only connect ports of di�erent capsules (condition 4).Furthermore the multiplicities of the ports of a connector have to match:1 Inheritance in Object-Z is syntactically expressed by simple inclusion of a class. Seman-tically inheritance is expressed by signature extension and logical conjunction.

{ if one port of the connector is public, the multiplicities and colours of both portsof the connector coincide (condition 5),{ if both ports of the connector are private, the colours of the ports di�er, oneis a single port and the other one has a multiplicity that coincides with themultiplicity of the subcapsule of the single port (condition 6, see also Figure 2).Note that this covers the case that both ports and hence both their subcapsulesare single ones.A multi-capsule extends a basic or compound capsule by a multiplicity and thenames of the instances (we assume that these names are either given in the diagram,e.g. by attaching a note to the multi-capsule, or can be generated). Using inheritancethis can be represented as follows:MultiCapsuleinherit Capsulescname : CapNamemulti : N1inames : F InstName#inames = multiStarting from ports, connectors and capsules, systems can be built up. A systemis de�ned as an outermost capsule.3 Translating UML-RT diagrams to CSPUML-RT structure diagrams give a graphical description of the architecture of sys-tems, their components and interconnections. The Object-Z formalisation so far�xes the valid syntactic structures of these diagrams. For giving a formal semanticsof the behavioural aspects of the diagrams, we use another formal method whichis particularly suited for the description of distributed communicating systems: theprocess algebra CSP [Hoa85,Ros97].3.1 A brief re-cap of CSPCSP is a formalmethod for specifying and reasoning about processes. CSP describesa system as a number of processes, possibly running in parallel and synchronouslycommunicating over named channels. Each process is built over some set of commu-nication events, using operators like sequential composition or choice to constructmore complex processes. For describing the architecture of systems the operatorsparallel composition, hiding and renaming are used.Parallel composition Parallel composition, denoted by kA, is used to set pro-cesses in parallel, requiring synchronisation on all communication events in theset A. A communication event consists of a channel name and some values ofparameters (e.g. ch:v1:v2). For instance, the term C1 kfch:1;ch:2g C2 describesa parallel composition of components C1 and C2 with joint execution of eventsch:1 and ch:2. Often the synchronisation set is simply a set of channels andthen stands for synchronisation on all events built over these channel names.The operator kj stands for interleaving, i.e. parallel composition with emptysynchronisation set. Since interleaving is associative, it can be iterated:kji :I Pi where I is a �nite index set

Alphabetised parallel PA kB Q is another version of parallel composition. If Aand B are sets of events, PA kB Q is the combination where P is allowed tocommunicate in the set A, called the alphabet of P , and Q is allowed in the setB , the alphabet of Q , and both P and Q must agree on events in the intersectionA \ B . Also alphabetised parallel can be iterated. For a �nite index set I thenotation iski :I [Ai] � Pi where Ai is the alphabet of Pi .Hiding Hiding, denoted by nA, is used to make communication events internal tosome components. Technically, hiding is achieved by renaming some events intothe invisible event � . Thus they are not available for communication anymore.This corresponds well to the concept of private ports.Renaming Renaming, denoted by [R] where R is a relation between events, isused to rename communication events. The renaming most often only concernsthe channel names, not the values of parameters. Therefore, R may also bea relation on channel names. For instance, the term C [in 7! out] describes aprocess C where all communication events of the form in:x are renamed intoout :x .3.2 Translation of examplesIn general, every capsule of a diagram stands for an instantiation of a speci�c CSPprocess. Ports are modelled by channels, subcapsules within some capsule have tobe put into parallel composition with appropriate synchronisation sets guaranteeingthe interconnections among capsules as de�ned by the connectors. If a capsule is ba-sic and contains no further subcapsules, the concrete CSP process remains unde�ned(since collaboration diagrams do not model the precise behaviour of components,only the structure of the system) and the only part that is used in the architecturedescription is the name of the capsule. The actual class or process de�nition be-hind the capsule has to be speci�ed somewhere else. Given the process names forthese basic non-hierarchical capsules, the CSP term for the whole diagram can beinductively constructed.Before giving a formal de�nition of the translation of UML-RT diagrams into CSP,we explain the translation informally using the two examples shown in Figures 1and 2 of the last section. In Figure 1, there are three basic capsules which do notcontain any subcapsules. For these three we assume to have some de�nition at hand(e.g. as a CSP-OZ class) and just use their names:CapsX ;CapsY ;CapsBAll ports of the three capsules have multiplicity 1. Therefore no addressing is neededhere and the process names are not parametrised. For deriving the process term ofthe compound capsule CapsA, we now have to compose processes CapsX andCapsYin parallel. The choice of the synchronisation set requires some care. If we simply usethe names p1 and q1 of the ports attached to the connector c1, no communicationis possible at all in the CSP model because CapsX communicates only on channelp1 whereas CapsY communicates only on channel q1. Instead we use the name ofthe connector in the synchronisation set and carry out an appropriate renamingof port names to connector names on the subcapsules by RX = fp1 7! c1g andRY = fq1 7! c1; p2 7! c2g:CapsX [RX] fc1g jjfc1;c2g CapsY [RY]Thus communication between the capsules CapsX and CapsY is modelled by theCSP paradigm of synchronous (or handshake or rendezvous) communication.

For obtaining the process for the compound capsule CapsA two more operationshave to be applied: the channel c2 has to be renamed into q2 (the name of thepublic port on the border of CapsA) and afterwards the channel c1 (connector oftwo private ports) has to be hidden. Summarising, we get the following CSP processfor capsule CapsA:CapsA = (CapsX [RX] fc1g jjfc1;c2g CapsY [RY])[c2 7! q2] n fc1gThe CSP process describing the complete architecture of the system is then the par-allel composition of the two capsules CapsA and CapsB , again applying renaming,synchronisation and hiding of private ports. System can be seen as the compoundcapsule containing all capsules in the diagram.System = (CapsA[q2 7! c3] fc3gkfc3g CapsB [r1 7! c3]) n fc3gThe example in Figure 2 requires a careful treatment of addressing. Port p withmultiplicity 3 indicates the possibility of capsule A to choose between di�erentreceivers of messages sent over p. This is modelled by parameterising the processname of A with a formal parameter Adrp standing for the set of possible receivers:A(Adrp). For example, the CSP processA(Adrp) = Produce(e); (kjout :Adrp p:out !e); A(Adrp)repeatedly produces an element e which is then output in parallel to all addressesout of the set Adrp via the multi-port p. Instantiating the formal parameter Adrpwith the address set fu; v ;wg yieldsA(fu; v ;wg) = Produce(e); (p:u!e kj p:v !e kj p:w !e); A(fu; v ;wg):Basic capsule B is treated as before. For example, the CSP processB = q?x ; Consume(x); Brepeatedly receives an element along port q , stores it in a local variable x andconsumes it.Next, the process for the multi-capsule has to be constructed. Let us name thisprocess MB (for MultiB). The semantics of a multi-capsule is the interleaving of allits instances. To achieve a correct addressing of the instances, communication overport q in the instance in is renamed into communication over q :in:MB = kjin :fu;v;wgB [q 7! q :in]Thus the instance name in is transmitted as part of the value over channel q . Forthe above example B we obtainB [q 7! q :in] = q :in?x ; Consume(x); B [q 7! q :in]:Finally, compound capsule System is constructed. This requires an instantiationof the address parameter of A with the set of receivers fu; v ;wg, the instance namesof the multi-capsule attached to port p.System = (A(fu; v ;wg)[p 7! c] fcg jjfcg MB [q 7! c]) n fcgCapsule A may now use the instance names u; v ;w as parameters for channel p andthus send messages to particular instances.

3.3 Translation in generalNow we present a function T for translating a given capsule into a CSP process inequational form. We start from the basic types[Process;Chans;Val]of CSP processes, CSP channels, and values sent along channels. We assume astructure on the set of Events based on a recursive free type Data:Data ::= basichhValii j comphhInstName � DataiiEvents == Chans � DataBy convention, we abbreviate data of the form comp(in; v) by in:v and data of theform basic(v) by just v . Also, following CSP conventions, events of the form (ch; d)are written as ch:d so that a typical event will appear as ch:in1:::::inm:v wherem 2 N. This dot notation for CSP communications should not be confused withthe selection of components in Z schemas. Here the sequence in1:::::inm of instancenames will play the role of addresses to where the value v should be sent along thechannel ch.With every process there is an alphabet of events associated:� : Process ! PEventsThe translation functionT : Capsule ! ProcessEquationsgenerates a set of process equations of the formname(ParameterList) = ProcessExpressionThis set is de�ned inductively on the syntactic structure of capsules.(1) Let BC be a basic capsule with BC :ports = fp1; :::; pm; q1; :::; qng where m; n 2N and p1; :::; pm are single ports, i.e. with pi :multi = 1 for i = 1; :::m, andq1; :::; qn are multi-ports, i.e. with qj :multi > 1 for j = 1; :::; n. Then we takenew formal parameters Adr1; :::;Adrn standing for sets of instance names thatwill serve as addresses to which the multi-ports q1; :::; qn can be connected.The translation function T generates one process equation T (BC) for BC :T (BC) � BC :name(Adr1; :::;Adrn) = RHSHere � stands for syntactic identity and RHS for a process with alphabet�(RHS) � (fp1; :::; pmg �Data)[(fq1g � comp(Adr1 � Data) [:::[fqng � comp(Adrn � Data)):In our setting, RHS is the name of the corresponding CSP-OZ class.(2) Let CC be a compound capsule with CC :ports = fp1; :::; pm; q1; :::; qng wherem; n 2 N and p1; :::; pm; q1; :::; qn are as above. Then we take new formal pa-rameters Adr1; :::;Adrn as above and de�neT (CC) �CC :name(Adr1; :::;Adrn) = [Eqn 1]((kSN :CC :scnames [C(SN):ports[RSN ;CC]] �SN (B1; :::;Bk(SN))[RSN ;CC])[PCC]) nHCCT (C(SN)) for all SN : CC :scnames [Eqns 2]

Thus T (CC) generates one new process equation (Eqn 1) where the right-hand side uses an iterated alphabetised parallel composition and adds to it theequations (Eqns 2) obtained by applying the translation function T inductivelyto all subcapsules in CC . The alphabetised parallel iterates over all names SNof subcapsules in CC .Suppose r1; :::; rk(SN) are the multi-ports of the subcapsule with the name SN .Then the actual address parameters Bi with i = 1; :::; k(SN) for these multi-ports are de�ned as follows:� Bi = Adrpj if ri is connected to a public multi-port pj of CC� Bi = MC :inames if ri is connected to a single port pj of a multi-capsuleMC inside CCThe renaming RSN ;CC changes port names to connector names:RSN ;CC = fpn : PortName; cn : ConName j9 p : C(SN):ports; c : CC :conn �p 2 c:ports ^ pn = p:name ^ cn = c:name � (pn 7! cn)gThe renaming PCC is used to rename connectors from a subcapsule to a publicport on the border of the capsule back to the name of the public port:PCC = fcn : ConName; pn : PortName j9 p : CC :ports; c : CC :conn �p 2 c:ports ^ pn = p:name ^ cn = c:name � (cn 7! pn)gFinally, all remaining connector names are hidden:HCC = fc : CC :conn � c:nameg(3) Let MC be a multi-capsule withC(MC :cname):ports = fp1; :::; pm; q1; :::; qngwhere m; n 2 N and p1; :::; pm; q1; :::; qn are as above. Again we take new formalparameters Adr1; :::;Adrn as above and de�neT (MC) �MC :name(Adr1; :::;Adrn) = [Eqn 1]kjin :MC :inames MC :cname(Adr1; :::;Adrn)[(in)]T (C(MC :cname))) [Eqn 2]Thus T (MC) generates one new process equation (Eqn 1) where the right-handside uses an iterated interleaving operator and adds to it the equation (Eqn2) obtained by applying the translation function T inductively to the capsuleinside MC . The interleaving operator iterates over all instances of this capsule.Each instance is formalised by applying a renaming operator denoted by thepost�x [(in)] where in is an instance name. For a given process P this operatoris de�ned byP [(in)] � P [fch : Chans; d : Data j ch:d 2 �(P) � ch:d 7! ch:in:dg](cf. the construction of the process MB in the example in subsection 3.2).In the followingwe assume that a collaboration diagram implicitly contains a capsuleSystem enclosing all capsules appearing in the diagram. The CSP process for thecapsule System gives the architecture description.

4 Case Study: Automatic Manufacturing SystemIn this section we apply our approach to a larger case study. It concerns the archi-tectural description of an automatic manufacturing system. In automatic manufac-turing systems the transportation of material between machines is carried out byautonomous or holonic transportation agents, i.e. vehicles or robots without driversand without a central control for scheduling2. In [Weh00] a CSP-OZ speci�cation ofan automatic manufacturing system is given in which the architecture of the systemis described by a CSP term and the components (capsules) are given by CSP-OZclass de�nitions. Here, we will only present the architecture, initially modelled bya UML-RT collaboration diagram and then translated into a CSP term using thetranslation T of the previous section.The automatic manufacturing system consists of the following parts (see Figure3): two stores In and Out , one for workpieces to be processed (the in-store) and onefor the �nished workpieces (the out-store); two holonic transportation systems (Hts)T1 and T2; and three machines (Wzm3) A, B and C for processing the workpieces.
B

CA

T1

T2

In OutFig. 3. PlantEvery workpiece has to be processed by all three machine tools in a �xed or-der (In ! A ! B ! C ! Out). The Hts' are responsible for transporting theworkpieces between machines and stores. They work as autonomous agents, freeto decide which machine to serve (within some chosen strategy). Initially the in-store is full and the out-store as well as all machines are empty. When a machineis empty or contains an already processed workpiece it broadcasts a request to theHts in order to receive a new workpiece or to deliver one. The Hts' (when listening)send some o�er to the machines, telling them their cost for satisfying the request.Upon receipt of o�ers the machine decides for the best o�er and give this Hts theorder, which then executes it. Execution of a job involves loading and deloading ofworkpieces from/to Hts and from/to stores and machines. This way, all workpiecesare processed by all three tools and transported from the in- to the out-store.The CSP-OZ speci�cation of this manufacturing system contains class de�nitionsStore and Wzm. The most complex component Hts is split into three parts: one2 This case study is part of the priority research program \Integration of speci�cationtechniques with applications in engineering" of the German Research Council (DFG)(http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/index.html).3 in German: Werkzeugmaschine

for managing the acquisition of new jobs (Acquisition), one for coordinating thedriving in the plant hall (Driver) and a control part (HtsCtrl). The control part callscomponent Acquisition when an order should be acquired (with response new order),and component Driver when the vehicle has to move. Furthermore, componentAcquisition frequently asks Driver about their current position, which is inuencingthe cost of o�ers.
drive

drivearrived

arrived

2

order

offer

tellPosition

whichPosition

listen offer order

2

request
3 Wzm Store

Hts

HtsCtrl

Driver

Acquisition

position

loadHtsSt deloadHtsSt

loadHtsWzm

loadHtsWzm deloadHtsWzm

acquireOrder

acquireOrder

newOrder

newOrder

deloadHtsWzm
loadHtsSt

deloadHtsSt

3 3
2

2
3

2

2

{T1,T2}

{A,B,C} {In,Out}

Fig. 4. Architecture of the Manufacturing SystemFigure 4 shows the architecture of the manufacturing system as an UML-RTstructure diagram. In most cases we have omitted the names of connectors. Theyonly appear at the places where they are necessary in the transformation: when theconnected ports have di�erent names. In the other cases, we simply assume that theconnector name equals the names of connected ports (and consequently omit theotherwise necessary renaming). We also sometimes omit port names of subcapsuleswhen they agree with the port names of the compound capsule. The set of processequations corresponding to the graphical architecture description is constructedinductively. First, the process names and parameters for all basic capsules are �xed.For each of these names, a corresponding CSP-OZ class has to be declared in therest of the speci�cation. Thus we obtain:

StoreDriverAcquisition(Adro�er)HtsCtrl(AdrloadHtsWzm;AdrdeloadHtsWzm;AdrloadHtsSt;AdrdeloadHtsSt)Wzm(Adrrequest ;Adrorder)Next, we construct the process equations for the multi-capsules Store and Wzm.Their process names are MStore and MWzm, respectively.MStore = Store[(In)] kj Store[(Out)]MWzm(Adrrequest ;Adrorder) =kjw :fA;B;Cg Wzm(Adrrequest ;Adrorder)[(w)]The component Hts is the most complex one. First, the process equation for thecompound capsule is constructed.Hts(AdrloadHtsWzm;AdrdeloadHtsWzm;AdrloadHtsSt;AdrdeloadHtsSt;Adro�er) =(Driver [tellPosition 7! position] ADriver jjAAcqui[ACtrl(Acquisition(Adro�er)[whichPosition 7! position] AAcqui jjACtrlHtsCtrl(AdrloadHtsWzm;AdrdeloadHtsWzm;AdrloadHtsSt;AdrdeloadHtsSt)))nPrivHtswith the following sets of events used for synchronisation and hiding:ADriver = farrived ; drive; positiongAAcqui = facquireOrder ; newOrder ; listen; o�er ; ordergACtrl = floadHtsWzm; deloadHtsWzm; loadHtsSt ; deloadHtsSt ;newOrder ; acquireOrder ; arrived ; drivegPrivHts = farrived ; drive; position; acquireOrder ; newOrdergFor reasons of readability we have unfolded the iterated alphabetised parallel com-position in the process equation for Hts. The renaming PCC is in this case emptysince we have adopted the convention that omitted connector names equal theirport names.Next, the process equation for the multi-capsule MHts is constructed:MHts(AdrloadHtsWzm;AdrdeloadHtsWzm;AdrloadHtsSt;AdrdeloadHtsSt;Adro�er) =kjin :fT1;T2g � Hts(AdrloadHtsWzm;AdrdeloadHtsWzm;AdrloadHtsSt;AdrdeloadHtsSt;Adro�er)[(in)]Finally we can give the system description, applying once again the translationscheme for compound capsules:System =(MHts(fA;B ;Cg; fA;B ;Cg;fIn;Outg;fIn;Outg; fA;B ;Cg)AMHts jjAMWzm[AMStore(MWzm(fT1;T2g; fT1;T2g) AMWzm jjAMStore MStore)) n PrivSyswith synchronisation sets and private channelsAMHts = floadHtsWzm; deloadHtsWzm; loadHtsSt ; deloadHtsSt ;

listen; o�er ; ordergAMWzm = floadHtsWzm; deloadHtsWzm; o�er ; order ; requestgAMStore = floadHtsSt ; deloadHtsStgPrivSys = AMHts [AMWzm [AMStoreThis completes the translation.5 ConclusionIn this paper, we have proposed a translation of UML-RT structure diagrams intoCSP. This allows us to use graphical architecture descriptions in CSP-OZ with-out losing its formal semantics. The technique is not only applicable to CSP-OZspeci�cations, but more generally to all speci�cation languages which use CSP forstructure descriptions. The only change needed then is the interpretation of basiccapsules, which stand for CSP-OZ classes in our case but may also be interpreteddi�erently. The translation gives one possible semantics to UML-RT collaborationdiagrams. In a di�erent setting (for instance hardware design on a much lower ab-straction level), a di�erent semantics might be conceivable.The basis for the translation given in this paper is a formalisation of the syntaxof UML-RT structure diagrams in Object-Z. This is similar to the work done in[KC99], which formalises the syntax of UML class diagrams with Z and uses theformalisation for a translation of class diagrams to Object-Z classes.So far we have not explicitly treated protocols, which are also part of UML-RT.Protocols are used for specifying the type of interactions which may take place oversome connector. A protocol can for instance de�ne a set of signals passed over a con-nector, or can give a valid communication sequence. Since the basic communicationparadigm of CSP is synchronous communication, we have assumed that all proto-cols de�ne synchronous communication over a single channel. However, we envisagethe possibility of using more elaborate protocols in an architecture description, forinstance protocols for de�ning asynchronous communication or communication overunreliable channels. To �t into the CSP view on UML-RT diagrams, these protocolsshould be speci�ed in CSP. This approach to protocol de�nition is similar to themethod chosen in WRIGHT [AG97], an architecture description language (ADL)based on CSP. In WRIGHT, an architecture description consists of a set of compo-nents together with a collection of connectors which are given in CSP.Another work similar to ours is the ADL Darwin [MDEK95]. Darwin is both agraphical and a textual modelling language; it has a formal semantics in terms ofMilner's �-calculus [Mil99]. The usage of a calculus with mobility is necessary therebecause Darwin allows to specify dynamically evolving system structures. Since ourgoal was to �nd a graphical description of CSP structure speci�cations, we had noneed for incorporating facilities for describing mobility.A completely di�erent semantic approach to UML-RT diagrams can be foundin [GBSS99]. There the focus is on using a visual but still well-de�ned formalism(interaction graphs) for interpreting UML-RT diagrams.References[AG97] R. Allen and D. Garlan. A formal basis for architectural connection. ACMTransactions on Software Engineering and Methodology, 1997.[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language userguide. Addison Wesley, 1999.

[CE98] T. Clark and A. Evans. Foundations of the uni�ed modeling language. In North-ern Formal Methods Workshop, Electronic Workshops in Computing. Springer,1998.[DLC98] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. Translating the OMT dynamicmodel into Object-Z. In J.P. Bowen, A. Fett, and M.G. Hinchey, editors,ZUM'98: The Z Formal Speci�cation Notation, volume 1493 of Lecture Notesin Computer Science, pages 347{366. Springer, 1998.[Fis97] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman andJ. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems(FMOODS '97), volume 2, pages 423{438. Chapman & Hall, 1997.[Fis00] C. Fischer. Combination and Implementation of Processes and Data: FromCSP-OZ to Java. PhD thesis, Bericht Nr. 2/2000, University of Oldenburg,April 2000.[FR99] R. France and B. Rumpe, editors. UML'99: The Modi�ed Modeling Language{ Beyond the Standard, volume 1723 of Lecture Notes in Computer Science.Springer, 1999.[GBSS99] R. Grosu, M. Broy, B. Selic, and G. Stefanescu. What is behind UML-RT? InBehavioural Speci�cations of business and systems. Kluwer, 1999.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.[KC99] S.-K. Kim and D. Carrington. Formalizing the UML class diagram usingObject-Z. In R. France and B. Rumpe, editors, UML'99: The Uni�edModellingLanguage { Beyond the Standard, volume 1723 of Lecture Notes in ComputerScience, pages 83{98. Springer, 1999.[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed soft-ware architectures. In ESEC '95: European Software Engineering Conference,1995.[Mil99] R. Milner. Communicating and Mobile Systems: The �-Calculus. CambridgeUniversity Press, 1999.[Obj99] Object Management Group. OMG Uni�ed Modeling Language Speci�cation,June 1999. version 1.3.[OR00] E.-R. Olderog and A.P. Ravn. Documenting design re�nement. In M.P.E.Heimdahl, editor, Proc. of the Third Workshop on Formal Methods in SoftwarePractice, pages 89{100. ACM, 2000.[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.[Smi00] G. Smith. The Object-Z Speci�cation Language. Kluwer Academic Publisher,2000.[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall InternationalSeries in Computer Science, 2nd edition, 1992.[SR98] B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems.Technical report, ObjecTime, 1998.[Weh00] H. Wehrheim. Speci�cation of an automatic manufacturing system { a casestudy in using integrated formal methods. In T. Maibaum, editor, FASE 2000:Fundamental Aspects of Software Engineering, number 1783 in LNCS. Springer,2000.

